File size: 39,067 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
"""Functions for generating trees.

The functions sampling trees at random in this module come
in two variants: labeled and unlabeled. The labeled variants
sample from every possible tree with the given number of nodes
uniformly at random. The unlabeled variants sample from every
possible *isomorphism class* of trees with the given number
of nodes uniformly at random.

To understand the difference, consider the following example.
There are two isomorphism classes of trees with four nodes.
One is that of the path graph, the other is that of the
star graph. The unlabeled variant will return a line graph or
a star graph with probability 1/2.

The labeled variant will return the line graph
with probability 3/4 and the star graph with probability 1/4,
because there are more labeled variants of the line graph
than of the star graph. More precisely, the line graph has
an automorphism group of order 2, whereas the star graph has
an automorphism group of order 6, so the line graph has three
times as many labeled variants as the star graph, and thus
three more chances to be drawn.

Additionally, some functions in this module can sample rooted
trees and forests uniformly at random. A rooted tree is a tree
with a designated root node. A rooted forest is a disjoint union
of rooted trees.
"""

import warnings
from collections import Counter, defaultdict
from math import comb, factorial

import networkx as nx
from networkx.utils import py_random_state

__all__ = [
    "prefix_tree",
    "prefix_tree_recursive",
    "random_tree",
    "random_labeled_tree",
    "random_labeled_rooted_tree",
    "random_labeled_rooted_forest",
    "random_unlabeled_tree",
    "random_unlabeled_rooted_tree",
    "random_unlabeled_rooted_forest",
]


@nx._dispatch(graphs=None)
def prefix_tree(paths):
    """Creates a directed prefix tree from a list of paths.

    Usually the paths are described as strings or lists of integers.

    A "prefix tree" represents the prefix structure of the strings.
    Each node represents a prefix of some string. The root represents
    the empty prefix with children for the single letter prefixes which
    in turn have children for each double letter prefix starting with
    the single letter corresponding to the parent node, and so on.

    More generally the prefixes do not need to be strings. A prefix refers
    to the start of a sequence. The root has children for each one element
    prefix and they have children for each two element prefix that starts
    with the one element sequence of the parent, and so on.

    Note that this implementation uses integer nodes with an attribute.
    Each node has an attribute "source" whose value is the original element
    of the path to which this node corresponds. For example, suppose `paths`
    consists of one path: "can". Then the nodes `[1, 2, 3]` which represent
    this path have "source" values "c", "a" and "n".

    All the descendants of a node have a common prefix in the sequence/path
    associated with that node. From the returned tree, the prefix for each
    node can be constructed by traversing the tree up to the root and
    accumulating the "source" values along the way.

    The root node is always `0` and has "source" attribute `None`.
    The root is the only node with in-degree zero.
    The nil node is always `-1` and has "source" attribute `"NIL"`.
    The nil node is the only node with out-degree zero.


    Parameters
    ----------
    paths: iterable of paths
        An iterable of paths which are themselves sequences.
        Matching prefixes among these sequences are identified with
        nodes of the prefix tree. One leaf of the tree is associated
        with each path. (Identical paths are associated with the same
        leaf of the tree.)


    Returns
    -------
    tree: DiGraph
        A directed graph representing an arborescence consisting of the
        prefix tree generated by `paths`. Nodes are directed "downward",
        from parent to child. A special "synthetic" root node is added
        to be the parent of the first node in each path. A special
        "synthetic" leaf node, the "nil" node `-1`, is added to be the child
        of all nodes representing the last element in a path. (The
        addition of this nil node technically makes this not an
        arborescence but a directed acyclic graph; removing the nil node
        makes it an arborescence.)


    Notes
    -----
    The prefix tree is also known as a *trie*.


