File size: 6,075 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""Bridge-finding algorithms."""
from itertools import chain

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = ["bridges", "has_bridges", "local_bridges"]


@not_implemented_for("directed")
@nx._dispatch
def bridges(G, root=None):
    """Generate all bridges in a graph.

    A *bridge* in a graph is an edge whose removal causes the number of
    connected components of the graph to increase.  Equivalently, a bridge is an
    edge that does not belong to any cycle. Bridges are also known as cut-edges,
    isthmuses, or cut arcs.

    Parameters
    ----------
    G : undirected graph

    root : node (optional)
       A node in the graph `G`. If specified, only the bridges in the
       connected component containing this node will be returned.

    Yields
    ------
    e : edge
       An edge in the graph whose removal disconnects the graph (or
       causes the number of connected components to increase).

    Raises
    ------
    NodeNotFound
       If `root` is not in the graph `G`.

    NetworkXNotImplemented
        If `G` is a directed graph.

    Examples
    --------
    The barbell graph with parameter zero has a single bridge:

    >>> G = nx.barbell_graph(10, 0)
    >>> list(nx.bridges(G))
    [(9, 10)]

    Notes
    -----
    This is an implementation of the algorithm described in [1]_.  An edge is a
    bridge if and only if it is not contained in any chain. Chains are found
    using the :func:`networkx.chain_decomposition` function.

    The algorithm described in [1]_ requires a simple graph. If the provided
    graph is a multigraph, we convert it to a simple graph and verify that any
    bridges discovered by the chain decomposition algorithm are not multi-edges.

    Ignoring polylogarithmic factors, the worst-case time complexity is the
    same as the :func:`networkx.chain_decomposition` function,
    $O(m + n)$, where $n$ is the number of nodes in the graph and $m$ is
    the number of edges.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29#Bridge-Finding_with_Chain_Decompositions
    """
    multigraph = G.is_multigraph()
    H = nx.Graph(G) if multigraph else G
    chains = nx.chain_decomposition(H, root=root)
    chain_edges = set(chain.from_iterable(chains))
    H_copy = H.copy()
    if root is not None:
        H = H.subgraph(nx.node_connected_component(H, root)).copy()
    for u, v in H.edges():
        if (u, v) not in chain_edges and (v, u) not in chain_edges:
            if multigraph and len(G[u][v]) > 1:
                continue
            yield u, v


@not_implemented_for("directed")
@nx._dispatch
def has_bridges(G, root=None):
    """Decide whether a graph has any bridges.

    A *bridge* in a graph is an edge whose removal causes the number of
    connected components of the graph to increase.

    Parameters
    ----------
    G : undirected graph

    root : node (optional)
       A node in the graph `G`. If specified, only the bridges in the
       connected component containing this node will be considered.

    Returns
    -------
    bool
       Whether the graph (or the connected component containing `root`)
       has any bridges.

    Raises
    ------
    NodeNotFound
       If `root` is not in the graph `G`.

    NetworkXNotImplemented
        If `G` is a directed graph.

    Examples
    --------
    The barbell graph with parameter zero has a single bridge::

        >>> G = nx.barbell_graph(10, 0)
        >>> nx.has_bridges(G)
        True

    On the other hand, the cycle graph has no bridges::

        >>> G = nx.cycle_graph(5)
        >>> nx.has_bridges(G)
        False

    Notes
    -----
    This implementation uses the :func:`networkx.bridges` function, so
    it shares its worst-case time complexity, $O(m + n)$, ignoring
    polylogarithmic factors, where $n$ is the number of nodes in the
    graph and $m$ is the number of edges.

    """
    try:
        next(bridges(G, root=root))
    except StopIteration:
        return False
    else:
        return True


@not_implemented_for("multigraph")
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def local_bridges(G, with_span=True, weight=None):
    """Iterate over local bridges of `G` optionally computing the span

    A *local bridge* is an edge whose endpoints have no common neighbors.
    That is, the edge is not part of a triangle in the graph.

    The *span* of a *local bridge* is the shortest path length between
    the endpoints if the local bridge is removed.

    Parameters
    ----------
    G : undirected graph

    with_span : bool
        If True, yield a 3-tuple `(u, v, span)`

    weight : function, string or None (default: None)
        If function, used to compute edge weights for the span.
        If string, the edge data attribute used in calculating span.
        If None, all edges have weight 1.

    Yields
    ------
    e : edge
        The local bridges as an edge 2-tuple of nodes `(u, v)` or
        as a 3-tuple `(u, v, span)` when `with_span is True`.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is a directed graph or multigraph.

    Examples
    --------
    A cycle graph has every edge a local bridge with span N-1.

       >>> G = nx.cycle_graph(9)
       >>> (0, 8, 8) in set(nx.local_bridges(G))
       True
    """
    if with_span is not True:
        for u, v in G.edges:
            if not (set(G[u]) & set(G[v])):
                yield u, v
    else:
        wt = nx.weighted._weight_function(G, weight)
        for u, v in G.edges:
            if not (set(G[u]) & set(G[v])):
                enodes = {u, v}

                def hide_edge(n, nbr, d):
                    if n not in enodes or nbr not in enodes:
                        return wt(n, nbr, d)
                    return None

                try:
                    span = nx.shortest_path_length(G, u, v, weight=hide_edge)
                    yield u, v, span
                except nx.NetworkXNoPath:
                    yield u, v, float("inf")