File size: 36,624 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
"""
This module implements computation of hypergeometric and related
functions. In particular, it provides code for generic summation
of hypergeometric series. Optimized versions for various special
cases are also provided.
"""

import operator
import math

from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_

from .libintmath import gcd

from .libmpf import (\
    ComplexResult, round_fast, round_nearest,
    negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int,
    from_rational,
    fzero, fone, fnone, ftwo, finf, fninf, fnan,
    mpf_sign, mpf_add, mpf_abs, mpf_pos,
    mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max,
    mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div,
    sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int,
    to_rational,
)

from .libelefun import (\
    mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin,
    mpf_sqrt, agm_fixed,
)

from .libmpc import (\
    mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow,
    mpc_div, mpc_add_mpf, mpc_sub_mpf,
    mpc_log, mpc_add, mpc_pos, mpc_shift,
    mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs,
    mpc_mpf_div, mpc_square, mpc_exp
)

from .libintmath import ifac
from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed

class NoConvergence(Exception):
    pass


#-----------------------------------------------------------------------#
#                                                                       #
#                     Generic hypergeometric series                     #
#                                                                       #
#-----------------------------------------------------------------------#

"""
TODO:

1. proper mpq parsing
2. imaginary z special-cased (also: rational, integer?)
3. more clever handling of series that don't converge because of stupid
   upwards rounding
4. checking for cancellation

"""

def make_hyp_summator(key):
    """
    Returns a function that sums a generalized hypergeometric series,
    for given parameter types (integer, rational, real, complex).

    """
    p, q, param_types, ztype = key

    pstring = "".join(param_types)
    fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype)
    #print "generating hypsum", fname

    have_complex_param = 'C' in param_types
    have_complex_arg = ztype == 'C'
    have_complex = have_complex_param or have_complex_arg

    source = []
    add = source.append

    aint = []
    arat = []
    bint = []
    brat = []
    areal = []
    breal = []
    acomplex = []
    bcomplex = []

    #add("wp = prec + 40")
    add("MAX = kwargs.get('maxterms', wp*100)")
    add("HIGH = MPZ_ONE<<epsshift")
    add("LOW = -HIGH")

    # Setup code
    add("SRE = PRE = one = (MPZ_ONE << wp)")
    if have_complex:
        add("SIM = PIM = MPZ_ZERO")

    if have_complex_arg:
        add("xsign, xm, xe, xbc = z[0]")
        add("if xsign: xm = -xm")
        add("ysign, ym, ye, ybc = z[1]")
        add("if ysign: ym = -ym")
    else:
        add("xsign, xm, xe, xbc = z")
        add("if xsign: xm = -xm")

    add("offset = xe + wp")
    add("if offset >= 0:")
    add("    ZRE = xm << offset")
    add("else:")
    add("    ZRE = xm >> (-offset)")
    if have_complex_arg:
        add("offset = ye + wp")
        add("if offset >= 0:")
        add("    ZIM = ym << offset")
        add("else:")
        add("    ZIM = ym >> (-offset)")

    for i, flag in enumerate(param_types):
        W = ["A", "B"][i >= p]
        if flag == 'Z':
            ([aint,bint][i >= p]).append(i)
            add("%sINT_%i = coeffs[%i]" % (W, i, i))
        elif flag == 'Q':
            ([arat,brat][i >= p]).append(i)
            add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i))
        elif flag == 'R':
            ([areal,breal][i >= p]).append(i)
            add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i)
            add("if xsign: xm = -xm")
            add("offset = xe + wp")
            add("if offset >= 0:")
            add("    %sREAL_%i = xm << offset" % (W, i))
            add("else:")
            add("    %sREAL_%i = xm >> (-offset)" % (W, i))
        elif flag == 'C':
            ([acomplex,bcomplex][i >= p]).append(i)
            add("__re, __im = coeffs[%i]._mpc_" % i)
            add("xsign, xm, xe, xbc = __re")
            add("if xsign: xm = -xm")
            add("ysign, ym, ye, ybc = __im")
            add("if ysign: ym = -ym")