    Examples
    --------
    Create a prefix tree from a list of strings with common prefixes::

        >>> paths = ["ab", "abs", "ad"]
        >>> T = nx.prefix_tree(paths)
        >>> list(T.edges)
        [(0, 1), (1, 2), (1, 4), (2, -1), (2, 3), (3, -1), (4, -1)]

    The leaf nodes can be obtained as predecessors of the nil node::

        >>> root, NIL = 0, -1
        >>> list(T.predecessors(NIL))
        [2, 3, 4]

    To recover the original paths that generated the prefix tree,
    traverse up the tree from the node `-1` to the node `0`::

        >>> recovered = []
        >>> for v in T.predecessors(NIL):
        ...     prefix = ""
        ...     while v != root:
        ...         prefix = str(T.nodes[v]["source"]) + prefix
        ...         v = next(T.predecessors(v))  # only one predecessor
        ...     recovered.append(prefix)
        >>> sorted(recovered)
        ['ab', 'abs', 'ad']
    """

    def get_children(parent, paths):
        children = defaultdict(list)
        # Populate dictionary with key(s) as the child/children of the root and
        # value(s) as the remaining paths of the corresponding child/children
        for path in paths:
            # If path is empty, we add an edge to the NIL node.
            if not path:
                tree.add_edge(parent, NIL)
                continue
            child, *rest = path
            # `child` may exist as the head of more than one path in `paths`.
            children[child].append(rest)
        return children

    # Initialize the prefix tree with a root node and a nil node.
    tree = nx.DiGraph()
    root = 0
    tree.add_node(root, source=None)
    NIL = -1
    tree.add_node(NIL, source="NIL")
    children = get_children(root, paths)
    stack = [(root, iter(children.items()))]
    while stack:
        parent, remaining_children = stack[-1]
        try:
            child, remaining_paths = next(remaining_children)
        # Pop item off stack if there are no remaining children
        except StopIteration:
            stack.pop()
            continue
        # We relabel each child with an unused name.
        new_name = len(tree) - 1
        # The "source" node attribute stores the original node name.
        tree.add_node(new_name, source=child)
        tree.add_edge(parent, new_name)
        children = get_children(new_name, remaining_paths)
        stack.append((new_name, iter(children.items())))

    return tree


@nx._dispatch(graphs=None)
def prefix_tree_recursive(paths):
    """Recursively creates a directed prefix tree from a list of paths.

    The original recursive version of prefix_tree for comparison. It is
    the same algorithm but the recursion is unrolled onto a stack.

    Usually the paths are described as strings or lists of integers.

    A "prefix tree" represents the prefix structure of the strings.
    Each node represents a prefix of some string. The root represents
    the empty prefix with children for the single letter prefixes which
    in turn have children for each double letter prefix starting with
    the single letter corresponding to the parent node, and so on.

    More generally the prefixes do not need to be strings. A prefix refers
    to the start of a sequence. The root has children for each one element
    prefix and they have children for each two element prefix that starts
    with the one element sequence of the parent, and so on.

    Note that this implementation uses integer nodes with an attribute.
    Each node has an attribute "source" whose value is the original element
    of the path to which this node corresponds. For example, suppose `paths`
    consists of one path: "can". Then the nodes `[1, 2, 3]` which represent
    this path have "source" values "c", "a" and "n".

    All the descendants of a node have a common prefix in the sequence/path
    associated with that node. From the returned tree, ehe prefix for each
    node can be constructed by traversing the tree up to the root and
    accumulating the "source" values along the way.

    The root node is always `0` and has "source" attribute `None`.
    The root is the only node with in-degree zero.
    The nil node is always `-1` and has "source" attribute `"NIL"`.
    The nil node is the only node with out-degree zero.


    Parameters
    ----------
    paths: iterable of paths
        An iterable of paths which are themselves sequences.
        Matching prefixes among these sequences are identified with
        nodes of the prefix tree. One leaf of the tree is associated
        with each path. (Identical paths are associated with the same
        leaf of the tree.)


    Returns
    -------
    tree: DiGraph
        A directed graph representing an arborescence consisting of the
        prefix tree generated by `paths`. Nodes are directed "downward",
        from parent to child. A special "synthetic" root node is added
        to be the parent of the first node in each path. A special
        "synthetic" leaf node, the "nil" node `-1`, is added to be the child
        of all nodes representing the last element in a path. (The
        addition of this nil node technically makes this not an
        arborescence but a directed acyclic graph; removing the nil node
        makes it an arborescence.)


    Notes
    -----
    The prefix tree is also known as a *trie*.


    Examples
    --------
    Create a prefix tree from a list of strings with common prefixes::

        >>> paths = ["ab", "abs", "ad"]
        >>> T = nx.prefix_tree(paths)
        >>> list(T.edges)
        [(0, 1), (1, 2), (1, 4), (2, -1), (2, 3), (3, -1), (4, -1)]

    The leaf nodes can be obtained as predecessors of the nil node.

