Spaces:
Running
Running
File size: 16,814 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
"""classic Acrobot task"""
from typing import Optional
import numpy as np
from numpy import cos, pi, sin
from gym import core, logger, spaces
from gym.error import DependencyNotInstalled
__copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy"
__credits__ = [
"Alborz Geramifard",
"Robert H. Klein",
"Christoph Dann",
"William Dabney",
"Jonathan P. How",
]
__license__ = "BSD 3-Clause"
__author__ = "Christoph Dann <[email protected]>"
# SOURCE:
# https://github.com/rlpy/rlpy/blob/master/rlpy/Domains/Acrobot.py
from gym.envs.classic_control import utils
class AcrobotEnv(core.Env):
"""
### Description
The Acrobot environment is based on Sutton's work in
["Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding"](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html)
and [Sutton and Barto's book](http://www.incompleteideas.net/book/the-book-2nd.html).
The system consists of two links connected linearly to form a chain, with one end of
the chain fixed. The joint between the two links is actuated. The goal is to apply
torques on the actuated joint to swing the free end of the linear chain above a
given height while starting from the initial state of hanging downwards.
As seen in the **Gif**: two blue links connected by two green joints. The joint in
between the two links is actuated. The goal is to swing the free end of the outer-link
to reach the target height (black horizontal line above system) by applying torque on
the actuator.
### Action Space
The action is discrete, deterministic, and represents the torque applied on the actuated
joint between the two links.
| Num | Action | Unit |
|-----|---------------------------------------|--------------|
| 0 | apply -1 torque to the actuated joint | torque (N m) |
| 1 | apply 0 torque to the actuated joint | torque (N m) |
| 2 | apply 1 torque to the actuated joint | torque (N m) |
### Observation Space
The observation is a `ndarray` with shape `(6,)` that provides information about the
two rotational joint angles as well as their angular velocities:
| Num | Observation | Min | Max |
|-----|------------------------------|---------------------|-------------------|
| 0 | Cosine of `theta1` | -1 | 1 |
| 1 | Sine of `theta1` | -1 | 1 |
| 2 | Cosine of `theta2` | -1 | 1 |
| 3 | Sine of `theta2` | -1 | 1 |
| 4 | Angular velocity of `theta1` | ~ -12.567 (-4 * pi) | ~ 12.567 (4 * pi) |
| 5 | Angular velocity of `theta2` | ~ -28.274 (-9 * pi) | ~ 28.274 (9 * pi) |
where
- `theta1` is the angle of the first joint, where an angle of 0 indicates the first link is pointing directly
downwards.
- `theta2` is ***relative to the angle of the first link.***
An angle of 0 corresponds to having the same angle between the two links.
The angular velocities of `theta1` and `theta2` are bounded at ±4π, and ±9π rad/s respectively.
A state of `[1, 0, 1, 0, ..., ...]` indicates that both links are pointing downwards.
### Rewards
The goal is to have the free end reach a designated target height in as few steps as possible,
and as such all steps that do not reach the goal incur a reward of -1.
Achieving the target height results in termination with a reward of 0. The reward threshold is -100.
### Starting State
Each parameter in the underlying state (`theta1`, `theta2`, and the two angular velocities) is initialized
uniformly between -0.1 and 0.1. This means both links are pointing downwards with some initial stochasticity.
### Episode End
The episode ends if one of the following occurs:
1. Termination: The free end reaches the target height, which is constructed as:
`-cos(theta1) - cos(theta2 + theta1) > 1.0`
2. Truncation: Episode length is greater than 500 (200 for v0)
### Arguments
No additional arguments are currently supported.
```
env = gym.make('Acrobot-v1')
```
By default, the dynamics of the acrobot follow those described in Sutton and Barto's book
[Reinforcement Learning: An Introduction](http://incompleteideas.net/book/11/node4.html).
However, a `book_or_nips` parameter can be modified to change the pendulum dynamics to those described
in the original [NeurIPS paper](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html).
```
# To change the dynamics as described above
env.env.book_or_nips = 'nips'
```
See the following note and
the [implementation](https://github.com/openai/gym/blob/master/gym/envs/classic_control/acrobot.py) for details:
> The dynamics equations were missing some terms in the NIPS paper which
are present in the book. R. Sutton confirmed in personal correspondence
that the experimental results shown in the paper and the book were
generated with the equations shown in the book.
However, there is the option to run the domain with the paper equations
by setting `book_or_nips = 'nips'`
### Version History
- v1: Maximum number of steps increased from 200 to 500. The observation space for v0 provided direct readings of
`theta1` and `theta2` in radians, having a range of `[-pi, pi]`. The v1 observation space as described here provides the
sine and cosine of each angle instead.