            add("offset = xe + wp")
            add("if offset >= 0:")
            add("    %sCRE_%i = xm << offset" % (W, i))
            add("else:")
            add("    %sCRE_%i = xm >> (-offset)" % (W, i))
            add("offset = ye + wp")
            add("if offset >= 0:")
            add("    %sCIM_%i = ym << offset" % (W, i))
            add("else:")
            add("    %sCIM_%i = ym >> (-offset)" % (W, i))
        else:
            raise ValueError

    l_areal = len(areal)
    l_breal = len(breal)
    cancellable_real = min(l_areal, l_breal)
    noncancellable_real_num = areal[cancellable_real:]
    noncancellable_real_den = breal[cancellable_real:]

    # LOOP
    add("for n in xrange(1,10**8):")

    add("    if n in magnitude_check:")
    add("        p_mag = bitcount(abs(PRE))")
    if have_complex:
        add("        p_mag = max(p_mag, bitcount(abs(PIM)))")
    add("        magnitude_check[n] = wp-p_mag")

    # Real factors
    multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \
                            ["AP_#".replace("#", str(i)) for i in arat] + \
                            ["BQ_#".replace("#", str(i)) for i in brat])

    divisor    = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \
                            ["BP_#".replace("#", str(i)) for i in brat] + \
                            ["AQ_#".replace("#", str(i)) for i in arat] + ["n"])

    if multiplier:
        add("    mul = " + multiplier)
    add("    div = " + divisor)

    # Check for singular terms
    add("    if not div:")
    if multiplier:
        add("        if not mul:")
        add("            break")
    add("        raise ZeroDivisionError")

    # Update product
    if have_complex:

        # TODO: when there are several real parameters and just a few complex
        # (maybe just the complex argument), we only need to do about
        # half as many ops if we accumulate the real factor in a single real variable
        for k in range(cancellable_real): add("    PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
        for i in noncancellable_real_num: add("    PRE = (PRE * AREAL_#) >> wp".replace("#", str(i)))
        for i in noncancellable_real_den: add("    PRE = (PRE << wp) // BREAL_#".replace("#", str(i)))
        for k in range(cancellable_real): add("    PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
        for i in noncancellable_real_num: add("    PIM = (PIM * AREAL_#) >> wp".replace("#", str(i)))
        for i in noncancellable_real_den: add("    PIM = (PIM << wp) // BREAL_#".replace("#", str(i)))

        if multiplier:
            if have_complex_arg:
                add("    PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div")
                add("    PRE >>= wp")
                add("    PIM >>= wp")
            else:
                add("    PRE = ((mul * PRE * ZRE) >> wp) // div")
                add("    PIM = ((mul * PIM * ZRE) >> wp) // div")
        else:
            if have_complex_arg:
                add("    PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div")
                add("    PRE >>= wp")
                add("    PIM >>= wp")
            else:
                add("    PRE = ((PRE * ZRE) >> wp) // div")
                add("    PIM = ((PIM * ZRE) >> wp) // div")

        for i in acomplex:
            add("    PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i)))
            add("    PRE >>= wp")
            add("    PIM >>= wp")

        for i in bcomplex:
            add("    mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i)))
            add("    re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i)))
            add("    im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i)))
            add("    PRE = (re << wp) // mag".replace("#", str(i)))
            add("    PIM = (im << wp) // mag".replace("#", str(i)))

    else:
        for k in range(cancellable_real): add("    PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
        for i in noncancellable_real_num: add("    PRE = (PRE * AREAL_#) >> wp".replace("#", str(i)))
        for i in noncancellable_real_den: add("    PRE = (PRE << wp) // BREAL_#".replace("#", str(i)))
        if multiplier:
            add("    PRE = ((PRE * mul * ZRE) >> wp) // div")
        else:
            add("    PRE = ((PRE * ZRE) >> wp) // div")

    # Add product to sum
    if have_complex:
        add("    SRE += PRE")
        add("    SIM += PIM")
        add("    if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):")
        add("        break")
    else:
        add("    SRE += PRE")
        add("    if HIGH > PRE > LOW:")
        add("        break")

