File size: 16,814 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""classic Acrobot task"""
from typing import Optional

import numpy as np
from numpy import cos, pi, sin

from gym import core, logger, spaces
from gym.error import DependencyNotInstalled

__copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy"
__credits__ = [
    "Alborz Geramifard",
    "Robert H. Klein",
    "Christoph Dann",
    "William Dabney",
    "Jonathan P. How",
]
__license__ = "BSD 3-Clause"
__author__ = "Christoph Dann <[email protected]>"

# SOURCE:
# https://github.com/rlpy/rlpy/blob/master/rlpy/Domains/Acrobot.py
from gym.envs.classic_control import utils


class AcrobotEnv(core.Env):
    """
    ### Description

    The Acrobot environment is based on Sutton's work in
    ["Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding"](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html)
    and [Sutton and Barto's book](http://www.incompleteideas.net/book/the-book-2nd.html).
    The system consists of two links connected linearly to form a chain, with one end of
    the chain fixed. The joint between the two links is actuated. The goal is to apply
    torques on the actuated joint to swing the free end of the linear chain above a
    given height while starting from the initial state of hanging downwards.

    As seen in the **Gif**: two blue links connected by two green joints. The joint in
    between the two links is actuated. The goal is to swing the free end of the outer-link
    to reach the target height (black horizontal line above system) by applying torque on
    the actuator.

    ### Action Space

    The action is discrete, deterministic, and represents the torque applied on the actuated
    joint between the two links.

    | Num | Action                                | Unit         |
    |-----|---------------------------------------|--------------|
    | 0   | apply -1 torque to the actuated joint | torque (N m) |
    | 1   | apply 0 torque to the actuated joint  | torque (N m) |
    | 2   | apply 1 torque to the actuated joint  | torque (N m) |

    ### Observation Space

    The observation is a `ndarray` with shape `(6,)` that provides information about the
    two rotational joint angles as well as their angular velocities:

    | Num | Observation                  | Min                 | Max               |
    |-----|------------------------------|---------------------|-------------------|
    | 0   | Cosine of `theta1`           | -1                  | 1                 |
    | 1   | Sine of `theta1`             | -1                  | 1                 |
    | 2   | Cosine of `theta2`           | -1                  | 1                 |
    | 3   | Sine of `theta2`             | -1                  | 1                 |
    | 4   | Angular velocity of `theta1` | ~ -12.567 (-4 * pi) | ~ 12.567 (4 * pi) |
    | 5   | Angular velocity of `theta2` | ~ -28.274 (-9 * pi) | ~ 28.274 (9 * pi) |

    where
    - `theta1` is the angle of the first joint, where an angle of 0 indicates the first link is pointing directly
    downwards.
    - `theta2` is ***relative to the angle of the first link.***
        An angle of 0 corresponds to having the same angle between the two links.

    The angular velocities of `theta1` and `theta2` are bounded at ±4π, and ±9π rad/s respectively.
    A state of `[1, 0, 1, 0, ..., ...]` indicates that both links are pointing downwards.

    ### Rewards

    The goal is to have the free end reach a designated target height in as few steps as possible,
    and as such all steps that do not reach the goal incur a reward of -1.
    Achieving the target height results in termination with a reward of 0. The reward threshold is -100.

    ### Starting State

    Each parameter in the underlying state (`theta1`, `theta2`, and the two angular velocities) is initialized
    uniformly between -0.1 and 0.1. This means both links are pointing downwards with some initial stochasticity.

    ### Episode End

    The episode ends if one of the following occurs:
    1. Termination: The free end reaches the target height, which is constructed as:
    `-cos(theta1) - cos(theta2 + theta1) > 1.0`
    2. Truncation: Episode length is greater than 500 (200 for v0)

    ### Arguments

    No additional arguments are currently supported.

    ```
    env = gym.make('Acrobot-v1')
    ```

    By default, the dynamics of the acrobot follow those described in Sutton and Barto's book
    [Reinforcement Learning: An Introduction](http://incompleteideas.net/book/11/node4.html).
    However, a `book_or_nips` parameter can be modified to change the pendulum dynamics to those described
    in the original [NeurIPS paper](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html).