        >>> root, NIL = 0, -1
        >>> list(T.predecessors(NIL))
        [2, 3, 4]

    To recover the original paths that generated the prefix tree,
    traverse up the tree from the node `-1` to the node `0`::

        >>> recovered = []
        >>> for v in T.predecessors(NIL):
        ...     prefix = ""
        ...     while v != root:
        ...         prefix = str(T.nodes[v]["source"]) + prefix
        ...         v = next(T.predecessors(v))  # only one predecessor
        ...     recovered.append(prefix)
        >>> sorted(recovered)
        ['ab', 'abs', 'ad']
    """

    def _helper(paths, root, tree):
        """Recursively create a trie from the given list of paths.

        `paths` is a list of paths, each of which is itself a list of
        nodes, relative to the given `root` (but not including it). This
        list of paths will be interpreted as a tree-like structure, in
        which two paths that share a prefix represent two branches of
        the tree with the same initial segment.

        `root` is the parent of the node at index 0 in each path.

        `tree` is the "accumulator", the :class:`networkx.DiGraph`
        representing the branching to which the new nodes and edges will
        be added.

        """
        # For each path, remove the first node and make it a child of root.
        # Any remaining paths then get processed recursively.
        children = defaultdict(list)
        for path in paths:
            # If path is empty, we add an edge to the NIL node.
            if not path:
                tree.add_edge(root, NIL)
                continue
            child, *rest = path
            # `child` may exist as the head of more than one path in `paths`.
            children[child].append(rest)
        # Add a node for each child, connect root, recurse to remaining paths
        for child, remaining_paths in children.items():
            # We relabel each child with an unused name.
            new_name = len(tree) - 1
            # The "source" node attribute stores the original node name.
            tree.add_node(new_name, source=child)
            tree.add_edge(root, new_name)
            _helper(remaining_paths, new_name, tree)

    # Initialize the prefix tree with a root node and a nil node.
    tree = nx.DiGraph()
    root = 0
    tree.add_node(root, source=None)
    NIL = -1
    tree.add_node(NIL, source="NIL")
    # Populate the tree.
    _helper(paths, root, tree)
    return tree


@py_random_state(1)
@nx._dispatch(graphs=None)
def random_tree(n, seed=None, create_using=None):
    """Returns a uniformly random tree on `n` nodes.

    .. deprecated:: 3.2

       ``random_tree`` is deprecated and will be removed in NX v3.4
       Use ``random_labeled_tree`` instead.

    Parameters
    ----------
    n : int
        A positive integer representing the number of nodes in the tree.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    Returns
    -------
    NetworkX graph
        A tree, given as an undirected graph, whose nodes are numbers in
        the set {0, …, *n* - 1}.

    Raises
    ------
    NetworkXPointlessConcept
        If `n` is zero (because the null graph is not a tree).

    Notes
    -----
    The current implementation of this function generates a uniformly
    random Prüfer sequence then converts that to a tree via the
    :func:`~networkx.from_prufer_sequence` function. Since there is a
    bijection between Prüfer sequences of length *n* - 2 and trees on
    *n* nodes, the tree is chosen uniformly at random from the set of
    all trees on *n* nodes.

    Examples
    --------
    >>> tree = nx.random_tree(n=10, seed=0)
    >>> nx.write_network_text(tree, sources=[0])
    ╙── 0
        ├── 3
        └── 4
            ├── 6
            │   ├── 1
            │   ├── 2
            │   └── 7
            │       └── 8
            │           └── 5
            └── 9

    >>> tree = nx.random_tree(n=10, seed=0, create_using=nx.DiGraph)
    >>> nx.write_network_text(tree)
    ╙── 0
        ├─╼ 3
        └─╼ 4
            ├─╼ 6
            │   ├─╼ 1
            │   ├─╼ 2
            │   └─╼ 7
            │       └─╼ 8
            │           └─╼ 5
            └─╼ 9
    """
    warnings.warn(
        (
            "\n\nrandom_tree is deprecated and will be removed in NX v3.4\n"
            "Use random_labeled_tree instead."
        ),
        DeprecationWarning,
        stacklevel=2,
    )
    if n == 0:
        raise nx.NetworkXPointlessConcept("the null graph is not a tree")
    # Cannot create a Prüfer sequence unless `n` is at least two.
    if n == 1:
        utree = nx.empty_graph(1, create_using)
    else:
        sequence = [seed.choice(range(n)) for i in range(n - 2)]
        utree = nx.from_prufer_sequence(sequence)

    if create_using is None:
        tree = utree
    else:
        tree = nx.empty_graph(0, create_using)
        if tree.is_directed():
            # Use a arbitrary root node and dfs to define edge directions
            edges = nx.dfs_edges(utree, source=0)
        else:
            edges = utree.edges