    #add("    from mpmath import nprint, log, ldexp")
    #add("    nprint([n, log(abs(PRE),2), ldexp(PRE,-wp)])")

    add("    if n > MAX:")
    add("        raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')")

    # +1 all parameters for next loop
    for i in aint:     add("    AINT_# += 1".replace("#", str(i)))
    for i in bint:     add("    BINT_# += 1".replace("#", str(i)))
    for i in arat:     add("    AP_# += AQ_#".replace("#", str(i)))
    for i in brat:     add("    BP_# += BQ_#".replace("#", str(i)))
    for i in areal:    add("    AREAL_# += one".replace("#", str(i)))
    for i in breal:    add("    BREAL_# += one".replace("#", str(i)))
    for i in acomplex: add("    ACRE_# += one".replace("#", str(i)))
    for i in bcomplex: add("    BCRE_# += one".replace("#", str(i)))

    if have_complex:
        add("a = from_man_exp(SRE, -wp, prec, 'n')")
        add("b = from_man_exp(SIM, -wp, prec, 'n')")

        add("if SRE:")
        add("    if SIM:")
        add("        magn = max(a[2]+a[3], b[2]+b[3])")
        add("    else:")
        add("        magn = a[2]+a[3]")
        add("elif SIM:")
        add("    magn = b[2]+b[3]")
        add("else:")
        add("    magn = -wp+1")

        add("return (a, b), True, magn")
    else:
        add("a = from_man_exp(SRE, -wp, prec, 'n')")

        add("if SRE:")
        add("    magn = a[2]+a[3]")
        add("else:")
        add("    magn = -wp+1")

        add("return a, False, magn")

    source = "\n".join(("    " + line) for line in source)
    source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source

    namespace = {}

    exec_(source, globals(), namespace)

    #print source
    return source, namespace[fname]


if BACKEND == 'sage':

    def make_hyp_summator(key):
        """
        Returns a function that sums a generalized hypergeometric series,
        for given parameter types (integer, rational, real, complex).
        """
        from sage.libs.mpmath.ext_main import hypsum_internal
        p, q, param_types, ztype = key
        def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):
            return hypsum_internal(p, q, param_types, ztype, coeffs, z,
                prec, wp, epsshift, magnitude_check, kwargs)

        return "(none)", _hypsum


#-----------------------------------------------------------------------#
#                                                                       #
#                              Error functions                          #
#                                                                       #
#-----------------------------------------------------------------------#

# TODO: mpf_erf should call mpf_erfc when appropriate (currently
#    only the converse delegation is implemented)

def mpf_erf(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return fone
        if x== fninf: return fnone
        return fnan
    size = exp + bc
    lg = math.log
    # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits
    if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2):
        if sign:
            return mpf_perturb(fnone, 0, prec, rnd)
        else:
            return mpf_perturb(fone, 1, prec, rnd)
    # erf(x) ~ 2*x/sqrt(pi) close to 0
    if size < -prec:
        # 2*x
        x = mpf_shift(x,1)
        c = mpf_sqrt(mpf_pi(prec+20), prec+20)
        # TODO: interval rounding
        return mpf_div(x, c, prec, rnd)
    wp = prec + abs(size) + 25
    # Taylor series for erf, fixed-point summation
    t = abs(to_fixed(x, wp))
    t2 = (t*t) >> wp
    s, term, k = t, 12345, 1
    while term:
        t = ((t * t2) >> wp) // k
        term = t // (2*k+1)
        if k & 1:
            s -= term
        else:
            s += term
        k += 1
    s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp)
    if sign:
        s = -s
    return from_man_exp(s, -wp, prec, rnd)

