Spaces:
Running
Running
File size: 10,216 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# # Unity ML-Agents Toolkit
from mlagents import torch_utils
import yaml
import os
import numpy as np
import json
from typing import Callable, Optional, List
import mlagents.trainers
import mlagents_envs
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager
from mlagents.trainers.trainer import TrainerFactory
from mlagents.trainers.directory_utils import (
validate_existing_directories,
setup_init_path,
)
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.cli_utils import parser
from mlagents_envs.environment import UnityEnvironment
from mlagents.trainers.settings import RunOptions
from mlagents.trainers.training_status import GlobalTrainingStatus
from mlagents_envs.base_env import BaseEnv
from mlagents.trainers.subprocess_env_manager import SubprocessEnvManager
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents_envs.timers import (
hierarchical_timer,
get_timer_tree,
add_metadata as add_timer_metadata,
)
from mlagents_envs import logging_util
from mlagents.plugins.stats_writer import register_stats_writer_plugins
from mlagents.plugins.trainer_type import register_trainer_plugins
logger = logging_util.get_logger(__name__)
TRAINING_STATUS_FILE_NAME = "training_status.json"
def get_version_string() -> str:
return f""" Version information:
ml-agents: {mlagents.trainers.__version__},
ml-agents-envs: {mlagents_envs.__version__},
Communicator API: {UnityEnvironment.API_VERSION},
PyTorch: {torch_utils.torch.__version__}"""
def parse_command_line(
argv: Optional[List[str]] = None,
) -> RunOptions:
_, _ = register_trainer_plugins()
args = parser.parse_args(argv)
return RunOptions.from_argparse(args)
def run_training(run_seed: int, options: RunOptions, num_areas: int) -> None:
"""
Launches training session.
:param run_seed: Random seed used for training.
:param num_areas: Number of training areas to instantiate
:param options: parsed command line arguments
"""
with hierarchical_timer("run_training.setup"):
torch_utils.set_torch_config(options.torch_settings)
checkpoint_settings = options.checkpoint_settings
env_settings = options.env_settings
engine_settings = options.engine_settings
run_logs_dir = checkpoint_settings.run_logs_dir
port: Optional[int] = env_settings.base_port
# Check if directory exists
validate_existing_directories(
checkpoint_settings.write_path,
checkpoint_settings.resume,
checkpoint_settings.force,
checkpoint_settings.maybe_init_path,
)
# Make run logs directory
os.makedirs(run_logs_dir, exist_ok=True)
# Load any needed states in case of resume
if checkpoint_settings.resume:
GlobalTrainingStatus.load_state(
os.path.join(run_logs_dir, "training_status.json")
)
# In case of initialization, set full init_path for all behaviors
elif checkpoint_settings.maybe_init_path is not None:
setup_init_path(options.behaviors, checkpoint_settings.maybe_init_path)
# Configure Tensorboard Writers and StatsReporter
stats_writers = register_stats_writer_plugins(options)
for sw in stats_writers:
StatsReporter.add_writer(sw)
if env_settings.env_path is None:
port = None
env_factory = create_environment_factory(
env_settings.env_path,
engine_settings.no_graphics,
run_seed,
num_areas,
port,
env_settings.env_args,
os.path.abspath(run_logs_dir), # Unity environment requires absolute path
)
env_manager = SubprocessEnvManager(env_factory, options, env_settings.num_envs)
env_parameter_manager = EnvironmentParameterManager(
options.environment_parameters, run_seed, restore=checkpoint_settings.resume
)
trainer_factory = TrainerFactory(
trainer_config=options.behaviors,
output_path=checkpoint_settings.write_path,
train_model=not checkpoint_settings.inference,
load_model=checkpoint_settings.resume,
seed=run_seed,
param_manager=env_parameter_manager,
init_path=checkpoint_settings.maybe_init_path,
multi_gpu=False,
)
