File size: 29,253 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
"""
Implements the PSLQ algorithm for integer relation detection,
and derivative algorithms for constant recognition.
"""

from .libmp.backend import xrange
from .libmp import int_types, sqrt_fixed

# round to nearest integer (can be done more elegantly...)
def round_fixed(x, prec):
    return ((x + (1<<(prec-1))) >> prec) << prec

class IdentificationMethods(object):
    pass


def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False):
    r"""
    Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)``
    uses the PSLQ algorithm to find a list of integers
    `[c_0, c_1, ..., c_n]` such that

    .. math ::

        |c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol}

    and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector
    exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to
    3/4 of the working precision.

    **Examples**

    Find rational approximations for `\pi`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> pslq([-1, pi], tol=0.01)
        [22, 7]
        >>> pslq([-1, pi], tol=0.001)
        [355, 113]
        >>> mpf(22)/7; mpf(355)/113; +pi
        3.14285714285714
        3.14159292035398
        3.14159265358979

    Pi is not a rational number with denominator less than 1000::

        >>> pslq([-1, pi])
        >>>

    To within the standard precision, it can however be approximated
    by at least one rational number with denominator less than `10^{12}`::

        >>> p, q = pslq([-1, pi], maxcoeff=10**12)
        >>> print(p); print(q)
        238410049439
        75888275702
        >>> mpf(p)/q
        3.14159265358979

    The PSLQ algorithm can be applied to long vectors. For example,
    we can investigate the rational (in)dependence of integer square
    roots::

        >>> mp.dps = 30
        >>> pslq([sqrt(n) for n in range(2, 5+1)])
        >>>
        >>> pslq([sqrt(n) for n in range(2, 6+1)])
        >>>
        >>> pslq([sqrt(n) for n in range(2, 8+1)])
        [2, 0, 0, 0, 0, 0, -1]

    **Machin formulas**

    A famous formula for `\pi` is Machin's,

    .. math ::

        \frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239

    There are actually infinitely many formulas of this type. Two
    others are

    .. math ::

        \frac{\pi}{4} = \operatorname{acot} 1

        \frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57
            + 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443

    We can easily verify the formulas using the PSLQ algorithm::

        >>> mp.dps = 30
        >>> pslq([pi/4, acot(1)])
        [1, -1]
        >>> pslq([pi/4, acot(5), acot(239)])
        [1, -4, 1]
        >>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)])
        [1, -12, -32, 5, -12]

    We could try to generate a custom Machin-like formula by running
    the PSLQ algorithm with a few inverse cotangent values, for example
    acot(2), acot(3) ... acot(10). Unfortunately, there is a linear
    dependence among these values, resulting in only that dependence
    being detected, with a zero coefficient for `\pi`::

        >>> pslq([pi] + [acot(n) for n in range(2,11)])
        [0, 1, -1, 0, 0, 0, -1, 0, 0, 0]

    We get better luck by removing linearly dependent terms::

        >>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)])
        [1, -8, 0, 0, 4, 0, 0, 0]

    In other words, we found the following formula::

        >>> 8*acot(2) - 4*acot(7)
        3.14159265358979323846264338328
        >>> +pi
        3.14159265358979323846264338328

    **Algorithm**

    This is a fairly direct translation to Python of the pseudocode given by
    David Bailey, "The PSLQ Integer Relation Algorithm":
    http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html

    The present implementation uses fixed-point instead of floating-point
    arithmetic, since this is significantly (about 7x) faster.
    """

    n = len(x)
    if n < 2:
        raise ValueError("n cannot be less than 2")

    # At too low precision, the algorithm becomes meaningless
    prec = ctx.prec
    if prec < 53:
        raise ValueError("prec cannot be less than 53")

    if verbose and prec // max(2,n) < 5:
        print("Warning: precision for PSLQ may be too low")

    target = int(prec * 0.75)

    if tol is None:
        tol = ctx.mpf(2)**(-target)
    else:
        tol = ctx.convert(tol)

    extra = 60
    prec += extra

    if verbose:
        print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol)))

    tol = ctx.to_fixed(tol, prec)
    assert tol

    # Convert to fixed-point numbers. The dummy None is added so we can
    # use 1-based indexing. (This just allows us to be consistent with
    # Bailey's indexing. The algorithm is 100 lines long, so debugging
    # a single wrong index can be painful.)
    x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x]