    ```
    # To change the dynamics as described above
    env.env.book_or_nips = 'nips'
    ```

    See the following note and
    the [implementation](https://github.com/openai/gym/blob/master/gym/envs/classic_control/acrobot.py) for details:

    > The dynamics equations were missing some terms in the NIPS paper which
            are present in the book. R. Sutton confirmed in personal correspondence
            that the experimental results shown in the paper and the book were
            generated with the equations shown in the book.
            However, there is the option to run the domain with the paper equations
            by setting `book_or_nips = 'nips'`


    ### Version History

    - v1: Maximum number of steps increased from 200 to 500. The observation space for v0 provided direct readings of
    `theta1` and `theta2` in radians, having a range of `[-pi, pi]`. The v1 observation space as described here provides the
    sine and cosine of each angle instead.
    - v0: Initial versions release (1.0.0) (removed from gym for v1)

    ### References
    - Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding.
        In D. Touretzky, M. C. Mozer, & M. Hasselmo (Eds.), Advances in Neural Information Processing Systems (Vol. 8).
        MIT Press. https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
    - Sutton, R. S., Barto, A. G. (2018 ). Reinforcement Learning: An Introduction. The MIT Press.
    """

    metadata = {
        "render_modes": ["human", "rgb_array"],
        "render_fps": 15,
    }

    dt = 0.2

    LINK_LENGTH_1 = 1.0  # [m]
    LINK_LENGTH_2 = 1.0  # [m]
    LINK_MASS_1 = 1.0  #: [kg] mass of link 1
    LINK_MASS_2 = 1.0  #: [kg] mass of link 2
    LINK_COM_POS_1 = 0.5  #: [m] position of the center of mass of link 1
    LINK_COM_POS_2 = 0.5  #: [m] position of the center of mass of link 2
    LINK_MOI = 1.0  #: moments of inertia for both links

    MAX_VEL_1 = 4 * pi
    MAX_VEL_2 = 9 * pi

    AVAIL_TORQUE = [-1.0, 0.0, +1]

    torque_noise_max = 0.0

    SCREEN_DIM = 500

    #: use dynamics equations from the nips paper or the book
    book_or_nips = "book"
    action_arrow = None
    domain_fig = None
    actions_num = 3

    def __init__(self, render_mode: Optional[str] = None):
        self.render_mode = render_mode
        self.screen = None
        self.clock = None
        self.isopen = True
        high = np.array(
            [1.0, 1.0, 1.0, 1.0, self.MAX_VEL_1, self.MAX_VEL_2], dtype=np.float32
        )
        low = -high
        self.observation_space = spaces.Box(low=low, high=high, dtype=np.float32)
        self.action_space = spaces.Discrete(3)
        self.state = None

    def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
        super().reset(seed=seed)
        # Note that if you use custom reset bounds, it may lead to out-of-bound
        # state/observations.
        low, high = utils.maybe_parse_reset_bounds(
            options, -0.1, 0.1  # default low
        )  # default high
        self.state = self.np_random.uniform(low=low, high=high, size=(4,)).astype(
            np.float32
        )

        if self.render_mode == "human":
            self.render()
        return self._get_ob(), {}

    def step(self, a):
        s = self.state
        assert s is not None, "Call reset before using AcrobotEnv object."
        torque = self.AVAIL_TORQUE[a]

        # Add noise to the force action
        if self.torque_noise_max > 0:
            torque += self.np_random.uniform(
                -self.torque_noise_max, self.torque_noise_max
            )

