File size: 49,452 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
"""
This module defines the mpf, mpc classes, and standard functions for
operating with them.
"""
__docformat__ = 'plaintext'

import functools

import re

from .ctx_base import StandardBaseContext

from .libmp.backend import basestring, BACKEND

from . import libmp

from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
    round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
    ComplexResult, to_pickable, from_pickable, normalize,
    from_int, from_float, from_str, to_int, to_float, to_str,
    from_rational, from_man_exp,
    fone, fzero, finf, fninf, fnan,
    mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
    mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
    mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
    mpf_hash, mpf_rand,
    mpf_sum,
    bitcount, to_fixed,
    mpc_to_str,
    mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
    mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
    mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
    mpc_mpf_div,
    mpf_pow,
    mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
    mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
    mpf_glaisher, mpf_twinprime, mpf_mertens,
    int_types)

from . import function_docs
from . import rational

new = object.__new__

get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??'
                         r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$')

if BACKEND == 'sage':
    from sage.libs.mpmath.ext_main import Context as BaseMPContext
    # pickle hack
    import sage.libs.mpmath.ext_main as _mpf_module
else:
    from .ctx_mp_python import PythonMPContext as BaseMPContext
    from . import ctx_mp_python as _mpf_module

from .ctx_mp_python import _mpf, _mpc, mpnumeric

class MPContext(BaseMPContext, StandardBaseContext):
    """
    Context for multiprecision arithmetic with a global precision.
    """

    def __init__(ctx):
        BaseMPContext.__init__(ctx)
        ctx.trap_complex = False
        ctx.pretty = False
        ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
        ctx._mpq = rational.mpq
        ctx.default()
        StandardBaseContext.__init__(ctx)

        ctx.mpq = rational.mpq
        ctx.init_builtins()

        ctx.hyp_summators = {}

        ctx._init_aliases()

        # XXX: automate
        try:
            ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
            ctx.primepi.im_func.func_doc = function_docs.primepi
            ctx.psi.im_func.func_doc = function_docs.psi
            ctx.atan2.im_func.func_doc = function_docs.atan2
        except AttributeError:
            # python 3
            ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
            ctx.primepi.__func__.func_doc = function_docs.primepi
            ctx.psi.__func__.func_doc = function_docs.psi
            ctx.atan2.__func__.func_doc = function_docs.atan2

        ctx.digamma.func_doc = function_docs.digamma
        ctx.cospi.func_doc = function_docs.cospi
        ctx.sinpi.func_doc = function_docs.sinpi

    def init_builtins(ctx):

        mpf = ctx.mpf
        mpc = ctx.mpc

        # Exact constants
        ctx.one = ctx.make_mpf(fone)
        ctx.zero = ctx.make_mpf(fzero)
        ctx.j = ctx.make_mpc((fzero,fone))
        ctx.inf = ctx.make_mpf(finf)
        ctx.ninf = ctx.make_mpf(fninf)
        ctx.nan = ctx.make_mpf(fnan)

        eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
            "epsilon of working precision", "eps")
        ctx.eps = eps

        # Approximate constants
        ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
        ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
        ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
        ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
        ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
        ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
        ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
        ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
        ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
        ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
        ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
        ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
        ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")

        # Standard functions
        ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
        ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
        ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
        ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
        ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
        ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
        ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
        ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
        ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
        ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
        ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
        ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
        ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
        ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
        ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
        ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
        ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
        ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
        ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
        ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
        ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
        ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
        ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
        ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
        ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
        ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)

        ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
        ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
        ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
        ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)

        ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
        ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
        ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
        ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
        ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
        ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
        ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
        ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
        ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
        ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
        ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
        ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
        ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)