    # Sanity check on magnitudes
    minx = min(abs(xx) for xx in x[1:])
    if not minx:
        raise ValueError("PSLQ requires a vector of nonzero numbers")
    if minx < tol//100:
        if verbose:
            print("STOPPING: (one number is too small)")
        return None

    g = sqrt_fixed((4<<prec)//3, prec)
    A = {}
    B = {}
    H = {}
    # Initialization
    # step 1
    for i in xrange(1, n+1):
        for j in xrange(1, n+1):
            A[i,j] = B[i,j] = (i==j) << prec
            H[i,j] = 0
    # step 2
    s = [None] + [0] * n
    for k in xrange(1, n+1):
        t = 0
        for j in xrange(k, n+1):
            t += (x[j]**2 >> prec)
        s[k] = sqrt_fixed(t, prec)
    t = s[1]
    y = x[:]
    for k in xrange(1, n+1):
        y[k] = (x[k] << prec) // t
        s[k] = (s[k] << prec) // t
    # step 3
    for i in xrange(1, n+1):
        for j in xrange(i+1, n):
            H[i,j] = 0
        if i <= n-1:
            if s[i]:
                H[i,i] = (s[i+1] << prec) // s[i]
            else:
                H[i,i] = 0
        for j in range(1, i):
            sjj1 = s[j]*s[j+1]
            if sjj1:
                H[i,j] = ((-y[i]*y[j])<<prec)//sjj1
            else:
                H[i,j] = 0
    # step 4
    for i in xrange(2, n+1):
        for j in xrange(i-1, 0, -1):
            #t = floor(H[i,j]/H[j,j] + 0.5)
            if H[j,j]:
                t = round_fixed((H[i,j] << prec)//H[j,j], prec)
            else:
                #t = 0
                continue
            y[j] = y[j] + (t*y[i] >> prec)
            for k in xrange(1, j+1):
                H[i,k] = H[i,k] - (t*H[j,k] >> prec)
            for k in xrange(1, n+1):
                A[i,k] = A[i,k] - (t*A[j,k] >> prec)
                B[k,j] = B[k,j] + (t*B[k,i] >> prec)
    # Main algorithm
    for REP in range(maxsteps):
        # Step 1
        m = -1
        szmax = -1
        for i in range(1, n):
            h = H[i,i]
            sz = (g**i * abs(h)) >> (prec*(i-1))
            if sz > szmax:
                m = i
                szmax = sz
        # Step 2
        y[m], y[m+1] = y[m+1], y[m]
        for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i]
        for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i]
        for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m]
        # Step 3
        if m <= n - 2:
            t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec)
            # A zero element probably indicates that the precision has
            # been exhausted. XXX: this could be spurious, due to
            # using fixed-point arithmetic
            if not t0:
                break
            t1 = (H[m,m] << prec) // t0
            t2 = (H[m,m+1] << prec) // t0
            for i in xrange(m, n+1):
                t3 = H[i,m]
                t4 = H[i,m+1]
                H[i,m] = (t1*t3+t2*t4) >> prec
                H[i,m+1] = (-t2*t3+t1*t4) >> prec
        # Step 4
        for i in xrange(m+1, n+1):
            for j in xrange(min(i-1, m+1), 0, -1):
                try:
                    t = round_fixed((H[i,j] << prec)//H[j,j], prec)
                # Precision probably exhausted
                except ZeroDivisionError:
                    break
                y[j] = y[j] + ((t*y[i]) >> prec)
                for k in xrange(1, j+1):
                    H[i,k] = H[i,k] - (t*H[j,k] >> prec)
                for k in xrange(1, n+1):
                    A[i,k] = A[i,k] - (t*A[j,k] >> prec)
                    B[k,j] = B[k,j] + (t*B[k,i] >> prec)
        # Until a relation is found, the error typically decreases
        # slowly (e.g. a factor 1-10) with each step TODO: we could
        # compare err from two successive iterations. If there is a
        # large drop (several orders of magnitude), that indicates a
        # "high quality" relation was detected. Reporting this to
        # the user somehow might be useful.
        best_err = maxcoeff<<prec
        for i in xrange(1, n+1):
            err = abs(y[i])
            # Maybe we are done?
            if err < tol:
                # We are done if the coefficients are acceptable
                vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \
                range(1,n+1)]
                if max(abs(v) for v in vec) < maxcoeff:
                    if verbose:
                        print("FOUND relation at iter %i/%i, error: %s" % \
                            (REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1)))
                    return vec
            best_err = min(err, best_err)
        # Calculate a lower bound for the norm. We could do this
        # more exactly (using the Euclidean norm) but there is probably
        # no practical benefit.
        recnorm = max(abs(h) for h in H.values())
        if recnorm:
            norm = ((1 << (2*prec)) // recnorm) >> prec
            norm //= 100
        else:
            norm = ctx.inf
        if verbose:
            print("%i/%i:  Error: %8s   Norm: %s" % \
                (REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm))
        if norm >= maxcoeff:
            break
    if verbose:
        print("CANCELLING after step %i/%i." % (REP, maxsteps))
        print("Could not find an integer relation. Norm bound: %s" % norm)
    return None