        # Populate the specified graph type
        tree.add_nodes_from(utree.nodes)
        tree.add_edges_from(edges)

    return tree


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_labeled_tree(n, *, seed=None):
    """Returns a labeled tree on `n` nodes chosen uniformly at random.

    Generating uniformly distributed random Prüfer sequences and
    converting them into the corresponding trees is a straightforward
    method of generating uniformly distributed random labeled trees.
    This function implements this method.

    Parameters
    ----------
    n : int
        The number of nodes, greater than zero.
    seed : random_state
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`

    Returns
    -------
     :class:`networkx.Graph`
        A `networkx.Graph` with nodes in the set {0, …, *n* - 1}.

    Raises
    ------
    NetworkXPointlessConcept
        If `n` is zero (because the null graph is not a tree).
    """
    # Cannot create a Prüfer sequence unless `n` is at least two.
    if n == 0:
        raise nx.NetworkXPointlessConcept("the null graph is not a tree")
    if n == 1:
        return nx.empty_graph(1)
    return nx.from_prufer_sequence([seed.choice(range(n)) for i in range(n - 2)])


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_labeled_rooted_tree(n, *, seed=None):
    """Returns a labeled rooted tree with `n` nodes.

    The returned tree is chosen uniformly at random from all labeled rooted trees.

    Parameters
    ----------
    n : int
        The number of nodes
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`networkx.Graph`
        A `networkx.Graph` with integer nodes 0 <= node <= `n` - 1.
        The root of the tree is selected uniformly from the nodes.
        The "root" graph attribute identifies the root of the tree.

    Notes
    -----
    This function returns the result of :func:`random_labeled_tree`
    with a randomly selected root.

    Raises
    ------
    NetworkXPointlessConcept
        If `n` is zero (because the null graph is not a tree).
    """
    t = random_labeled_tree(n, seed=seed)
    t.graph["root"] = seed.randint(0, n - 1)
    return t


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_labeled_rooted_forest(n, *, seed=None):
    """Returns a labeled rooted forest with `n` nodes.

    The returned forest is chosen uniformly at random using a
    generalization of Prüfer sequences [1]_ in the form described in [2]_.

    Parameters
    ----------
    n : int
        The number of nodes.
    seed : random_state
       See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`networkx.Graph`
        A `networkx.Graph` with integer nodes 0 <= node <= `n` - 1.
        The "roots" graph attribute is a set of integers containing the roots.

    References
    ----------
    .. [1] Knuth, Donald E. "Another Enumeration of Trees."
        Canadian Journal of Mathematics, 20 (1968): 1077-1086.
        https://doi.org/10.4153/CJM-1968-104-8
    .. [2] Rubey, Martin. "Counting Spanning Trees". Diplomarbeit
        zur Erlangung des akademischen Grades Magister der
        Naturwissenschaften an der Formal- und Naturwissenschaftlichen
        Fakultät der Universität Wien. Wien, May 2000.
    """

    # Select the number of roots by iterating over the cumulative count of trees
    # with at most k roots
    def _select_k(n, seed):
        r = seed.randint(0, (n + 1) ** (n - 1) - 1)
        cum_sum = 0
        for k in range(1, n):
            cum_sum += (factorial(n - 1) * n ** (n - k)) // (
                factorial(k - 1) * factorial(n - k)
            )
            if r < cum_sum:
                return k