        # Faster versions
        ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
        ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
        ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
        ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
        ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)

    def to_fixed(ctx, x, prec):
        return x.to_fixed(prec)

    def hypot(ctx, x, y):
        r"""
        Computes the Euclidean norm of the vector `(x, y)`, equal
        to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
        x = ctx.convert(x)
        y = ctx.convert(y)
        return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))

    def _gamma_upper_int(ctx, n, z):
        n = int(ctx._re(n))
        if n == 0:
            return ctx.e1(z)
        if not hasattr(z, '_mpf_'):
            raise NotImplementedError
        prec, rounding = ctx._prec_rounding
        real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
        if imag is None:
            return ctx.make_mpf(real)
        else:
            return ctx.make_mpc((real, imag))

    def _expint_int(ctx, n, z):
        n = int(n)
        if n == 1:
            return ctx.e1(z)
        if not hasattr(z, '_mpf_'):
            raise NotImplementedError
        prec, rounding = ctx._prec_rounding
        real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
        if imag is None:
            return ctx.make_mpf(real)
        else:
            return ctx.make_mpc((real, imag))

    def _nthroot(ctx, x, n):
        if hasattr(x, '_mpf_'):
            try:
                return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
            except ComplexResult:
                if ctx.trap_complex:
                    raise
                x = (x._mpf_, libmp.fzero)
        else:
            x = x._mpc_
        return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))

    def _besselj(ctx, n, z):
        prec, rounding = ctx._prec_rounding
        if hasattr(z, '_mpf_'):
            return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
        elif hasattr(z, '_mpc_'):
            return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))

    def _agm(ctx, a, b=1):
        prec, rounding = ctx._prec_rounding
        if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
            try:
                v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
                return ctx.make_mpf(v)
            except ComplexResult:
                pass
        if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
        else: a = a._mpc_
        if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
        else: b = b._mpc_
        return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))

    def bernoulli(ctx, n):
        return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))

    def _zeta_int(ctx, n):
        return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))

    def atan2(ctx, y, x):
        x = ctx.convert(x)
        y = ctx.convert(y)
        return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))

    def psi(ctx, m, z):
        z = ctx.convert(z)
        m = int(m)
        if ctx._is_real_type(z):
            return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
        else:
            return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))

    def cos_sin(ctx, x, **kwargs):
        if type(x) not in ctx.types:
            x = ctx.convert(x)
        prec, rounding = ctx._parse_prec(kwargs)
        if hasattr(x, '_mpf_'):
            c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
            return ctx.make_mpf(c), ctx.make_mpf(s)
        elif hasattr(x, '_mpc_'):
            c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
            return ctx.make_mpc(c), ctx.make_mpc(s)
        else:
            return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)

    def cospi_sinpi(ctx, x, **kwargs):
        if type(x) not in ctx.types:
            x = ctx.convert(x)
        prec, rounding = ctx._parse_prec(kwargs)
        if hasattr(x, '_mpf_'):
            c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
            return ctx.make_mpf(c), ctx.make_mpf(s)
        elif hasattr(x, '_mpc_'):
            c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
            return ctx.make_mpc(c), ctx.make_mpc(s)
        else:
            return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)

    def clone(ctx):
        """
        Create a copy of the context, with the same working precision.
        """
        a = ctx.__class__()
        a.prec = ctx.prec
        return a

    # Several helper methods
    # TODO: add more of these, make consistent, write docstrings, ...

    def _is_real_type(ctx, x):
        if hasattr(x, '_mpc_') or type(x) is complex:
            return False
        return True

    def _is_complex_type(ctx, x):
        if hasattr(x, '_mpc_') or type(x) is complex:
            return True
        return False

    def isnan(ctx, x):
        """
        Return *True* if *x* is a NaN (not-a-number), or for a complex
        number, whether either the real or complex part is NaN;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isnan(3.14)
            False
            >>> isnan(nan)
            True
            >>> isnan(mpc(3.14,2.72))
            False
            >>> isnan(mpc(3.14,nan))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ == fnan
        if hasattr(x, "_mpc_"):
            return fnan in x._mpc_
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnan(x)
        raise TypeError("isnan() needs a number as input")

    def isfinite(ctx, x):
        """
        Return *True* if *x* is a finite number, i.e. neither
        an infinity or a NaN.