# If possible, we use the asymptotic series for erfc.
# This is an alternating divergent asymptotic series, so
# the error is at most equal to the first omitted term.
# Here we check if the smallest term is small enough
# for a given x and precision
def erfc_check_series(x, prec):
    n = to_int(x)
    if n**2 * 1.44 > prec:
        return True
    return False

def mpf_erfc(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fone
        if x == finf: return fzero
        if x == fninf: return ftwo
        return fnan
    wp = prec + 20
    mag = bc+exp
    # Preserve full accuracy when exponent grows huge
    wp += max(0, 2*mag)
    regular_erf = sign or mag < 2
    if regular_erf or not erfc_check_series(x, wp):
        if regular_erf:
            return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd)
        # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation
        n = to_int(x)+1
        return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd)
    s = term = MPZ_ONE << wp
    term_prev = 0
    t = (2 * to_fixed(x, wp) ** 2) >> wp
    k = 1
    while 1:
        term = ((term * (2*k - 1)) << wp) // t
        if k > 4 and term > term_prev or not term:
            break
        if k & 1:
            s -= term
        else:
            s += term
        term_prev = term
        #print k, to_str(from_man_exp(term, -wp, 50), 10)
        k += 1
    s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp)
    s = from_man_exp(s, -wp, wp)
    z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp)
    y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd)
    return y


#-----------------------------------------------------------------------#
#                                                                       #
#                         Exponential integrals                         #
#                                                                       #
#-----------------------------------------------------------------------#

def ei_taylor(x, prec):
    s = t = x
    k = 2
    while t:
        t = ((t*x) >> prec) // k
        s += t // k
        k += 1
    return s

def complex_ei_taylor(zre, zim, prec):
    _abs = abs
    sre = tre = zre
    sim = tim = zim
    k = 2
    while _abs(tre) + _abs(tim) > 5:
        tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec
        sre += tre // k
        sim += tim // k
        k += 1
    return sre, sim

def ei_asymptotic(x, prec):
    one = MPZ_ONE << prec
    x = t = ((one << prec) // x)
    s = one + x
    k = 2
    while t:
        t = (k*t*x) >> prec
        s += t
        k += 1
    return s

def complex_ei_asymptotic(zre, zim, prec):
    _abs = abs
    one = MPZ_ONE << prec
    M = (zim*zim + zre*zre) >> prec
    # 1 / z
    xre = tre = (zre << prec) // M
    xim = tim = ((-zim) << prec) // M
    sre = one + xre
    sim = xim
    k = 2
    while _abs(tre) + _abs(tim) > 1000:
        #print tre, tim
        tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec
        sre += tre
        sim += tim
        k += 1
        if k > prec:
            raise NoConvergence
    return sre, sim

def mpf_ei(x, prec, rnd=round_fast, e1=False):
    if e1:
        x = mpf_neg(x)
    sign, man, exp, bc = x
    if e1 and not sign:
        if x == fzero:
            return finf
        raise ComplexResult("E1(x) for x < 0")
    if man:
        xabs = 0, man, exp, bc
        xmag = exp+bc
        wp = prec + 20
        can_use_asymp = xmag > wp
        if not can_use_asymp:
            if exp >= 0:
                xabsint = man << exp
            else:
                xabsint = man >> (-exp)
            can_use_asymp = xabsint > int(wp*0.693) + 10
        if can_use_asymp:
            if xmag > wp:
                v = fone
            else:
                v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp)
            v = mpf_mul(v, mpf_exp(x, wp), wp)
            v = mpf_div(v, x, prec, rnd)
        else:
            wp += 2*int(to_int(xabs))
            u = to_fixed(x, wp)
            v = ei_taylor(u, wp) + euler_fixed(wp)
            t1 = from_man_exp(v,-wp)
            t2 = mpf_log(xabs,wp)
            v = mpf_add(t1, t2, prec, rnd)
    else:
        if x == fzero: v = fninf
        elif x == finf: v = finf
        elif x == fninf: v = fzero
        else: v = fnan
    if e1:
        v = mpf_neg(v)
    return v

