Spaces:
Running
Running
File size: 2,800 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import numpy as np
from gym import utils
from gym.envs.mujoco import MuJocoPyEnv
from gym.spaces import Box
def mass_center(model, sim):
mass = np.expand_dims(model.body_mass, 1)
xpos = sim.data.xipos
return (np.sum(mass * xpos, 0) / np.sum(mass))[0]
class HumanoidEnv(MuJocoPyEnv, utils.EzPickle):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 67,
}
def __init__(self, **kwargs):
observation_space = Box(
low=-np.inf, high=np.inf, shape=(376,), dtype=np.float64
)
MuJocoPyEnv.__init__(
self, "humanoid.xml", 5, observation_space=observation_space, **kwargs
)
utils.EzPickle.__init__(self, **kwargs)
def _get_obs(self):
data = self.sim.data
return np.concatenate(
[
data.qpos.flat[2:],
data.qvel.flat,
data.cinert.flat,
data.cvel.flat,
data.qfrc_actuator.flat,
data.cfrc_ext.flat,
]
)
def step(self, a):
pos_before = mass_center(self.model, self.sim)
self.do_simulation(a, self.frame_skip)
pos_after = mass_center(self.model, self.sim)
alive_bonus = 5.0
data = self.sim.data
lin_vel_cost = 1.25 * (pos_after - pos_before) / self.dt
quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()
quad_impact_cost = 0.5e-6 * np.square(data.cfrc_ext).sum()
quad_impact_cost = min(quad_impact_cost, 10)
reward = lin_vel_cost - quad_ctrl_cost - quad_impact_cost + alive_bonus
qpos = self.sim.data.qpos
terminated = bool((qpos[2] < 1.0) or (qpos[2] > 2.0))
if self.render_mode == "human":
self.render()
return (
self._get_obs(),
reward,
terminated,
False,
dict(
reward_linvel=lin_vel_cost,
reward_quadctrl=-quad_ctrl_cost,
reward_alive=alive_bonus,
reward_impact=-quad_impact_cost,
),
)
def reset_model(self):
c = 0.01
self.set_state(
self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.nq),
self.init_qvel
+ self.np_random.uniform(
low=-c,
high=c,
size=self.model.nv,
),
)
return self._get_obs()
def viewer_setup(self):
assert self.viewer is not None
self.viewer.cam.trackbodyid = 1
self.viewer.cam.distance = self.model.stat.extent * 1.0
self.viewer.cam.lookat[2] = 2.0
self.viewer.cam.elevation = -20
|