            >>> from mpmath import *
            >>> isfinite(inf)
            False
            >>> isfinite(-inf)
            False
            >>> isfinite(3)
            True
            >>> isfinite(nan)
            False
            >>> isfinite(3+4j)
            True
            >>> isfinite(mpc(3,inf))
            False
            >>> isfinite(mpc(nan,3))
            False

        """
        if ctx.isinf(x) or ctx.isnan(x):
            return False
        return True

    def isnpint(ctx, x):
        """
        Determine if *x* is a nonpositive integer.
        """
        if not x:
            return True
        if hasattr(x, '_mpf_'):
            sign, man, exp, bc = x._mpf_
            return sign and exp >= 0
        if hasattr(x, '_mpc_'):
            return not x.imag and ctx.isnpint(x.real)
        if type(x) in int_types:
            return x <= 0
        if isinstance(x, ctx.mpq):
            p, q = x._mpq_
            if not p:
                return True
            return q == 1 and p <= 0
        return ctx.isnpint(ctx.convert(x))

    def __str__(ctx):
        lines = ["Mpmath settings:",
            ("  mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
            ("  mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
            ("  mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
        ]
        return "\n".join(lines)

    @property
    def _repr_digits(ctx):
        return repr_dps(ctx._prec)

    @property
    def _str_digits(ctx):
        return ctx._dps

    def extraprec(ctx, n, normalize_output=False):
        """
        The block

            with extraprec(n):
                <code>

        increases the precision n bits, executes <code>, and then
        restores the precision.

        extraprec(n)(f) returns a decorated version of the function f
        that increases the working precision by n bits before execution,
        and restores the parent precision afterwards. With
        normalize_output=True, it rounds the return value to the parent
        precision.
        """
        return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)

    def extradps(ctx, n, normalize_output=False):
        """
        This function is analogous to extraprec (see documentation)
        but changes the decimal precision instead of the number of bits.
        """
        return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)

    def workprec(ctx, n, normalize_output=False):
        """
        The block

            with workprec(n):
                <code>

        sets the precision to n bits, executes <code>, and then restores
        the precision.

        workprec(n)(f) returns a decorated version of the function f
        that sets the precision to n bits before execution,
        and restores the precision afterwards. With normalize_output=True,
        it rounds the return value to the parent precision.
        """
        return PrecisionManager(ctx, lambda p: n, None, normalize_output)

    def workdps(ctx, n, normalize_output=False):
        """
        This function is analogous to workprec (see documentation)
        but changes the decimal precision instead of the number of bits.
        """
        return PrecisionManager(ctx, None, lambda d: n, normalize_output)

    def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
        r"""
        Return a wrapped copy of *f* that repeatedly evaluates *f*
        with increasing precision until the result converges to the
        full precision used at the point of the call.

        This heuristically protects against rounding errors, at the cost of
        roughly a 2x slowdown compared to manually setting the optimal
        precision. This method can, however, easily be fooled if the results
        from *f* depend "discontinuously" on the precision, for instance
        if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
        should be used judiciously.

        **Examples**

        Many functions are sensitive to perturbations of the input arguments.
        If the arguments are decimal numbers, they may have to be converted
        to binary at a much higher precision. If the amount of required
        extra precision is unknown, :func:`~mpmath.autoprec` is convenient::

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> mp.pretty = True
            >>> besselj(5, 125 * 10**28)    # Exact input
            -8.03284785591801e-17
            >>> besselj(5, '1.25e30')   # Bad
            7.12954868316652e-16
            >>> autoprec(besselj)(5, '1.25e30')   # Good
            -8.03284785591801e-17

        The following fails to converge because `\sin(\pi) = 0` whereas all
        finite-precision approximations of `\pi` give nonzero values::

            >>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
            Traceback (most recent call last):
              ...
            NoConvergence: autoprec: prec increased to 2910 without convergence

        As the following example shows, :func:`~mpmath.autoprec` can protect against
        cancellation, but is fooled by too severe cancellation::

            >>> x = 1e-10
            >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
            1.00000008274037e-10
            1.00000000005e-10
            1.00000000005e-10
            >>> x = 1e-50
            >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
            0.0
            1.0e-50
            0.0

        With *catch*, an exception or list of exceptions to intercept
        may be specified. The raised exception is interpreted
        as signaling insufficient precision. This permits, for example,
        evaluating a function where a too low precision results in a
        division by zero::