def mpc_ei(z, prec, rnd=round_fast, e1=False):
    if e1:
        z = mpc_neg(z)
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero:
        if e1:
            x = mpf_neg(mpf_ei(a, prec, rnd))
            if not asign:
                y = mpf_neg(mpf_pi(prec, rnd))
            else:
                y = fzero
            return x, y
        else:
            return mpf_ei(a, prec, rnd), fzero
    if a != fzero:
        if not aman or not bman:
            return (fnan, fnan)
    wp = prec + 40
    amag = aexp+abc
    bmag = bexp+bbc
    zmag = max(amag, bmag)
    can_use_asymp = zmag > wp
    if not can_use_asymp:
        zabsint = abs(to_int(a)) + abs(to_int(b))
        can_use_asymp = zabsint > int(wp*0.693) + 20
    try:
        if can_use_asymp:
            if zmag > wp:
                v = fone, fzero
            else:
                zre = to_fixed(a, wp)
                zim = to_fixed(b, wp)
                vre, vim = complex_ei_asymptotic(zre, zim, wp)
                v = from_man_exp(vre, -wp), from_man_exp(vim, -wp)
            v = mpc_mul(v, mpc_exp(z, wp), wp)
            v = mpc_div(v, z, wp)
            if e1:
                v = mpc_neg(v, prec, rnd)
            else:
                x, y = v
                if bsign:
                    v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd)
                else:
                    v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd)
            return v
    except NoConvergence:
        pass
    #wp += 2*max(0,zmag)
    wp += 2*int(to_int(mpc_abs(z, 5)))
    zre = to_fixed(a, wp)
    zim = to_fixed(b, wp)
    vre, vim = complex_ei_taylor(zre, zim, wp)
    vre += euler_fixed(wp)
    v = from_man_exp(vre,-wp), from_man_exp(vim,-wp)
    if e1:
        u = mpc_log(mpc_neg(z),wp)
    else:
        u = mpc_log(z,wp)
    v = mpc_add(v, u, prec, rnd)
    if e1:
        v = mpc_neg(v)
    return v

def mpf_e1(x, prec, rnd=round_fast):
    return mpf_ei(x, prec, rnd, True)

def mpc_e1(x, prec, rnd=round_fast):
    return mpc_ei(x, prec, rnd, True)

def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf, None
                return mpf_gamma_int(n, prec, rnd), None
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n-1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1-n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2*nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3*wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi-n), 2*wp)
            siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100)
            tol = -wp-10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp)
            m = n
            t = r*m
            s = MPZ_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m*r*t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3*wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n-1)
            for k in range(1,n-1):
                facs[k] = facs[k-1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n-1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t*r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(ifac(n-1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-ifac(n-1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
            if n_orig & 1:
                im = mpf_neg(im)
        else:
            im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd)
        return re, im
    else:
        return re, None

def mpf_ci_si_taylor(x, wp, which=0):
    """
    0 - Ci(x) - (euler+log(x))
    1 - Si(x)
    """
    x = to_fixed(x, wp)
    x2 = -(x*x) >> wp
    if which == 0:
        s, t, k = 0, (MPZ_ONE<<wp), 2
    else:
        s, t, k = x, x, 3
    while t:
        t = (t*x2//(k*(k-1)))>>wp
        s += t//k
        k += 2
    return from_man_exp(s, -wp)

def mpc_ci_si_taylor(re, im, wp, which=0):
    # The following code is only designed for small arguments,
    # and not too small arguments (for relative accuracy)
    if re[1]:
        mag = re[2]+re[3]
    elif im[1]:
        mag = im[2]+im[3]
    if im[1]:
        mag = max(mag, im[2]+im[3])
    if mag > 2 or mag < -wp:
        raise NotImplementedError
    wp += (2-mag)
    zre = to_fixed(re, wp)
    zim = to_fixed(im, wp)
    z2re = (zim*zim-zre*zre)>>wp
    z2im = (-2*zre*zim)>>wp
    tre = zre
    tim = zim
    one = MPZ_ONE<<wp
    if which == 0:
        sre, sim, tre, tim, k = 0, 0, (MPZ_ONE<<wp), 0, 2
    else:
        sre, sim, tre, tim, k = zre, zim, zre, zim, 3
    while max(abs(tre), abs(tim)) > 2:
        f = k*(k-1)
        tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp
        sre += tre//k
        sim += tim//k
        k += 2
    return from_man_exp(sre, -wp), from_man_exp(sim, -wp)

def mpf_ci_si(x, prec, rnd=round_fast, which=2):
    """
    Calculation of Ci(x), Si(x) for real x.