# Create controller and begin training.
tc = TrainerController(
trainer_factory,
checkpoint_settings.write_path,
checkpoint_settings.run_id,
env_parameter_manager,
not checkpoint_settings.inference,
run_seed,
)
# Begin training
try:
tc.start_learning(env_manager)
finally:
env_manager.close()
write_run_options(checkpoint_settings.write_path, options)
write_timing_tree(run_logs_dir)
write_training_status(run_logs_dir)
def write_run_options(output_dir: str, run_options: RunOptions) -> None:
run_options_path = os.path.join(output_dir, "configuration.yaml")
try:
with open(run_options_path, "w") as f:
try:
yaml.dump(run_options.as_dict(), f, sort_keys=False)
except TypeError: # Older versions of pyyaml don't support sort_keys
yaml.dump(run_options.as_dict(), f)
except FileNotFoundError:
logger.warning(
f"Unable to save configuration to {run_options_path}. Make sure the directory exists"
)
def write_training_status(output_dir: str) -> None:
GlobalTrainingStatus.save_state(os.path.join(output_dir, TRAINING_STATUS_FILE_NAME))
def write_timing_tree(output_dir: str) -> None:
timing_path = os.path.join(output_dir, "timers.json")
try:
with open(timing_path, "w") as f:
json.dump(get_timer_tree(), f, indent=4)
except FileNotFoundError:
logger.warning(
f"Unable to save to {timing_path}. Make sure the directory exists"
)
def create_environment_factory(
env_path: Optional[str],
no_graphics: bool,
seed: int,
num_areas: int,
start_port: Optional[int],
env_args: Optional[List[str]],
log_folder: str,
) -> Callable[[int, List[SideChannel]], BaseEnv]:
def create_unity_environment(
worker_id: int, side_channels: List[SideChannel]
) -> UnityEnvironment:
# Make sure that each environment gets a different seed
env_seed = seed + worker_id
return UnityEnvironment(
file_name=env_path,
worker_id=worker_id,
seed=env_seed,
num_areas=num_areas,
no_graphics=no_graphics,
base_port=start_port,
additional_args=env_args,
side_channels=side_channels,
log_folder=log_folder,
)
return create_unity_environment
def run_cli(options: RunOptions) -> None:
try:
print(
"""
β β
βββ¬ββ‘ βββ¬ββ
βββ¬ββββββ β¬ββββββ¬β
ββ¬ββββββ¬β ββ¬βββββββ βββ
β¬β¬β¬β¬ββββ¦β ββ¬ββββ£β£β£β¬ ββ£β£β¬ ββ£β£β£ βββ ββ£β£
β¬β¬β¬β¬β¬β¬β¬β¬βββ¬ββββ¬βͺβββ£β£β£β£β£β£β£β¬ ββ£β£β¬ ββ£β£β£ ββ£β£βββ£β£β£β β£β£β£ β£β£β£β£β£β£ ββ£β£β β£β£β£
β¬β¬β¬β¬β ββ¬β¬β¬β¬βββ£β£β£ββ β«β£β£β£β¬ ββ£β£β¬ ββ£β£β£ ββ£β£β£β ββ£β£β£ β£β£β£ βββ£β£ββ β«β£β£ ββ£β£
β¬β¬β¬β¬β ββ¬β¬β£β£ β«β£β£β£β¬ ββ£β£β¬ ββ£β£β£ ββ£β£β¬ β£β£β£ β£β£β£ ββ£β£ β£β£β£ββ£β£β
β¬β¬β¬β β¬β¬β£β£ βββ£β£β¬ ββ£β£β£βββββ£β£β£β ββ£β£β¬ β£β£β£ β£β£β£ ββ£β£β¦β β£β£β£β£β£
β ββ¦β β¬β¬β£β£ ββββ βββ£β£β£β£ββ ββββ βββ βββ ββ£β£β£ ββ£β£β£
β©β¬β¬β¬β¬β¬β¬β¦β¦β¬β¬β£β£ββ£β£β£β£β£β£β£β β«β£β£β£β£
ββ¬β¬β¬β¬β¬β¬β¬β£β£β£β£β£β£ββ
ββ¬β¬β¬β£β£β£β
β
"""
)
except Exception:
print("\n\n\tUnity Technologies\n")
print(get_version_string())
if options.debug:
log_level = logging_util.DEBUG
else:
log_level = logging_util.INFO
logging_util.set_log_level(log_level)
logger.debug("Configuration for this run:")
logger.debug(json.dumps(options.as_dict(), indent=4))
# Options deprecation warnings
if options.checkpoint_settings.load_model:
logger.warning(
"The --load option has been deprecated. Please use the --resume option instead."
)
if options.checkpoint_settings.train_model:
logger.warning(
"The --train option has been deprecated. Train mode is now the default. Use "
"--inference to run in inference mode."
)
run_seed = options.env_settings.seed
num_areas = options.env_settings.num_areas
# Add some timer metadata
add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
add_timer_metadata("pytorch_version", torch_utils.torch.__version__)
add_timer_metadata("numpy_version", np.__version__)
if options.env_settings.seed == -1:
run_seed = np.random.randint(0, 10000)
logger.debug(f"run_seed set to {run_seed}")
run_training(run_seed, options, num_areas)
def main():
run_cli(parse_command_line())
# For python debugger to directly run this script
if __name__ == "__main__":
main()
|