            >>> f = lambda x: 1/(exp(x)-1)
            >>> f(1e-30)
            Traceback (most recent call last):
              ...
            ZeroDivisionError
            >>> autoprec(f, catch=ZeroDivisionError)(1e-30)
            1.0e+30


        """
        def f_autoprec_wrapped(*args, **kwargs):
            prec = ctx.prec
            if maxprec is None:
                maxprec2 = ctx._default_hyper_maxprec(prec)
            else:
                maxprec2 = maxprec
            try:
                ctx.prec = prec + 10
                try:
                    v1 = f(*args, **kwargs)
                except catch:
                    v1 = ctx.nan
                prec2 = prec + 20
                while 1:
                    ctx.prec = prec2
                    try:
                        v2 = f(*args, **kwargs)
                    except catch:
                        v2 = ctx.nan
                    if v1 == v2:
                        break
                    err = ctx.mag(v2-v1) - ctx.mag(v2)
                    if err < (-prec):
                        break
                    if verbose:
                        print("autoprec: target=%s, prec=%s, accuracy=%s" \
                            % (prec, prec2, -err))
                    v1 = v2
                    if prec2 >= maxprec2:
                        raise ctx.NoConvergence(\
                        "autoprec: prec increased to %i without convergence"\
                        % prec2)
                    prec2 += int(prec2*2)
                    prec2 = min(prec2, maxprec2)
            finally:
                ctx.prec = prec
            return +v2
        return f_autoprec_wrapped

    def nstr(ctx, x, n=6, **kwargs):
        """
        Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
        significant digits. The small default value for *n* is chosen to
        make this function useful for printing collections of numbers
        (lists, matrices, etc).

        If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
        to each element. For unrecognized classes, :func:`~mpmath.nstr`
        simply returns ``str(x)``.

        The companion function :func:`~mpmath.nprint` prints the result
        instead of returning it.

        The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
        and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.

        The number will be printed in fixed-point format if the position
        of the leading digit is strictly between min_fixed
        (default = min(-dps/3,-5)) and max_fixed (default = dps).

        To force fixed-point format always, set min_fixed = -inf,
        max_fixed = +inf. To force floating-point format, set
        min_fixed >= max_fixed.

            >>> from mpmath import *
            >>> nstr([+pi, ldexp(1,-500)])
            '[3.14159, 3.05494e-151]'
            >>> nprint([+pi, ldexp(1,-500)])
            [3.14159, 3.05494e-151]
            >>> nstr(mpf("5e-10"), 5)
            '5.0e-10'
            >>> nstr(mpf("5e-10"), 5, strip_zeros=False)
            '5.0000e-10'
            >>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
            '0.00000000050000'
            >>> nstr(mpf(0), 5, show_zero_exponent=True)
            '0.0e+0'

        """
        if isinstance(x, list):
            return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
        if isinstance(x, tuple):
            return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
        if hasattr(x, '_mpf_'):
            return to_str(x._mpf_, n, **kwargs)
        if hasattr(x, '_mpc_'):
            return "(" + mpc_to_str(x._mpc_, n, **kwargs)  + ")"
        if isinstance(x, basestring):
            return repr(x)
        if isinstance(x, ctx.matrix):
            return x.__nstr__(n, **kwargs)
        return str(x)

    def _convert_fallback(ctx, x, strings):
        if strings and isinstance(x, basestring):
            if 'j' in x.lower():
                x = x.lower().replace(' ', '')
                match = get_complex.match(x)
                re = match.group('re')
                if not re:
                    re = 0
                im = match.group('im').rstrip('j')
                return ctx.mpc(ctx.convert(re), ctx.convert(im))
        if hasattr(x, "_mpi_"):
            a, b = x._mpi_
            if a == b:
                return ctx.make_mpf(a)
            else:
                raise ValueError("can only create mpf from zero-width interval")
        raise TypeError("cannot create mpf from " + repr(x))

    def mpmathify(ctx, *args, **kwargs):
        return ctx.convert(*args, **kwargs)