        return n

    F = nx.empty_graph(n)
    if n == 0:
        F.graph["roots"] = {}
        return F
    # Select the number of roots k
    k = _select_k(n, seed)
    if k == n:
        F.graph["roots"] = set(range(n))
        return F  # Nothing to do
    # Select the roots
    roots = seed.sample(range(n), k)
    # Nonroots
    p = set(range(n)).difference(roots)
    # Coding sequence
    N = [seed.randint(0, n - 1) for i in range(n - k - 1)]
    # Multiset of elements in N also in p
    degree = Counter([x for x in N if x in p])
    # Iterator over the elements of p with degree zero
    iterator = iter(x for x in p if degree[x] == 0)
    u = last = next(iterator)
    # This loop is identical to that for Prüfer sequences,
    # except that we can draw nodes only from p
    for v in N:
        F.add_edge(u, v)
        degree[v] -= 1
        if v < last and degree[v] == 0:
            u = v
        else:
            last = u = next(iterator)

    F.add_edge(u, roots[0])
    F.graph["roots"] = set(roots)
    return F


# The following functions support generation of unlabeled trees and forests.


def _to_nx(edges, n_nodes, root=None, roots=None):
    """
    Converts the (edges, n_nodes) input to a :class:`networkx.Graph`.
    The (edges, n_nodes) input is a list of even length, where each pair
    of consecutive integers represents an edge, and an integer `n_nodes`.
    Integers in the list are elements of `range(n_nodes)`.

    Parameters
    ----------
    edges : list of ints
        The flattened list of edges of the graph.
    n_nodes : int
        The number of nodes of the graph.
    root: int (default=None)
        If not None, the "root" attribute of the graph will be set to this value.
    roots: collection of ints (default=None)
        If not None, he "roots" attribute of the graph will be set to this value.

    Returns
    -------
    :class:`networkx.Graph`
        The graph with `n_nodes` nodes and edges given by `edges`.
    """
    G = nx.empty_graph(n_nodes)
    G.add_edges_from(edges)
    if root is not None:
        G.graph["root"] = root
    if roots is not None:
        G.graph["roots"] = roots
    return G


def _num_rooted_trees(n, cache_trees):
    """Returns the number of unlabeled rooted trees with `n` nodes.

    See also https://oeis.org/A000081.

    Parameters
    ----------
    n : int
        The number of nodes
    cache_trees : list of ints
        The $i$-th element is the number of unlabeled rooted trees with $i$ nodes,
        which is used as a cache (and is extended to length $n+1$ if needed)

    Returns
    -------
    int
        The number of unlabeled rooted trees with `n` nodes.
    """
    for n_i in range(len(cache_trees), n + 1):
        cache_trees.append(
            sum(
                [
                    d * cache_trees[n_i - j * d] * cache_trees[d]
                    for d in range(1, n_i)
                    for j in range(1, (n_i - 1) // d + 1)
                ]
            )
            // (n_i - 1)
        )
    return cache_trees[n]


def _select_jd_trees(n, cache_trees, seed):
    """Returns a pair $(j,d)$ with a specific probability

    Given $n$, returns a pair of positive integers $(j,d)$ with the probability
    specified in formula (5) of Chapter 29 of [1]_.

    Parameters
    ----------
    n : int
        The number of nodes
    cache_trees : list of ints
        Cache for :func:`_num_rooted_trees`.
    seed : random_state
       See :ref:`Randomness<randomness>`.

    Returns
    -------
    (int, int)
        A pair of positive integers $(j,d)$ satisfying formula (5) of
        Chapter 29 of [1]_.

    References
    ----------
    .. [1] Nijenhuis, Albert, and Wilf, Herbert S.
        "Combinatorial algorithms: for computers and calculators."
        Academic Press, 1978.
        https://doi.org/10.1016/C2013-0-11243-3
    """
    p = seed.randint(0, _num_rooted_trees(n, cache_trees) * (n - 1) - 1)
    cumsum = 0
    for d in range(n - 1, 0, -1):
        for j in range(1, (n - 1) // d + 1):
            cumsum += (
                d
                * _num_rooted_trees(n - j * d, cache_trees)
                * _num_rooted_trees(d, cache_trees)
            )
            if p < cumsum:
                return (j, d)


def _random_unlabeled_rooted_tree(n, cache_trees, seed):
    """Returns an unlabeled rooted tree with `n` nodes.