def findpoly(ctx, x, n=1, **kwargs):
    r"""
    ``findpoly(x, n)`` returns the coefficients of an integer
    polynomial `P` of degree at most `n` such that `P(x) \approx 0`.
    If no polynomial having `x` as a root can be found,
    :func:`~mpmath.findpoly` returns ``None``.

    :func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with
    the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ...,
    `[1, x, x^2, .., x^n]` as input. Keyword arguments given to
    :func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In
    particular, you can specify a tolerance for `P(x)` with ``tol``
    and a maximum permitted coefficient size with ``maxcoeff``.

    For large values of `n`, it is recommended to run :func:`~mpmath.findpoly`
    at high precision; preferably 50 digits or more.

    **Examples**

    By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear
    polynomial with a rational root::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> findpoly(0.7)
        [-10, 7]

    The generated coefficient list is valid input to ``polyval`` and
    ``polyroots``::

        >>> nprint(polyval(findpoly(phi, 2), phi), 1)
        -2.0e-16
        >>> for r in polyroots(findpoly(phi, 2)):
        ...     print(r)
        ...
        -0.618033988749895
        1.61803398874989

    Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are
    solutions to quadratic equations. As we find here, `1+\sqrt 2`
    is a root of the polynomial `x^2 - 2x - 1`::

        >>> findpoly(1+sqrt(2), 2)
        [1, -2, -1]
        >>> findroot(lambda x: x**2 - 2*x - 1, 1)
        2.4142135623731

    Despite only containing square roots, the following number results
    in a polynomial of degree 4::

        >>> findpoly(sqrt(2)+sqrt(3), 4)
        [1, 0, -10, 0, 1]

    In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of
    `r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of
    lower degree having `r` as a root does not exist. Given sufficient
    precision, :func:`~mpmath.findpoly` will usually find the correct
    minimal polynomial of a given algebraic number.

    **Non-algebraic numbers**

    If :func:`~mpmath.findpoly` fails to find a polynomial with given
    coefficient size and tolerance constraints, that means no such
    polynomial exists.

    We can verify that `\pi` is not an algebraic number of degree 3 with
    coefficients less than 1000::

        >>> mp.dps = 15
        >>> findpoly(pi, 3)
        >>>

    It is always possible to find an algebraic approximation of a number
    using one (or several) of the following methods:

        1. Increasing the permitted degree
        2. Allowing larger coefficients
        3. Reducing the tolerance

    One example of each method is shown below::

        >>> mp.dps = 15
        >>> findpoly(pi, 4)
        [95, -545, 863, -183, -298]
        >>> findpoly(pi, 3, maxcoeff=10000)
        [836, -1734, -2658, -457]
        >>> findpoly(pi, 3, tol=1e-7)
        [-4, 22, -29, -2]

    It is unknown whether Euler's constant is transcendental (or even
    irrational). We can use :func:`~mpmath.findpoly` to check that if is
    an algebraic number, its minimal polynomial must have degree
    at least 7 and a coefficient of magnitude at least 1000000::

        >>> mp.dps = 200
        >>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000)
        >>>