    def _parse_prec(ctx, kwargs):
        if kwargs:
            if kwargs.get('exact'):
                return 0, 'f'
            prec, rounding = ctx._prec_rounding
            if 'rounding' in kwargs:
                rounding = kwargs['rounding']
            if 'prec' in kwargs:
                prec = kwargs['prec']
                if prec == ctx.inf:
                    return 0, 'f'
                else:
                    prec = int(prec)
            elif 'dps' in kwargs:
                dps = kwargs['dps']
                if dps == ctx.inf:
                    return 0, 'f'
                prec = dps_to_prec(dps)
            return prec, rounding
        return ctx._prec_rounding

    _exact_overflow_msg = "the exact result does not fit in memory"

    _hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. Try with a higher maxprec,
maxterms, or set zeroprec."""

    def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
        if hasattr(z, "_mpf_"):
            key = p, q, flags, 'R'
            v = z._mpf_
        elif hasattr(z, "_mpc_"):
            key = p, q, flags, 'C'
            v = z._mpc_
        if key not in ctx.hyp_summators:
            ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
        summator = ctx.hyp_summators[key]
        prec = ctx.prec
        maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
        extraprec = 50
        epsshift = 25
        # Jumps in magnitude occur when parameters are close to negative
        # integers. We must ensure that these terms are included in
        # the sum and added accurately
        magnitude_check = {}
        max_total_jump = 0
        for i, c in enumerate(coeffs):
            if flags[i] == 'Z':
                if i >= p and c <= 0:
                    ok = False
                    for ii, cc in enumerate(coeffs[:p]):
                        # Note: c <= cc or c < cc, depending on convention
                        if flags[ii] == 'Z' and cc <= 0 and c <= cc:
                            ok = True
                    if not ok:
                        raise ZeroDivisionError("pole in hypergeometric series")
                continue
            n, d = ctx.nint_distance(c)
            n = -int(n)
            d = -d
            if i >= p and n >= 0 and d > 4:
                if n in magnitude_check:
                    magnitude_check[n] += d
                else:
                    magnitude_check[n] = d
                extraprec = max(extraprec, d - prec + 60)
            max_total_jump += abs(d)
        while 1:
            if extraprec > maxprec:
                raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
            wp = prec + extraprec
            if magnitude_check:
                mag_dict = dict((n,None) for n in magnitude_check)
            else:
                mag_dict = {}
            zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
                epsshift, mag_dict, **kwargs)
            cancel = -magnitude
            jumps_resolved = True
            if extraprec < max_total_jump:
                for n in mag_dict.values():
                    if (n is None) or (n < prec):
                        jumps_resolved = False
                        break
            accurate = (cancel < extraprec-25-5 or not accurate_small)
            if jumps_resolved:
                if accurate:
                    break
                # zero?
                zeroprec = kwargs.get('zeroprec')
                if zeroprec is not None:
                    if cancel > zeroprec:
                        if have_complex:
                            return ctx.mpc(0)
                        else:
                            return ctx.zero

            # Some near-singularities were not included, so increase
            # precision and repeat until they are
            extraprec *= 2
            # Possible workaround for bad roundoff in fixed-point arithmetic
            epsshift += 5
            extraprec += 5

        if type(zv) is tuple:
            if have_complex:
                return ctx.make_mpc(zv)
            else:
                return ctx.make_mpf(zv)
        else:
            return zv

    def ldexp(ctx, x, n):
        r"""
        Computes `x 2^n` efficiently. No rounding is performed.
        The argument `x` must be a real floating-point number (or
        possible to convert into one) and `n` must be a Python ``int``.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> ldexp(1, 10)
            mpf('1024.0')
            >>> ldexp(1, -3)
            mpf('0.125')

        """
        x = ctx.convert(x)
        return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))

    def frexp(ctx, x):
        r"""
        Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
        `n` a Python integer, and such that `x = y 2^n`. No rounding is
        performed.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> frexp(7.5)
            (mpf('0.9375'), 3)