    which = 0 -- returns (Ci(x), -)
    which = 1 -- returns (Si(x), -)
    which = 2 -- returns (Ci(x), Si(x))

    Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
    """
    wp = prec + 20
    sign, man, exp, bc = x
    ci, si = None, None
    if not man:
        if x == fzero:
            return (fninf, fzero)
        if x == fnan:
            return (x, x)
        ci = fzero
        if which != 0:
            if x == finf:
                si = mpf_shift(mpf_pi(prec, rnd), -1)
            if x == fninf:
                si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return (ci, si)
    # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
    mag = exp+bc
    if mag < -wp:
        if which != 0:
            si = mpf_perturb(x, 1-sign, prec, rnd)
        if which != 1:
            y = mpf_euler(wp)
            xabs = mpf_abs(x)
            ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
        return ci, si
    # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
    elif mag > wp:
        if which != 0:
            if sign:
                si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
            else:
                si = mpf_pi(prec, rnd)
            si = mpf_shift(si, -1)
        if which != 1:
            ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
        return ci, si
    else:
        wp += abs(mag)
    # Use an asymptotic series? The smallest value of n!/x^n
    # occurs for n ~ x, where the magnitude is ~ exp(-x).
    asymptotic = mag-1 > math.log(wp, 2)
    # Case 1: convergent series near 0
    if not asymptotic:
        if which != 0:
            si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
        if which != 1:
            ci = mpf_ci_si_taylor(x, wp, 0)
            ci = mpf_add(ci, mpf_euler(wp), wp)
            ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
        return ci, si
    x = mpf_abs(x)
    # Case 2: asymptotic series for x >> 1
    xf = to_fixed(x, wp)
    xr = (MPZ_ONE<<(2*wp)) // xf   # 1/x
    s1 = (MPZ_ONE << wp)
    s2 = xr
    t = xr
    k = 2
    while t:
        t = -t
        t = (t*xr*k)>>wp
        k += 1
        s1 += t
        t = (t*xr*k)>>wp
        k += 1
        s2 += t
    s1 = from_man_exp(s1, -wp)
    s2 = from_man_exp(s2, -wp)
    s1 = mpf_div(s1, x, wp)
    s2 = mpf_div(s2, x, wp)
    cos, sin = mpf_cos_sin(x, wp)
    # Ci(x) = sin(x)*s1-cos(x)*s2
    # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
    if which != 0:
        si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
        si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
        if sign:
            si = mpf_neg(si)
        si = mpf_pos(si, prec, rnd)
    if which != 1:
        ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
    return ci, si

def mpf_ci(x, prec, rnd=round_fast):
    if mpf_sign(x) < 0:
        raise ComplexResult
    return mpf_ci_si(x, prec, rnd, 0)[0]

def mpf_si(x, prec, rnd=round_fast):
    return mpf_ci_si(x, prec, rnd, 1)[1]

def mpc_ci(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        ci = mpf_ci_si(re, prec, rnd, 0)[0]
        if mpf_sign(re) < 0:
            return (ci, mpf_pi(prec, rnd))
        return (ci, fzero)
    wp = prec + 20
    cre, cim = mpc_ci_si_taylor(re, im, wp, 0)
    cre = mpf_add(cre, mpf_euler(wp), wp)
    ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd)
    return ci

def mpc_si(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        return (mpf_ci_si(re, prec, rnd, 1)[1], fzero)
    wp = prec + 20
    z = mpc_ci_si_taylor(re, im, wp, 1)
    return mpc_pos(z, prec, rnd)


#-----------------------------------------------------------------------#
#                                                                       #
#                             Bessel functions                          #
#                                                                       #
#-----------------------------------------------------------------------#

# A Bessel function of the first kind of integer order, J_n(x), is
# given by the power series

#             oo
#             ___         k         2 k + n
#            \        (-1)     / x \
#    J_n(x) = )    ----------- | - |
#            /___  k! (k + n)! \ 2 /
#            k = 0

# Simplifying the quotient between two successive terms gives the
# ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision
# multiplication and one division by a small integer per term.
# The complex version is very similar, the only difference being
# that the multiplication is actually 4 multiplies.