    Note that the high precision and strict tolerance is necessary
    for such high-degree runs, since otherwise unwanted low-accuracy
    approximations will be detected. It may also be necessary to set
    maxsteps high to prevent a premature exit (before the coefficient
    bound has been reached). Running with ``verbose=True`` to get an
    idea what is happening can be useful.
    """
    x = ctx.mpf(x)
    if n < 1:
        raise ValueError("n cannot be less than 1")
    if x == 0:
        return [1, 0]
    xs = [ctx.mpf(1)]
    for i in range(1,n+1):
        xs.append(x**i)
        a = ctx.pslq(xs, **kwargs)
        if a is not None:
            return a[::-1]

def fracgcd(p, q):
    x, y = p, q
    while y:
        x, y = y, x % y
    if x != 1:
        p //= x
        q //= x
    if q == 1:
        return p
    return p, q

def pslqstring(r, constants):
    q = r[0]
    r = r[1:]
    s = []
    for i in range(len(r)):
        p = r[i]
        if p:
            z = fracgcd(-p,q)
            cs = constants[i][1]
            if cs == '1':
                cs = ''
            else:
                cs = '*' + cs
            if isinstance(z, int_types):
                if z > 0: term = str(z) + cs
                else:     term = ("(%s)" % z) + cs
            else:
                term = ("(%s/%s)" % z) + cs
            s.append(term)
    s = ' + '.join(s)
    if '+' in s or '*' in s:
        s = '(' + s + ')'
    return s or '0'

def prodstring(r, constants):
    q = r[0]
    r = r[1:]
    num = []
    den = []
    for i in range(len(r)):
        p = r[i]
        if p:
            z = fracgcd(-p,q)
            cs = constants[i][1]
            if isinstance(z, int_types):
                if abs(z) == 1: t = cs
                else:           t = '%s**%s' % (cs, abs(z))
                ([num,den][z<0]).append(t)
            else:
                t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1])
                ([num,den][z[0]<0]).append(t)
    num = '*'.join(num)
    den = '*'.join(den)
    if num and den: return "(%s)/(%s)" % (num, den)
    if num: return num
    if den: return "1/(%s)" % den

def quadraticstring(ctx,t,a,b,c):
    if c < 0:
        a,b,c = -a,-b,-c
    u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c)
    u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c)
    if abs(u1-t) < abs(u2-t):
        if b:  s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
        else:  s = '(sqrt(%s)/%s)' % (-4*a*c,2*c)
    else:
        if b:  s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
        else:  s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c)
    return s

# Transformation y = f(x,c), with inverse function x = f(y,c)
# The third entry indicates whether the transformation is
# redundant when c = 1
transforms = [
  (lambda ctx,x,c: x*c, '$y/$c', 0),
  (lambda ctx,x,c: x/c, '$c*$y', 1),
  (lambda ctx,x,c: c/x, '$c/$y', 0),
  (lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0),
  (lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1),
  (lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0),
  (lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1),
  (lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1),
  (lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1),
  (lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0),
  (lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1),
  (lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0),
  (lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1),
  (lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1),
  (lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1),
  (lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0),
  (lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1),
  (lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0),
  (lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1),
  (lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1),
  (lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0),
  (lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0),
  (lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1),
  (lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0),
  (lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1),
  (lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1),
  (lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0),
]

def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False,
    verbose=False):
    r"""
    Given a real number `x`, ``identify(x)`` attempts to find an exact
    formula for `x`. This formula is returned as a string. If no match
    is found, ``None`` is returned. With ``full=True``, a list of
    matching formulas is returned.

    As a simple example, :func:`~mpmath.identify` will find an algebraic
    formula for the golden ratio::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> identify(phi)
        '((1+sqrt(5))/2)'

    :func:`~mpmath.identify` can identify simple algebraic numbers and simple
    combinations of given base constants, as well as certain basic
    transformations thereof. More specifically, :func:`~mpmath.identify`
    looks for the following:

        1. Fractions
        2. Quadratic algebraic numbers
        3. Rational linear combinations of the base constants
        4. Any of the above after first transforming `x` into `f(x)` where
           `f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either
           directly or with `x` or `f(x)` multiplied or divided by one of
           the base constants
        5. Products of fractional powers of the base constants and
           small integers

    Base constants can be given as a list of strings representing mpmath
    expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical
    values and use the original strings for the output), or as a dict of
    formula:value pairs.

    In order not to produce spurious results, :func:`~mpmath.identify` should
    be used with high precision; preferably 50 digits or more.

