Spaces:
Running
Running
File size: 11,835 Bytes
3f7c971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
#
# The Python Imaging Library
# $Id$
#
# a simple math add-on for the Python Imaging Library
#
# History:
# 1999-02-15 fl Original PIL Plus release
# 2005-05-05 fl Simplified and cleaned up for PIL 1.1.6
# 2005-09-12 fl Fixed int() and float() for Python 2.4.1
#
# Copyright (c) 1999-2005 by Secret Labs AB
# Copyright (c) 2005 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import builtins
from types import CodeType
from typing import Any, Callable
from . import Image, _imagingmath
from ._deprecate import deprecate
class _Operand:
"""Wraps an image operand, providing standard operators"""
def __init__(self, im: Image.Image):
self.im = im
def __fixup(self, im1: _Operand | float) -> Image.Image:
# convert image to suitable mode
if isinstance(im1, _Operand):
# argument was an image.
if im1.im.mode in ("1", "L"):
return im1.im.convert("I")
elif im1.im.mode in ("I", "F"):
return im1.im
else:
msg = f"unsupported mode: {im1.im.mode}"
raise ValueError(msg)
else:
# argument was a constant
if isinstance(im1, (int, float)) and self.im.mode in ("1", "L", "I"):
return Image.new("I", self.im.size, im1)
else:
return Image.new("F", self.im.size, im1)
def apply(
self,
op: str,
im1: _Operand | float,
im2: _Operand | float | None = None,
mode: str | None = None,
) -> _Operand:
im_1 = self.__fixup(im1)
if im2 is None:
# unary operation
out = Image.new(mode or im_1.mode, im_1.size, None)
im_1.load()
try:
op = getattr(_imagingmath, f"{op}_{im_1.mode}")
except AttributeError as e:
msg = f"bad operand type for '{op}'"
raise TypeError(msg) from e
_imagingmath.unop(op, out.im.id, im_1.im.id)
else:
# binary operation
im_2 = self.__fixup(im2)
if im_1.mode != im_2.mode:
# convert both arguments to floating point
if im_1.mode != "F":
im_1 = im_1.convert("F")
if im_2.mode != "F":
im_2 = im_2.convert("F")
if im_1.size != im_2.size:
# crop both arguments to a common size
size = (
min(im_1.size[0], im_2.size[0]),
min(im_1.size[1], im_2.size[1]),
)
if im_1.size != size:
im_1 = im_1.crop((0, 0) + size)
if im_2.size != size:
im_2 = im_2.crop((0, 0) + size)
out = Image.new(mode or im_1.mode, im_1.size, None)
im_1.load()
im_2.load()
try:
op = getattr(_imagingmath, f"{op}_{im_1.mode}")
except AttributeError as e:
msg = f"bad operand type for '{op}'"
raise TypeError(msg) from e
_imagingmath.binop(op, out.im.id, im_1.im.id, im_2.im.id)
return _Operand(out)
# unary operators
def __bool__(self) -> bool:
# an image is "true" if it contains at least one non-zero pixel
return self.im.getbbox() is not None
def __abs__(self) -> _Operand:
return self.apply("abs", self)
def __pos__(self) -> _Operand:
return self
def __neg__(self) -> _Operand:
return self.apply("neg", self)
# binary operators
def __add__(self, other: _Operand | float) -> _Operand:
return self.apply("add", self, other)
def __radd__(self, other: _Operand | float) -> _Operand:
return self.apply("add", other, self)
def __sub__(self, other: _Operand | float) -> _Operand:
return self.apply("sub", self, other)
def __rsub__(self, other: _Operand | float) -> _Operand:
return self.apply("sub", other, self)
def __mul__(self, other: _Operand | float) -> _Operand:
return self.apply("mul", self, other)
def __rmul__(self, other: _Operand | float) -> _Operand:
return self.apply("mul", other, self)
def __truediv__(self, other: _Operand | float) -> _Operand:
return self.apply("div", self, other)
def __rtruediv__(self, other: _Operand | float) -> _Operand:
return self.apply("div", other, self)
def __mod__(self, other: _Operand | float) -> _Operand:
return self.apply("mod", self, other)
def __rmod__(self, other: _Operand | float) -> _Operand:
return self.apply("mod", other, self)
def __pow__(self, other: _Operand | float) -> _Operand:
return self.apply("pow", self, other)
def __rpow__(self, other: _Operand | float) -> _Operand:
return self.apply("pow", other, self)
# bitwise
def __invert__(self) -> _Operand:
return self.apply("invert", self)
def __and__(self, other: _Operand | float) -> _Operand:
return self.apply("and", self, other)
def __rand__(self, other: _Operand | float) -> _Operand:
return self.apply("and", other, self)
def __or__(self, other: _Operand | float) -> _Operand:
return self.apply("or", self, other)
def __ror__(self, other: _Operand | float) -> _Operand:
return self.apply("or", other, self)
def __xor__(self, other: _Operand | float) -> _Operand:
return self.apply("xor", self, other)
def __rxor__(self, other: _Operand | float) -> _Operand:
return self.apply("xor", other, self)
def __lshift__(self, other: _Operand | float) -> _Operand:
return self.apply("lshift", self, other)
def __rshift__(self, other: _Operand | float) -> _Operand:
return self.apply("rshift", self, other)
# logical
def __eq__(self, other):
return self.apply("eq", self, other)
def __ne__(self, other):
return self.apply("ne", self, other)
def __lt__(self, other: _Operand | float) -> _Operand:
return self.apply("lt", self, other)
def __le__(self, other: _Operand | float) -> _Operand:
return self.apply("le", self, other)
def __gt__(self, other: _Operand | float) -> _Operand:
return self.apply("gt", self, other)
def __ge__(self, other: _Operand | float) -> _Operand:
return self.apply("ge", self, other)
# conversions
def imagemath_int(self: _Operand) -> _Operand:
return _Operand(self.im.convert("I"))
def imagemath_float(self: _Operand) -> _Operand:
return _Operand(self.im.convert("F"))
# logical
def imagemath_equal(self: _Operand, other: _Operand | float | None) -> _Operand:
return self.apply("eq", self, other, mode="I")
def imagemath_notequal(self: _Operand, other: _Operand | float | None) -> _Operand:
return self.apply("ne", self, other, mode="I")
def imagemath_min(self: _Operand, other: _Operand | float | None) -> _Operand:
return self.apply("min", self, other)
def imagemath_max(self: _Operand, other: _Operand | float | None) -> _Operand:
return self.apply("max", self, other)
def imagemath_convert(self: _Operand, mode: str) -> _Operand:
return _Operand(self.im.convert(mode))
ops = {
"int": imagemath_int,
"float": imagemath_float,
"equal": imagemath_equal,
"notequal": imagemath_notequal,
"min": imagemath_min,
"max": imagemath_max,
"convert": imagemath_convert,
}
def lambda_eval(
expression: Callable[[dict[str, Any]], Any],
options: dict[str, Any] = {},
**kw: Any,
) -> Any:
"""
Returns the result of an image function.
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band
images, use the :py:meth:`~PIL.Image.Image.split` method or
:py:func:`~PIL.Image.merge` function.
:param expression: A function that receives a dictionary.
:param options: Values to add to the function's dictionary. You
can either use a dictionary, or one or more keyword
arguments.
:return: The expression result. This is usually an image object, but can
also be an integer, a floating point value, or a pixel tuple,
depending on the expression.
"""
args: dict[str, Any] = ops.copy()
args.update(options)
args.update(kw)
for k, v in args.items():
if hasattr(v, "im"):
args[k] = _Operand(v)
out = expression(args)
try:
return out.im
except AttributeError:
return out
def unsafe_eval(
expression: str,
options: dict[str, Any] = {},
**kw: Any,
) -> Any:
"""
Evaluates an image expression. This uses Python's ``eval()`` function to process
the expression string, and carries the security risks of doing so. It is not
recommended to process expressions without considering this.
:py:meth:`~lambda_eval` is a more secure alternative.
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band
images, use the :py:meth:`~PIL.Image.Image.split` method or
:py:func:`~PIL.Image.merge` function.
:param expression: A string containing a Python-style expression.
:param options: Values to add to the evaluation context. You
can either use a dictionary, or one or more keyword
arguments.
:return: The evaluated expression. This is usually an image object, but can
also be an integer, a floating point value, or a pixel tuple,
depending on the expression.
"""
# build execution namespace
args: dict[str, Any] = ops.copy()
for k in list(options.keys()) + list(kw.keys()):
if "__" in k or hasattr(builtins, k):
msg = f"'{k}' not allowed"
raise ValueError(msg)
args.update(options)
args.update(kw)
for k, v in args.items():
if hasattr(v, "im"):
args[k] = _Operand(v)
compiled_code = compile(expression, "<string>", "eval")
def scan(code: CodeType) -> None:
for const in code.co_consts:
if type(const) is type(compiled_code):
scan(const)
for name in code.co_names:
if name not in args and name != "abs":
msg = f"'{name}' not allowed"
raise ValueError(msg)
scan(compiled_code)
out = builtins.eval(expression, {"__builtins": {"abs": abs}}, args)
try:
return out.im
except AttributeError:
return out
def eval(
expression: str,
_dict: dict[str, Any] = {},
**kw: Any,
) -> Any:
"""
Evaluates an image expression.
Deprecated. Use lambda_eval() or unsafe_eval() instead.
:param expression: A string containing a Python-style expression.
:param _dict: Values to add to the evaluation context. You
can either use a dictionary, or one or more keyword
arguments.
:return: The evaluated expression. This is usually an image object, but can
also be an integer, a floating point value, or a pixel tuple,
depending on the expression.
.. deprecated:: 10.3.0
"""
deprecate(
"ImageMath.eval",
12,
"ImageMath.lambda_eval or ImageMath.unsafe_eval",
)
return unsafe_eval(expression, _dict, **kw)
|