    Returns an unlabeled rooted tree with `n` nodes chosen uniformly
    at random using the "RANRUT" algorithm from [1]_.
    The tree is returned in the form: (list_of_edges, number_of_nodes)

    Parameters
    ----------
    n : int
        The number of nodes, greater than zero.
    cache_trees : list ints
        Cache for :func:`_num_rooted_trees`.
    seed : random_state
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    (list_of_edges, number_of_nodes) : list, int
        A random unlabeled rooted tree with `n` nodes as a 2-tuple
        ``(list_of_edges, number_of_nodes)``.
        The root is node 0.

    References
    ----------
    .. [1] Nijenhuis, Albert, and Wilf, Herbert S.
        "Combinatorial algorithms: for computers and calculators."
        Academic Press, 1978.
        https://doi.org/10.1016/C2013-0-11243-3
    """
    if n == 1:
        edges, n_nodes = [], 1
        return edges, n_nodes
    if n == 2:
        edges, n_nodes = [(0, 1)], 2
        return edges, n_nodes

    j, d = _select_jd_trees(n, cache_trees, seed)
    t1, t1_nodes = _random_unlabeled_rooted_tree(n - j * d, cache_trees, seed)
    t2, t2_nodes = _random_unlabeled_rooted_tree(d, cache_trees, seed)
    t12 = [(0, t2_nodes * i + t1_nodes) for i in range(j)]
    t1.extend(t12)
    for _ in range(j):
        t1.extend((n1 + t1_nodes, n2 + t1_nodes) for n1, n2 in t2)
        t1_nodes += t2_nodes

    return t1, t1_nodes


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None):
    """Returns a number of unlabeled rooted trees uniformly at random

    Returns one or more (depending on `number_of_trees`)
    unlabeled rooted trees with `n` nodes drawn uniformly
    at random.

    Parameters
    ----------
    n : int
        The number of nodes
    number_of_trees : int or None (default)
        If not None, this number of trees is generated and returned.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`networkx.Graph` or list of :class:`networkx.Graph`
        A single `networkx.Graph` (or a list thereof, if `number_of_trees`
        is specified) with nodes in the set {0, …, *n* - 1}.
        The "root" graph attribute identifies the root of the tree.

    Notes
    -----
    The trees are generated using the "RANRUT" algorithm from [1]_.
    The algorithm needs to compute some counting functions
    that are relatively expensive: in case several trees are needed,
    it is advisable to use the `number_of_trees` optional argument
    to reuse the counting functions.

    Raises
    ------
    NetworkXPointlessConcept
        If `n` is zero (because the null graph is not a tree).

    References
    ----------
    .. [1] Nijenhuis, Albert, and Wilf, Herbert S.
        "Combinatorial algorithms: for computers and calculators."
        Academic Press, 1978.
        https://doi.org/10.1016/C2013-0-11243-3
    """
    if n == 0:
        raise nx.NetworkXPointlessConcept("the null graph is not a tree")
    cache_trees = [0, 1]  # initial cache of number of rooted trees
    if number_of_trees is None:
        return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0)
    return [
        _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0)
        for i in range(number_of_trees)
    ]


def _num_rooted_forests(n, q, cache_forests):
    """Returns the number of unlabeled rooted forests with `n` nodes, and with
    no more than `q` nodes per tree. A recursive formula for this is (2) in
    [1]_. This function is implemented using dynamic programming instead of
    recursion.

    Parameters
    ----------
    n : int
        The number of nodes.
    q : int
        The maximum number of nodes for each tree of the forest.
    cache_forests : list of ints
        The $i$-th element is the number of unlabeled rooted forests with
        $i$ nodes, and with no more than `q` nodes per tree; this is used
        as a cache (and is extended to length `n` + 1 if needed).

    Returns
    -------
    int
        The number of unlabeled rooted forests with `n` nodes with no more than
        `q` nodes per tree.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    for n_i in range(len(cache_forests), n + 1):
        q_i = min(n_i, q)
        cache_forests.append(
            sum(
                [
                    d * cache_forests[n_i - j * d] * cache_forests[d - 1]
                    for d in range(1, q_i + 1)
                    for j in range(1, n_i // d + 1)
                ]
            )
            // n_i
        )

    return cache_forests[n]


def _select_jd_forests(n, q, cache_forests, seed):
    """Given `n` and `q`, returns a pair of positive integers $(j,d)$
    such that $j\\leq d$, with probability satisfying (F1) of [1]_.