    **Examples**

    Simple identifications can be performed safely at standard
    precision. Here the default recognition of rational, algebraic,
    and exp/log of algebraic numbers is demonstrated::

        >>> mp.dps = 15
        >>> identify(0.22222222222222222)
        '(2/9)'
        >>> identify(1.9662210973805663)
        'sqrt(((24+sqrt(48))/8))'
        >>> identify(4.1132503787829275)
        'exp((sqrt(8)/2))'
        >>> identify(0.881373587019543)
        'log(((2+sqrt(8))/2))'

    By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard
    precision it finds a not too useful approximation. At slightly
    increased precision, this approximation is no longer accurate
    enough and :func:`~mpmath.identify` more correctly returns ``None``::

        >>> identify(pi)
        '(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))'
        >>> mp.dps = 30
        >>> identify(pi)
        >>>

    Numbers such as `\pi`, and simple combinations of user-defined
    constants, can be identified if they are provided explicitly::

        >>> identify(3*pi-2*e, ['pi', 'e'])
        '(3*pi + (-2)*e)'

    Here is an example using a dict of constants. Note that the
    constants need not be "atomic"; :func:`~mpmath.identify` can just
    as well express the given number in terms of expressions
    given by formulas::

        >>> identify(pi+e, {'a':pi+2, 'b':2*e})
        '((-2) + 1*a + (1/2)*b)'

    Next, we attempt some identifications with a set of base constants.
    It is necessary to increase the precision a bit.

        >>> mp.dps = 50
        >>> base = ['sqrt(2)','pi','log(2)']
        >>> identify(0.25, base)
        '(1/4)'
        >>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base)
        '(2*sqrt(2) + 3*pi + (5/7)*log(2))'
        >>> identify(exp(pi+2), base)
        'exp((2 + 1*pi))'
        >>> identify(1/(3+sqrt(2)), base)
        '((3/7) + (-1/7)*sqrt(2))'
        >>> identify(sqrt(2)/(3*pi+4), base)
        'sqrt(2)/(4 + 3*pi)'
        >>> identify(5**(mpf(1)/3)*pi*log(2)**2, base)
        '5**(1/3)*pi*log(2)**2'

    An example of an erroneous solution being found when too low
    precision is used::

        >>> mp.dps = 15
        >>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
        '((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))'
        >>> mp.dps = 50
        >>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
        '1/(3*pi + (-4)*e + 2*sqrt(2))'

    **Finding approximate solutions**

    The tolerance ``tol`` defaults to 3/4 of the working precision.
    Lowering the tolerance is useful for finding approximate matches.
    We can for example try to generate approximations for pi::

        >>> mp.dps = 15
        >>> identify(pi, tol=1e-2)
        '(22/7)'
        >>> identify(pi, tol=1e-3)
        '(355/113)'
        >>> identify(pi, tol=1e-10)
        '(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))'

    With ``full=True``, and by supplying a few base constants,
    ``identify`` can generate almost endless lists of approximations
    for any number (the output below has been truncated to show only
    the first few)::

        >>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True):
        ...     print(p)
        ...  # doctest: +ELLIPSIS
        e/log((6 + (-4/3)*e))
        (3**3*5*e*catalan**2)/(2*7**2)
        sqrt(((-13) + 1*e + 22*catalan))
        log(((-6) + 24*e + 4*catalan)/e)
        exp(catalan*((-1/5) + (8/15)*e))
        catalan*(6 + (-6)*e + 15*catalan)
        sqrt((5 + 26*e + (-3)*catalan))/e
        e*sqrt(((-27) + 2*e + 25*catalan))
        log(((-1) + (-11)*e + 59*catalan))
        ((3/20) + (21/20)*e + (3/20)*catalan)
        ...

    The numerical values are roughly as close to `\pi` as permitted by the
    specified tolerance:

        >>> e/log(6-4*e/3)
        3.14157719846001
        >>> 135*e*catalan**2/98
        3.14166950419369
        >>> sqrt(e-13+22*catalan)
        3.14158000062992
        >>> log(24*e-6+4*catalan)-1
        3.14158791577159

    **Symbolic processing**

    The output formula can be evaluated as a Python expression.
    Note however that if fractions (like '2/3') are present in
    the formula, Python's :func:`~mpmath.eval()` may erroneously perform
    integer division. Note also that the output is not necessarily
    in the algebraically simplest form::

        >>> identify(sqrt(2))
        '(sqrt(8)/2)'

    As a solution to both problems, consider using SymPy's
    :func:`~mpmath.sympify` to convert the formula into a symbolic expression.
    SymPy can be used to pretty-print or further simplify the formula
    symbolically::