        # Now, augment the state with our force action so it can be passed to
        # _dsdt
        s_augmented = np.append(s, torque)

        ns = rk4(self._dsdt, s_augmented, [0, self.dt])

        ns[0] = wrap(ns[0], -pi, pi)
        ns[1] = wrap(ns[1], -pi, pi)
        ns[2] = bound(ns[2], -self.MAX_VEL_1, self.MAX_VEL_1)
        ns[3] = bound(ns[3], -self.MAX_VEL_2, self.MAX_VEL_2)
        self.state = ns
        terminated = self._terminal()
        reward = -1.0 if not terminated else 0.0

        if self.render_mode == "human":
            self.render()
        return (self._get_ob(), reward, terminated, False, {})

    def _get_ob(self):
        s = self.state
        assert s is not None, "Call reset before using AcrobotEnv object."
        return np.array(
            [cos(s[0]), sin(s[0]), cos(s[1]), sin(s[1]), s[2], s[3]], dtype=np.float32
        )

    def _terminal(self):
        s = self.state
        assert s is not None, "Call reset before using AcrobotEnv object."
        return bool(-cos(s[0]) - cos(s[1] + s[0]) > 1.0)

    def _dsdt(self, s_augmented):
        m1 = self.LINK_MASS_1
        m2 = self.LINK_MASS_2
        l1 = self.LINK_LENGTH_1
        lc1 = self.LINK_COM_POS_1
        lc2 = self.LINK_COM_POS_2
        I1 = self.LINK_MOI
        I2 = self.LINK_MOI
        g = 9.8
        a = s_augmented[-1]
        s = s_augmented[:-1]
        theta1 = s[0]
        theta2 = s[1]
        dtheta1 = s[2]
        dtheta2 = s[3]
        d1 = (
            m1 * lc1**2
            + m2 * (l1**2 + lc2**2 + 2 * l1 * lc2 * cos(theta2))
            + I1
            + I2
        )
        d2 = m2 * (lc2**2 + l1 * lc2 * cos(theta2)) + I2
        phi2 = m2 * lc2 * g * cos(theta1 + theta2 - pi / 2.0)
        phi1 = (
            -m2 * l1 * lc2 * dtheta2**2 * sin(theta2)
            - 2 * m2 * l1 * lc2 * dtheta2 * dtheta1 * sin(theta2)
            + (m1 * lc1 + m2 * l1) * g * cos(theta1 - pi / 2)
            + phi2
        )
        if self.book_or_nips == "nips":
            # the following line is consistent with the description in the
            # paper
            ddtheta2 = (a + d2 / d1 * phi1 - phi2) / (m2 * lc2**2 + I2 - d2**2 / d1)
        else:
            # the following line is consistent with the java implementation and the
            # book
            ddtheta2 = (
                a + d2 / d1 * phi1 - m2 * l1 * lc2 * dtheta1**2 * sin(theta2) - phi2
            ) / (m2 * lc2**2 + I2 - d2**2 / d1)
        ddtheta1 = -(d2 * ddtheta2 + phi1) / d1
        return dtheta1, dtheta2, ddtheta1, ddtheta2, 0.0

    def render(self):
        if self.render_mode is None:
            logger.warn(
                "You are calling render method without specifying any render mode. "
                "You can specify the render_mode at initialization, "
                f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
            )
            return

        try:
            import pygame
            from pygame import gfxdraw
        except ImportError:
            raise DependencyNotInstalled(
                "pygame is not installed, run `pip install gym[classic_control]`"
            )

        if self.screen is None:
            pygame.init()
            if self.render_mode == "human":
                pygame.display.init()
                self.screen = pygame.display.set_mode(
                    (self.SCREEN_DIM, self.SCREEN_DIM)
                )
            else:  # mode in "rgb_array"
                self.screen = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
        if self.clock is None:
            self.clock = pygame.time.Clock()

        surf = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
        surf.fill((255, 255, 255))
        s = self.state

        bound = self.LINK_LENGTH_1 + self.LINK_LENGTH_2 + 0.2  # 2.2 for default
        scale = self.SCREEN_DIM / (bound * 2)
        offset = self.SCREEN_DIM / 2

        if s is None:
            return None

        p1 = [
            -self.LINK_LENGTH_1 * cos(s[0]) * scale,
            self.LINK_LENGTH_1 * sin(s[0]) * scale,
        ]

        p2 = [
            p1[0] - self.LINK_LENGTH_2 * cos(s[0] + s[1]) * scale,
            p1[1] + self.LINK_LENGTH_2 * sin(s[0] + s[1]) * scale,
        ]