- v0: Initial versions release (1.0.0) (removed from gym for v1)
### References
- Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding.
In D. Touretzky, M. C. Mozer, & M. Hasselmo (Eds.), Advances in Neural Information Processing Systems (Vol. 8).
MIT Press. https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
- Sutton, R. S., Barto, A. G. (2018 ). Reinforcement Learning: An Introduction. The MIT Press.
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 15,
}
dt = 0.2
LINK_LENGTH_1 = 1.0 # [m]
LINK_LENGTH_2 = 1.0 # [m]
LINK_MASS_1 = 1.0 #: [kg] mass of link 1
LINK_MASS_2 = 1.0 #: [kg] mass of link 2
LINK_COM_POS_1 = 0.5 #: [m] position of the center of mass of link 1
LINK_COM_POS_2 = 0.5 #: [m] position of the center of mass of link 2
LINK_MOI = 1.0 #: moments of inertia for both links
MAX_VEL_1 = 4 * pi
MAX_VEL_2 = 9 * pi
AVAIL_TORQUE = [-1.0, 0.0, +1]
torque_noise_max = 0.0
SCREEN_DIM = 500
#: use dynamics equations from the nips paper or the book
book_or_nips = "book"
action_arrow = None
domain_fig = None
actions_num = 3
def __init__(self, render_mode: Optional[str] = None):
self.render_mode = render_mode
self.screen = None
self.clock = None
self.isopen = True
high = np.array(
[1.0, 1.0, 1.0, 1.0, self.MAX_VEL_1, self.MAX_VEL_2], dtype=np.float32
)
low = -high
self.observation_space = spaces.Box(low=low, high=high, dtype=np.float32)
self.action_space = spaces.Discrete(3)
self.state = None
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(
options, -0.1, 0.1 # default low
) # default high
self.state = self.np_random.uniform(low=low, high=high, size=(4,)).astype(
np.float32
)
if self.render_mode == "human":
self.render()
return self._get_ob(), {}
def step(self, a):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
torque = self.AVAIL_TORQUE[a]
# Add noise to the force action
if self.torque_noise_max > 0:
torque += self.np_random.uniform(
-self.torque_noise_max, self.torque_noise_max
)
# Now, augment the state with our force action so it can be passed to
# _dsdt
s_augmented = np.append(s, torque)
ns = rk4(self._dsdt, s_augmented, [0, self.dt])
ns[0] = wrap(ns[0], -pi, pi)
ns[1] = wrap(ns[1], -pi, pi)
ns[2] = bound(ns[2], -self.MAX_VEL_1, self.MAX_VEL_1)
ns[3] = bound(ns[3], -self.MAX_VEL_2, self.MAX_VEL_2)
self.state = ns
terminated = self._terminal()
reward = -1.0 if not terminated else 0.0
if self.render_mode == "human":
self.render()
return (self._get_ob(), reward, terminated, False, {})
def _get_ob(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return np.array(
[cos(s[0]), sin(s[0]), cos(s[1]), sin(s[1]), s[2], s[3]], dtype=np.float32
)
def _terminal(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return bool(-cos(s[0]) - cos(s[1] + s[0]) > 1.0)
def _dsdt(self, s_augmented):
m1 = self.LINK_MASS_1
m2 = self.LINK_MASS_2
l1 = self.LINK_LENGTH_1
lc1 = self.LINK_COM_POS_1
lc2 = self.LINK_COM_POS_2
I1 = self.LINK_MOI
I2 = self.LINK_MOI
g = 9.8
a = s_augmented[-1]
s = s_augmented[:-1]
theta1 = s[0]
theta2 = s[1]
dtheta1 = s[2]
dtheta2 = s[3]
d1 = (
m1 * lc1**2
+ m2 * (l1**2 + lc2**2 + 2 * l1 * lc2 * cos(theta2))
+ I1
+ I2
)
d2 = m2 * (lc2**2 + l1 * lc2 * cos(theta2)) + I2
phi2 = m2 * lc2 * g * cos(theta1 + theta2 - pi / 2.0)
phi1 = (
-m2 * l1 * lc2 * dtheta2**2 * sin(theta2)
- 2 * m2 * l1 * lc2 * dtheta2 * dtheta1 * sin(theta2)
+ (m1 * lc1 + m2 * l1) * g * cos(theta1 - pi / 2)
+ phi2
)
if self.book_or_nips == "nips":
# the following line is consistent with the description in the
# paper
ddtheta2 = (a + d2 / d1 * phi1 - phi2) / (m2 * lc2**2 + I2 - d2**2 / d1)
else:
# the following line is consistent with the java implementation and the
# book
ddtheta2 = (
a + d2 / d1 * phi1 - m2 * l1 * lc2 * dtheta1**2 * sin(theta2) - phi2