        """
        x = ctx.convert(x)
        y, n = libmp.mpf_frexp(x._mpf_)
        return ctx.make_mpf(y), n

    def fneg(ctx, x, **kwargs):
        """
        Negates the number *x*, giving a floating-point result, optionally
        using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        An mpmath number is returned::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fneg(2.5)
            mpf('-2.5')
            >>> fneg(-5+2j)
            mpc(real='5.0', imag='-2.0')

        Precise control over rounding is possible::

            >>> x = fadd(2, 1e-100, exact=True)
            >>> fneg(x)
            mpf('-2.0')
            >>> fneg(x, rounding='f')
            mpf('-2.0000000000000004')

        Negating with and without roundoff::

            >>> n = 200000000000000000000001
            >>> print(int(-mpf(n)))
            -200000000000000016777216
            >>> print(int(fneg(n)))
            -200000000000000016777216
            >>> print(int(fneg(n, prec=log(n,2)+1)))
            -200000000000000000000001
            >>> print(int(fneg(n, dps=log(n,10)+1)))
            -200000000000000000000001
            >>> print(int(fneg(n, prec=inf)))
            -200000000000000000000001
            >>> print(int(fneg(n, dps=inf)))
            -200000000000000000000001
            >>> print(int(fneg(n, exact=True)))
            -200000000000000000000001

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        if hasattr(x, '_mpf_'):
            return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
        if hasattr(x, '_mpc_'):
            return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fadd(ctx, x, y, **kwargs):
        """
        Adds the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        The default precision is the working precision of the context.
        You can specify a custom precision in bits by passing the *prec* keyword
        argument, or by providing an equivalent decimal precision with the *dps*
        keyword argument. If the precision is set to ``+inf``, or if the flag
        *exact=True* is passed, an exact addition with no rounding is performed.

        When the precision is finite, the optional *rounding* keyword argument
        specifies the direction of rounding. Valid options are ``'n'`` for
        nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
        for down, ``'u'`` for up.

        **Examples**

        Using :func:`~mpmath.fadd` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fadd(2, 1e-20)
            mpf('2.0')
            >>> fadd(2, 1e-20, rounding='u')
            mpf('2.0000000000000004')
            >>> nprint(fadd(2, 1e-20, prec=100), 25)
            2.00000000000000000001
            >>> nprint(fadd(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fadd(2, 1e-20, dps=25), 25)
            2.00000000000000000001
            >>> nprint(fadd(2, 1e-20, exact=True), 25)
            2.00000000000000000001

        Exact addition avoids cancellation errors, enforcing familiar laws
        of numbers such as `x+y-x = y`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e-1000')
            >>> print(x + y - x)
            0.0
            >>> print(fadd(x, y, prec=inf) - x)
            1.0e-1000
            >>> print(fadd(x, y, exact=True) - x)
            1.0e-1000

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fadd(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fsub(ctx, x, y, **kwargs):
        """
        Subtracts the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        Using :func:`~mpmath.fsub` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsub(2, 1e-20)
            mpf('2.0')
            >>> fsub(2, 1e-20, rounding='d')
            mpf('1.9999999999999998')
            >>> nprint(fsub(2, 1e-20, prec=100), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fsub(2, 1e-20, dps=25), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, exact=True), 25)
            1.99999999999999999999

        Exact subtraction avoids cancellation errors, enforcing familiar laws
        of numbers such as `x-y+y = x`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e1000')
            >>> print(x - y + y)
            0.0
            >>> print(fsub(x, y, prec=inf) + y)
            2.0
            >>> print(fsub(x, y, exact=True) + y)
            2.0

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fsub(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fmul(ctx, x, y, **kwargs):
        """
        Multiplies the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fmul(2, 5.0)
            mpf('10.0')
            >>> fmul(0.5j, 0.5)
            mpc(real='0.0', imag='0.25')

        Avoiding roundoff::

            >>> x, y = 10**10+1, 10**15+1
            >>> print(x*y)
            10000000001000010000000001
            >>> print(mpf(x) * mpf(y))
            1.0000000001e+25
            >>> print(int(mpf(x) * mpf(y)))
            10000000001000011026399232
            >>> print(int(fmul(x, y)))
            10000000001000011026399232
            >>> print(int(fmul(x, y, dps=25)))
            10000000001000010000000001
            >>> print(int(fmul(x, y, exact=True)))
            10000000001000010000000001