    Parameters
    ----------
    n : int
        The number of nodes.
    q : int
        The maximum number of nodes for each tree of the forest.
    cache_forests : list of ints
        Cache for :func:`_num_rooted_forests`.
    seed : random_state
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    (int, int)
        A pair of positive integers $(j,d)$

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    p = seed.randint(0, _num_rooted_forests(n, q, cache_forests) * n - 1)
    cumsum = 0
    for d in range(q, 0, -1):
        for j in range(1, n // d + 1):
            cumsum += (
                d
                * _num_rooted_forests(n - j * d, q, cache_forests)
                * _num_rooted_forests(d - 1, q, cache_forests)
            )
            if p < cumsum:
                return (j, d)


def _random_unlabeled_rooted_forest(n, q, cache_trees, cache_forests, seed):
    """Returns an unlabeled rooted forest with `n` nodes, and with no more
    than `q` nodes per tree, drawn uniformly at random. It is an implementation
    of the algorithm "Forest" of [1]_.

    Parameters
    ----------
    n : int
        The number of nodes.
    q : int
        The maximum number of nodes per tree.
    cache_trees :
        Cache for :func:`_num_rooted_trees`.
    cache_forests :
        Cache for :func:`_num_rooted_forests`.
    seed : random_state
       See :ref:`Randomness<randomness>`.

    Returns
    -------
    (edges, n, r) : (list, int, list)
        The forest (edges, n) and a list r of root nodes.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    if n == 0:
        return ([], 0, [])

    j, d = _select_jd_forests(n, q, cache_forests, seed)
    t1, t1_nodes, r1 = _random_unlabeled_rooted_forest(
        n - j * d, q, cache_trees, cache_forests, seed
    )
    t2, t2_nodes = _random_unlabeled_rooted_tree(d, cache_trees, seed)
    for _ in range(j):
        r1.append(t1_nodes)
        t1.extend((n1 + t1_nodes, n2 + t1_nodes) for n1, n2 in t2)
        t1_nodes += t2_nodes
    return t1, t1_nodes, r1


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_unlabeled_rooted_forest(n, *, q=None, number_of_forests=None, seed=None):
    """Returns a forest or list of forests selected at random.

    Returns one or more (depending on `number_of_forests`)
    unlabeled rooted forests with `n` nodes, and with no more than
    `q` nodes per tree, drawn uniformly at random.
    The "roots" graph attribute identifies the roots of the forest.

    Parameters
    ----------
    n : int
        The number of nodes
    q : int or None (default)
        The maximum number of nodes per tree.
    number_of_forests : int or None (default)
        If not None, this number of forests is generated and returned.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`networkx.Graph` or list of :class:`networkx.Graph`
        A single `networkx.Graph` (or a list thereof, if `number_of_forests`
        is specified) with nodes in the set {0, …, *n* - 1}.
        The "roots" graph attribute is a set containing the roots
        of the trees in the forest.

    Notes
    -----
    This function implements the algorithm "Forest" of [1]_.
    The algorithm needs to compute some counting functions
    that are relatively expensive: in case several trees are needed,
    it is advisable to use the `number_of_forests` optional argument
    to reuse the counting functions.

    Raises
    ------
    ValueError
        If `n` is non-zero but `q` is zero.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    if q is None:
        q = n
    if q == 0 and n != 0:
        raise ValueError("q must be a positive integer if n is positive.")

    cache_trees = [0, 1]  # initial cache of number of rooted trees
    cache_forests = [1]  # initial cache of number of rooted forests

    if number_of_forests is None:
        g, nodes, rs = _random_unlabeled_rooted_forest(
            n, q, cache_trees, cache_forests, seed
        )
        return _to_nx(g, nodes, roots=set(rs))

    res = []
    for i in range(number_of_forests):
        g, nodes, rs = _random_unlabeled_rooted_forest(
            n, q, cache_trees, cache_forests, seed
        )
        res.append(_to_nx(g, nodes, roots=set(rs)))
    return res


def _num_trees(n, cache_trees):
    """Returns the number of unlabeled trees with `n` nodes.

    See also https://oeis.org/A000055.

    Parameters
    ----------
    n : int
        The number of nodes.
    cache_trees : list of ints
        Cache for :func:`_num_rooted_trees`.