# In the general case, we have
# J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2)

# TODO: for extremely large x, we could use an asymptotic
# trigonometric approximation.

# TODO: recompute at higher precision if the fixed-point mantissa
# is very small

def mpf_besseljn(n, x, prec, rounding=round_fast):
    prec += 50
    negate = n < 0 and n & 1
    mag = x[2]+x[3]
    n = abs(n)
    wp = prec + 20 + n*bitcount(n)
    if mag < 0:
        wp -= n * mag
    x = to_fixed(x, wp)
    x2 = (x**2) >> wp
    if not n:
        s = t = MPZ_ONE << wp
    else:
        s = t = (x**n // ifac(n)) >> ((n-1)*wp + n)
    k = 1
    while t:
        t = ((t * x2) // (-4*k*(k+n))) >> wp
        s += t
        k += 1
    if negate:
        s = -s
    return from_man_exp(s, -wp, prec, rounding)

def mpc_besseljn(n, z, prec, rounding=round_fast):
    negate = n < 0 and n & 1
    n = abs(n)
    origprec = prec
    zre, zim = z
    mag = max(zre[2]+zre[3], zim[2]+zim[3])
    prec += 20 + n*bitcount(n) + abs(mag)
    if mag < 0:
        prec -= n * mag
    zre = to_fixed(zre, prec)
    zim = to_fixed(zim, prec)
    z2re = (zre**2 - zim**2) >> prec
    z2im = (zre*zim) >> (prec-1)
    if not n:
        sre = tre = MPZ_ONE << prec
        sim = tim = MPZ_ZERO
    else:
        re, im = complex_int_pow(zre, zim, n)
        sre = tre = (re // ifac(n)) >> ((n-1)*prec + n)
        sim = tim = (im // ifac(n)) >> ((n-1)*prec + n)
    k = 1
    while abs(tre) + abs(tim) > 3:
        p = -4*k*(k+n)
        tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im
        tre = (tre // p) >> prec
        tim = (tim // p) >> prec
        sre += tre
        sim += tim
        k += 1
    if negate:
        sre = -sre
        sim = -sim
    re = from_man_exp(sre, -prec, origprec, rounding)
    im = from_man_exp(sim, -prec, origprec, rounding)
    return (re, im)

def mpf_agm(a, b, prec, rnd=round_fast):
    """
    Computes the arithmetic-geometric mean agm(a,b) for
    nonnegative mpf values a, b.
    """
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if asign or bsign:
        raise ComplexResult("agm of a negative number")
    # Handle inf, nan or zero in either operand
    if not (aman and bman):
        if a == fnan or b == fnan:
            return fnan
        if a == finf:
            if b == fzero:
                return fnan
            return finf
        if b == finf:
            if a == fzero:
                return fnan
            return finf
        # agm(0,x) = agm(x,0) = 0
        return fzero
    wp = prec + 20
    amag = aexp+abc
    bmag = bexp+bbc
    mag_delta = amag - bmag
    # Reduce to roughly the same magnitude using floating-point AGM
    abs_mag_delta = abs(mag_delta)
    if abs_mag_delta > 10:
        while abs_mag_delta > 10:
            a, b = mpf_shift(mpf_add(a,b,wp),-1), \
                mpf_sqrt(mpf_mul(a,b,wp),wp)
            abs_mag_delta //= 2
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        amag = aexp+abc
        bmag = bexp+bbc
        mag_delta = amag - bmag
    #print to_float(a), to_float(b)
    # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1
    min_mag = min(amag,bmag)
    max_mag = max(amag,bmag)
    n = 0
    # If too small, we lose precision when going to fixed-point
    if min_mag < -8:
        n = -min_mag
    # If too large, we waste time using fixed-point with large numbers
    elif max_mag > 20:
        n = -max_mag
    if n:
        a = mpf_shift(a, n)
        b = mpf_shift(b, n)
    #print to_float(a), to_float(b)
    af = to_fixed(a, wp)
    bf = to_fixed(b, wp)
    g = agm_fixed(af, bf, wp)
    return from_man_exp(g, -wp-n, prec, rnd)