) / (m2 * lc2**2 + I2 - d2**2 / d1)
ddtheta1 = -(d2 * ddtheta2 + phi1) / d1
return dtheta1, dtheta2, ddtheta1, ddtheta2, 0.0
def render(self):
if self.render_mode is None:
logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.SCREEN_DIM, self.SCREEN_DIM)
)
else: # mode in "rgb_array"
self.screen = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
if self.clock is None:
self.clock = pygame.time.Clock()
surf = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
surf.fill((255, 255, 255))
s = self.state
bound = self.LINK_LENGTH_1 + self.LINK_LENGTH_2 + 0.2 # 2.2 for default
scale = self.SCREEN_DIM / (bound * 2)
offset = self.SCREEN_DIM / 2
if s is None:
return None
p1 = [
-self.LINK_LENGTH_1 * cos(s[0]) * scale,
self.LINK_LENGTH_1 * sin(s[0]) * scale,
]
p2 = [
p1[0] - self.LINK_LENGTH_2 * cos(s[0] + s[1]) * scale,
p1[1] + self.LINK_LENGTH_2 * sin(s[0] + s[1]) * scale,
]
xys = np.array([[0, 0], p1, p2])[:, ::-1]
thetas = [s[0] - pi / 2, s[0] + s[1] - pi / 2]
link_lengths = [self.LINK_LENGTH_1 * scale, self.LINK_LENGTH_2 * scale]
pygame.draw.line(
surf,
start_pos=(-2.2 * scale + offset, 1 * scale + offset),
end_pos=(2.2 * scale + offset, 1 * scale + offset),
color=(0, 0, 0),
)
for ((x, y), th, llen) in zip(xys, thetas, link_lengths):
x = x + offset
y = y + offset
l, r, t, b = 0, llen, 0.1 * scale, -0.1 * scale
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for coord in coords:
coord = pygame.math.Vector2(coord).rotate_rad(th)
coord = (coord[0] + x, coord[1] + y)
transformed_coords.append(coord)
gfxdraw.aapolygon(surf, transformed_coords, (0, 204, 204))
gfxdraw.filled_polygon(surf, transformed_coords, (0, 204, 204))
gfxdraw.aacircle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
gfxdraw.filled_circle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
surf = pygame.transform.flip(surf, False, True)
self.screen.blit(surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def wrap(x, m, M):
"""Wraps ``x`` so m <= x <= M; but unlike ``bound()`` which
truncates, ``wrap()`` wraps x around the coordinate system defined by m,M.\n
For example, m = -180, M = 180 (degrees), x = 360 --> returns 0.
Args:
x: a scalar
m: minimum possible value in range
M: maximum possible value in range
Returns:
x: a scalar, wrapped
"""
diff = M - m
while x > M:
x = x - diff
while x < m:
x = x + diff
return x
def bound(x, m, M=None):
"""Either have m as scalar, so bound(x,m,M) which returns m <= x <= M *OR*
have m as length 2 vector, bound(x,m, <IGNORED>) returns m[0] <= x <= m[1].
Args:
x: scalar
m: The lower bound
M: The upper bound
Returns:
x: scalar, bound between min (m) and Max (M)
"""
if M is None:
M = m[1]
m = m[0]
# bound x between min (m) and Max (M)
return min(max(x, m), M)
def rk4(derivs, y0, t):
"""
Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta.
Example for 2D system:
>>> def derivs(x):
... d1 = x[0] + 2*x[1]
... d2 = -3*x[0] + 4*x[1]
... return d1, d2
>>> dt = 0.0005
>>> t = np.arange(0.0, 2.0, dt)
>>> y0 = (1,2)
>>> yout = rk4(derivs, y0, t)
Args:
derivs: the derivative of the system and has the signature ``dy = derivs(yi)``
y0: initial state vector
t: sample times
Returns:
yout: Runge-Kutta approximation of the ODE
"""
try:
Ny = len(y0)
except TypeError:
yout = np.zeros((len(t),), np.float_)
else:
yout = np.zeros((len(t), Ny), np.float_)
yout[0] = y0
for i in np.arange(len(t) - 1):
this = t[i]
dt = t[i + 1] - this
dt2 = dt / 2.0
y0 = yout[i]
k1 = np.asarray(derivs(y0))
k2 = np.asarray(derivs(y0 + dt2 * k1))
k3 = np.asarray(derivs(y0 + dt2 * k2))
k4 = np.asarray(derivs(y0 + dt * k3))
yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4)
# We only care about the final timestep and we cleave off action value which will be zero
return yout[-1][:4]
|