        xys = np.array([[0, 0], p1, p2])[:, ::-1]
        thetas = [s[0] - pi / 2, s[0] + s[1] - pi / 2]
        link_lengths = [self.LINK_LENGTH_1 * scale, self.LINK_LENGTH_2 * scale]

        pygame.draw.line(
            surf,
            start_pos=(-2.2 * scale + offset, 1 * scale + offset),
            end_pos=(2.2 * scale + offset, 1 * scale + offset),
            color=(0, 0, 0),
        )

        for ((x, y), th, llen) in zip(xys, thetas, link_lengths):
            x = x + offset
            y = y + offset
            l, r, t, b = 0, llen, 0.1 * scale, -0.1 * scale
            coords = [(l, b), (l, t), (r, t), (r, b)]
            transformed_coords = []
            for coord in coords:
                coord = pygame.math.Vector2(coord).rotate_rad(th)
                coord = (coord[0] + x, coord[1] + y)
                transformed_coords.append(coord)
            gfxdraw.aapolygon(surf, transformed_coords, (0, 204, 204))
            gfxdraw.filled_polygon(surf, transformed_coords, (0, 204, 204))

            gfxdraw.aacircle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
            gfxdraw.filled_circle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))

        surf = pygame.transform.flip(surf, False, True)
        self.screen.blit(surf, (0, 0))

        if self.render_mode == "human":
            pygame.event.pump()
            self.clock.tick(self.metadata["render_fps"])
            pygame.display.flip()

        elif self.render_mode == "rgb_array":
            return np.transpose(
                np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
            )

    def close(self):
        if self.screen is not None:
            import pygame

            pygame.display.quit()
            pygame.quit()
            self.isopen = False


def wrap(x, m, M):
    """Wraps ``x`` so m <= x <= M; but unlike ``bound()`` which
    truncates, ``wrap()`` wraps x around the coordinate system defined by m,M.\n
    For example, m = -180, M = 180 (degrees), x = 360 --> returns 0.

    Args:
        x: a scalar
        m: minimum possible value in range
        M: maximum possible value in range

    Returns:
        x: a scalar, wrapped
    """
    diff = M - m
    while x > M:
        x = x - diff
    while x < m:
        x = x + diff
    return x


def bound(x, m, M=None):
    """Either have m as scalar, so bound(x,m,M) which returns m <= x <= M *OR*
    have m as length 2 vector, bound(x,m, <IGNORED>) returns m[0] <= x <= m[1].

    Args:
        x: scalar
        m: The lower bound
        M: The upper bound

    Returns:
        x: scalar, bound between min (m) and Max (M)
    """
    if M is None:
        M = m[1]
        m = m[0]
    # bound x between min (m) and Max (M)
    return min(max(x, m), M)


def rk4(derivs, y0, t):
    """
    Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta.

    Example for 2D system:

        >>> def derivs(x):
        ...     d1 =  x[0] + 2*x[1]
        ...     d2 =  -3*x[0] + 4*x[1]
        ...     return d1, d2

        >>> dt = 0.0005
        >>> t = np.arange(0.0, 2.0, dt)
        >>> y0 = (1,2)
        >>> yout = rk4(derivs, y0, t)

    Args:
        derivs: the derivative of the system and has the signature ``dy = derivs(yi)``
        y0: initial state vector
        t: sample times

    Returns:
        yout: Runge-Kutta approximation of the ODE
    """

    try:
        Ny = len(y0)
    except TypeError:
        yout = np.zeros((len(t),), np.float_)
    else:
        yout = np.zeros((len(t), Ny), np.float_)

    yout[0] = y0

    for i in np.arange(len(t) - 1):

        this = t[i]
        dt = t[i + 1] - this
        dt2 = dt / 2.0
        y0 = yout[i]

        k1 = np.asarray(derivs(y0))
        k2 = np.asarray(derivs(y0 + dt2 * k1))
        k3 = np.asarray(derivs(y0 + dt2 * k2))
        k4 = np.asarray(derivs(y0 + dt * k3))
        yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4)
    # We only care about the final timestep and we cleave off action value which will be zero
    return yout[-1][:4]