def mpf_agm1(a, prec, rnd=round_fast):
    """
    Computes the arithmetic-geometric mean agm(1,a) for a nonnegative
    mpf value a.
    """
    return mpf_agm(fone, a, prec, rnd)

def mpc_agm(a, b, prec, rnd=round_fast):
    """
    Complex AGM.

    TODO:
    * check that convergence works as intended
    * optimize
    * select a nonarbitrary branch
    """
    if mpc_is_infnan(a) or mpc_is_infnan(b):
        return fnan, fnan
    if mpc_zero in (a, b):
        return fzero, fzero
    if mpc_neg(a) == b:
        return fzero, fzero
    wp = prec+20
    eps = mpf_shift(fone, -wp+10)
    while 1:
        a1 = mpc_shift(mpc_add(a, b, wp), -1)
        b1 = mpc_sqrt(mpc_mul(a, b, wp), wp)
        a, b = a1, b1
        size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1]
        err = mpc_abs(mpc_sub(a, b, 10), 10)
        if size == fzero or mpf_lt(err, mpf_mul(eps, size)):
            return a

def mpc_agm1(a, prec, rnd=round_fast):
    return mpc_agm(mpc_one, a, prec, rnd)

def mpf_ellipk(x, prec, rnd=round_fast):
    if not x[1]:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return fzero
        if x == fnan:
            return x
    if x == fone:
        return finf
    # TODO: for |x| << 1/2, one could use fall back to
    # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x)
    wp = prec + 15
    # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x)
    # The sqrt raises ComplexResult if x > 0
    a = mpf_sqrt(mpf_sub(fone, x, wp), wp)
    v = mpf_agm1(a, wp)
    r = mpf_div(mpf_pi(wp), v, prec, rnd)
    return mpf_shift(r, -1)

def mpc_ellipk(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        if re == finf:
            return mpc_zero
        if mpf_le(re, fone):
            return mpf_ellipk(re, prec, rnd), fzero
    wp = prec + 15
    a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp)
    v = mpc_agm1(a, wp)
    r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd)
    return mpc_shift(r, -1)

def mpf_ellipe(x, prec, rnd=round_fast):
    # http://functions.wolfram.com/EllipticIntegrals/
    # EllipticK/20/01/0001/
    # E = (1-m)*(K'(m)*2*m + K(m))
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return finf
        if x == fnan:
            return x
        if x == finf:
            raise ComplexResult
    if x == fone:
        return fone
    wp = prec+20
    mag = exp+bc
    if mag < -wp:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    # Compute a finite difference for K'
    p = max(mag, 0) - wp
    h = mpf_shift(fone, p)
    K = mpf_ellipk(x, 2*wp)
    Kh = mpf_ellipk(mpf_sub(x, h), 2*wp)
    Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
    t = mpf_sub(fone, x)
    b = mpf_mul(Kdiff, mpf_shift(x,1), wp)
    return mpf_mul(t, mpf_add(K, b), prec, rnd)

def mpc_ellipe(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        if re == finf:
            return (fzero, finf)
        if mpf_le(re, fone):
            return mpf_ellipe(re, prec, rnd), fzero
    wp = prec + 15
    mag = mpc_abs(z, 1)
    p = max(mag[2]+mag[3], 0) - wp
    h = mpf_shift(fone, p)
    K = mpc_ellipk(z, 2*wp)
    Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp)
    Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p)
    t = mpc_sub(mpc_one, z, wp)
    b = mpc_mul(Kdiff, mpc_shift(z,1), wp)
    return mpc_mul(t, mpc_add(K, b, wp), prec, rnd)