    Returns
    -------
    int
        The number of unlabeled trees with `n` nodes.
    """
    r = _num_rooted_trees(n, cache_trees) - sum(
        [
            _num_rooted_trees(j, cache_trees) * _num_rooted_trees(n - j, cache_trees)
            for j in range(1, n // 2 + 1)
        ]
    )
    if n % 2 == 0:
        r += comb(_num_rooted_trees(n // 2, cache_trees) + 1, 2)
    return r


def _bicenter(n, cache, seed):
    """Returns a bi-centroidal tree on `n` nodes drawn uniformly at random.

    This function implements the algorithm Bicenter of [1]_.

    Parameters
    ----------
    n : int
        The number of nodes (must be even).
    cache : list of ints.
        Cache for :func:`_num_rooted_trees`.
    seed : random_state
        See :ref:`Randomness<randomness>`

    Returns
    -------
    (edges, n)
        The tree as a list of edges and number of nodes.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    t, t_nodes = _random_unlabeled_rooted_tree(n // 2, cache, seed)
    if seed.randint(0, _num_rooted_trees(n // 2, cache)) == 0:
        t2, t2_nodes = t, t_nodes
    else:
        t2, t2_nodes = _random_unlabeled_rooted_tree(n // 2, cache, seed)
    t.extend([(n1 + (n // 2), n2 + (n // 2)) for n1, n2 in t2])
    t.append((0, n // 2))
    return t, t_nodes + t2_nodes


def _random_unlabeled_tree(n, cache_trees, cache_forests, seed):
    """Returns a tree on `n` nodes drawn uniformly at random.
    It implements the Wilf's algorithm "Free" of [1]_.

    Parameters
    ----------
    n : int
        The number of nodes, greater than zero.
    cache_trees : list of ints
        Cache for :func:`_num_rooted_trees`.
    cache_forests : list of ints
        Cache for :func:`_num_rooted_forests`.
    seed : random_state
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`

    Returns
    -------
    (edges, n)
        The tree as a list of edges and number of nodes.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    if n % 2 == 1:
        p = 0
    else:
        p = comb(_num_rooted_trees(n // 2, cache_trees) + 1, 2)
    if seed.randint(0, _num_trees(n, cache_trees) - 1) < p:
        return _bicenter(n, cache_trees, seed)
    else:
        f, n_f, r = _random_unlabeled_rooted_forest(
            n - 1, (n - 1) // 2, cache_trees, cache_forests, seed
        )
        for i in r:
            f.append((i, n_f))
        return f, n_f + 1


@py_random_state("seed")
@nx._dispatch(graphs=None)
def random_unlabeled_tree(n, *, number_of_trees=None, seed=None):
    """Returns a tree or list of trees chosen randomly.

    Returns one or more (depending on `number_of_trees`)
    unlabeled trees with `n` nodes drawn uniformly at random.

    Parameters
    ----------
    n : int
        The number of nodes
    number_of_trees : int or None (default)
        If not None, this number of trees is generated and returned.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`networkx.Graph` or list of :class:`networkx.Graph`
        A single `networkx.Graph` (or a list thereof, if
        `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}.

    Raises
    ------
    NetworkXPointlessConcept
        If `n` is zero (because the null graph is not a tree).

    Notes
    -----
    This function generates an unlabeled tree uniformly at random using
    Wilf's algorithm "Free" of [1]_. The algorithm needs to
    compute some counting functions that are relatively expensive:
    in case several trees are needed, it is advisable to use the
    `number_of_trees` optional argument to reuse the counting
    functions.

    References
    ----------
    .. [1] Wilf, Herbert S. "The uniform selection of free trees."
        Journal of Algorithms 2.2 (1981): 204-207.
        https://doi.org/10.1016/0196-6774(81)90021-3
    """
    if n == 0:
        raise nx.NetworkXPointlessConcept("the null graph is not a tree")

    cache_trees = [0, 1]  # initial cache of number of rooted trees
    cache_forests = [1]  # initial cache of number of rooted forests
    if number_of_trees is None:
        return _to_nx(*_random_unlabeled_tree(n, cache_trees, cache_forests, seed))
    else:
        return [
            _to_nx(*_random_unlabeled_tree(n, cache_trees, cache_forests, seed))
            for i in range(number_of_trees)
        ]