        >>> from sympy import sympify # doctest: +SKIP
        >>> sympify(identify(sqrt(2))) # doctest: +SKIP
        2**(1/2)

    Sometimes :func:`~mpmath.identify` can simplify an expression further than
    a symbolic algorithm::

        >>> from sympy import simplify # doctest: +SKIP
        >>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP
        >>> x # doctest: +SKIP
        (3/2 - 5**(1/2)/2)**(-1/2)
        >>> x = simplify(x) # doctest: +SKIP
        >>> x # doctest: +SKIP
        2/(6 - 2*5**(1/2))**(1/2)
        >>> mp.dps = 30 # doctest: +SKIP
        >>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP
        >>> x # doctest: +SKIP
        1/2 + 5**(1/2)/2

    (In fact, this functionality is available directly in SymPy as the
    function :func:`~mpmath.nsimplify`, which is essentially a wrapper for
    :func:`~mpmath.identify`.)

    **Miscellaneous issues and limitations**

    The input `x` must be a real number. All base constants must be
    positive real numbers and must not be rationals or rational linear
    combinations of each other.

    The worst-case computation time grows quickly with the number of
    base constants. Already with 3 or 4 base constants,
    :func:`~mpmath.identify` may require several seconds to finish. To search
    for relations among a large number of constants, you should
    consider using :func:`~mpmath.pslq` directly.

    The extended transformations are applied to x, not the constants
    separately. As a result, ``identify`` will for example be able to
    recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but
    not ``2*exp(pi)+3``. It will be able to recognize the latter if
    ``exp(pi)`` is given explicitly as a base constant.

    """

    solutions = []

    def addsolution(s):
        if verbose: print("Found: ", s)
        solutions.append(s)

    x = ctx.mpf(x)

    # Further along, x will be assumed positive
    if x == 0:
        if full: return ['0']
        else:    return '0'
    if x < 0:
        sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose)
        if sol is None:
            return sol
        if full:
            return ["-(%s)"%s for s in sol]
        else:
            return "-(%s)" % sol

    if tol:
        tol = ctx.mpf(tol)
    else:
        tol = ctx.eps**0.7
    M = maxcoeff

    if constants:
        if isinstance(constants, dict):
            constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())]
        else:
            namespace = dict((name, getattr(ctx,name)) for name in dir(ctx))
            constants = [(eval(p, namespace), p) for p in constants]
    else:
        constants = []

    # We always want to find at least rational terms
    if 1 not in [value for (name, value) in constants]:
        constants = [(ctx.mpf(1), '1')] + constants

    # PSLQ with simple algebraic and functional transformations
    for ft, ftn, red in transforms:
        for c, cn in constants:
            if red and cn == '1':
                continue
            t = ft(ctx,x,c)
            # Prevent exponential transforms from wreaking havoc
            if abs(t) > M**2 or abs(t) < tol:
                continue
            # Linear combination of base constants
            r = ctx.pslq([t] + [a[0] for a in constants], tol, M)
            s = None
            if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
                s = pslqstring(r, constants)
            # Quadratic algebraic numbers
            else:
                q = ctx.pslq([ctx.one, t, t**2], tol, M)
                if q is not None and len(q) == 3 and q[2]:
                    aa, bb, cc = q
                    if max(abs(aa),abs(bb),abs(cc)) <= M:
                        s = quadraticstring(ctx,t,aa,bb,cc)
            if s:
                if cn == '1' and ('/$c' in ftn):
                    s = ftn.replace('$y', s).replace('/$c', '')
                else:
                    s = ftn.replace('$y', s).replace('$c', cn)
                addsolution(s)
                if not full: return solutions[0]

            if verbose:
                print(".")

    # Check for a direct multiplicative formula
    if x != 1:
        # Allow fractional powers of fractions
        ilogs = [2,3,5,7]
        # Watch out for existing fractional powers of fractions
        logs = []
        for a, s in constants:
            if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs):
                logs.append((ctx.ln(a), s))
        logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs
        r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M)
        if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
            addsolution(prodstring(r, logs))
            if not full: return solutions[0]

    if full:
        return sorted(solutions, key=len)
    else:
        return None

IdentificationMethods.pslq = pslq
IdentificationMethods.findpoly = findpoly
IdentificationMethods.identify = identify


if __name__ == '__main__':
    import doctest
    doctest.testmod()