        Exact multiplication with complex numbers can be inefficient and may
        be impossible to perform with large magnitude differences between
        real and imaginary parts::

            >>> x = 1+2j
            >>> y = mpc(2, '1e-100000000000000000000')
            >>> fmul(x, y)
            mpc(real='2.0', imag='4.0')
            >>> fmul(x, y, rounding='u')
            mpc(real='2.0', imag='4.0000000000000009')
            >>> fmul(x, y, exact=True)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fdiv(ctx, x, y, **kwargs):
        """
        Divides the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fdiv(3, 2)
            mpf('1.5')
            >>> fdiv(2, 3)
            mpf('0.66666666666666663')
            >>> fdiv(2+4j, 0.5)
            mpc(real='4.0', imag='8.0')

        The rounding direction and precision can be controlled::

            >>> fdiv(2, 3, dps=3)    # Should be accurate to at least 3 digits
            mpf('0.6666259765625')
            >>> fdiv(2, 3, rounding='d')
            mpf('0.66666666666666663')
            >>> fdiv(2, 3, prec=60)
            mpf('0.66666666666666667')
            >>> fdiv(2, 3, rounding='u')
            mpf('0.66666666666666674')

        Checking the error of a division by performing it at higher precision::

            >>> fdiv(2, 3) - fdiv(2, 3, prec=100)
            mpf('-3.7007434154172148e-17')

        Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
        allowed since the quotient of two floating-point numbers generally
        does not have an exact floating-point representation. (In the
        future this might be changed to allow the case where the division
        is actually exact.)

            >>> fdiv(2, 3, exact=True)
            Traceback (most recent call last):
              ...
            ValueError: division is not an exact operation

        """
        prec, rounding = ctx._parse_prec(kwargs)
        if not prec:
            raise ValueError("division is not an exact operation")
        x = ctx.convert(x)
        y = ctx.convert(y)
        if hasattr(x, '_mpf_'):
            if hasattr(y, '_mpf_'):
                return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
            if hasattr(y, '_mpc_'):
                return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
        if hasattr(x, '_mpc_'):
            if hasattr(y, '_mpf_'):
                return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
            if hasattr(y, '_mpc_'):
                return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def nint_distance(ctx, x):
        r"""
        Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
        an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
        (measured in bits) lost to cancellation when computing `x-n`.

            >>> from mpmath import *
            >>> n, d = nint_distance(5)
            >>> print(n); print(d)
            5
            -inf
            >>> n, d = nint_distance(mpf(5))
            >>> print(n); print(d)
            5
            -inf
            >>> n, d = nint_distance(mpf(5.00000001))
            >>> print(n); print(d)
            5
            -26
            >>> n, d = nint_distance(mpf(4.99999999))
            >>> print(n); print(d)
            5
            -26
            >>> n, d = nint_distance(mpc(5,10))
            >>> print(n); print(d)
            5
            4
            >>> n, d = nint_distance(mpc(5,0.000001))
            >>> print(n); print(d)
            5
            -19

        """
        typx = type(x)
        if typx in int_types:
            return int(x), ctx.ninf
        elif typx is rational.mpq:
            p, q = x._mpq_
            n, r = divmod(p, q)
            if 2*r >= q:
                n += 1
            elif not r:
                return n, ctx.ninf
            # log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
            d = bitcount(abs(p-n*q)) - bitcount(q)
            return n, d
        if hasattr(x, "_mpf_"):
            re = x._mpf_
            im_dist = ctx.ninf
        elif hasattr(x, "_mpc_"):
            re, im = x._mpc_
            isign, iman, iexp, ibc = im
            if iman:
                im_dist = iexp + ibc
            elif im == fzero:
                im_dist = ctx.ninf
            else:
                raise ValueError("requires a finite number")
        else:
            x = ctx.convert(x)
            if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
                return ctx.nint_distance(x)
            else:
                raise TypeError("requires an mpf/mpc")
        sign, man, exp, bc = re
        mag = exp+bc
        # |x| < 0.5
        if mag < 0:
            n = 0
            re_dist = mag
        elif man:
            # exact integer
            if exp >= 0:
                n = man << exp
                re_dist = ctx.ninf
            # exact half-integer
            elif exp == -1:
                n = (man>>1)+1
                re_dist = 0
            else:
                d = (-exp-1)
                t = man >> d
                if t & 1:
                    t += 1
                    man = (t<<d) - man
                else:
                    man -= (t<<d)
                n = t>>1   # int(t)>>1
                re_dist = exp+bitcount(man)
            if sign:
                n = -n
        elif re == fzero:
            re_dist = ctx.ninf
            n = 0
        else:
            raise ValueError("requires a finite number")
        return n, max(re_dist, im_dist)

    def fprod(ctx, factors):
        r"""
        Calculates a product containing a finite number of factors (for
        infinite products, see :func:`~mpmath.nprod`). The factors will be
        converted to mpmath numbers.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fprod([1, 2, 0.5, 7])
            mpf('7.0')

        """
        orig = ctx.prec
        try:
            v = ctx.one
            for p in factors:
                v *= p
        finally:
            ctx.prec = orig
        return +v

    def rand(ctx):
        """
        Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
        The number of randomly generated bits in the mantissa is equal
        to the working precision.
        """
        return ctx.make_mpf(mpf_rand(ctx._prec))

    def fraction(ctx, p, q):
        """
        Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
        the fraction `p/q`. The value is updated with the precision.

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> a = fraction(1,100)
            >>> b = mpf(1)/100
            >>> print(a); print(b)
            0.01
            0.01
            >>> mp.dps = 30
            >>> print(a); print(b)      # a will be accurate
            0.01
            0.0100000000000000002081668171172
            >>> mp.dps = 15
        """
        return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
            '%s/%s' % (p, q))

    def absmin(ctx, x):
        return abs(ctx.convert(x))

    def absmax(ctx, x):
        return abs(ctx.convert(x))

    def _as_points(ctx, x):
        # XXX: remove this?
        if hasattr(x, '_mpi_'):
            a, b = x._mpi_
            return [ctx.make_mpf(a), ctx.make_mpf(b)]
        return x

    '''
    def _zetasum(ctx, s, a, b):
        """
        Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
        integers.
        """
        a = int(a)
        b = int(b)
        s = ctx.convert(s)
        prec, rounding = ctx._prec_rounding
        if hasattr(s, '_mpf_'):
            v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
        elif hasattr(s, '_mpc_'):
            v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
        return v
    '''

    def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
        if not (ctx.isint(a) and hasattr(s, "_mpc_")):
            raise NotImplementedError
        a = int(a)
        prec = ctx._prec
        xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
        xs = [ctx.make_mpc(x) for x in xs]
        ys = [ctx.make_mpc(y) for y in ys]
        return xs, ys

class PrecisionManager:
    def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
        self.ctx = ctx
        self.precfun = precfun
        self.dpsfun = dpsfun
        self.normalize_output = normalize_output
    def __call__(self, f):
        @functools.wraps(f)
        def g(*args, **kwargs):
            orig = self.ctx.prec
            try:
                if self.precfun:
                    self.ctx.prec = self.precfun(self.ctx.prec)
                else:
                    self.ctx.dps = self.dpsfun(self.ctx.dps)
                if self.normalize_output:
                    v = f(*args, **kwargs)
                    if type(v) is tuple:
                        return tuple([+a for a in v])
                    return +v
                else:
                    return f(*args, **kwargs)
            finally:
                self.ctx.prec = orig
        return g
    def __enter__(self):
        self.origp = self.ctx.prec
        if self.precfun:
            self.ctx.prec = self.precfun(self.ctx.prec)
        else:
            self.ctx.dps = self.dpsfun(self.ctx.dps)
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.ctx.prec = self.origp
        return False


if __name__ == '__main__':
    import doctest
    doctest.testmod()