Spaces:
Running
Running
File size: 7,017 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""Functions for computing reaching centrality of a node or a graph."""
import networkx as nx
from networkx.utils import pairwise
__all__ = ["global_reaching_centrality", "local_reaching_centrality"]
def _average_weight(G, path, weight=None):
"""Returns the average weight of an edge in a weighted path.
Parameters
----------
G : graph
A networkx graph.
path: list
A list of vertices that define the path.
weight : None or string, optional (default=None)
If None, edge weights are ignored. Then the average weight of an edge
is assumed to be the multiplicative inverse of the length of the path.
Otherwise holds the name of the edge attribute used as weight.
"""
path_length = len(path) - 1
if path_length <= 0:
return 0
if weight is None:
return 1 / path_length
total_weight = sum(G.edges[i, j][weight] for i, j in pairwise(path))
return total_weight / path_length
@nx._dispatch(edge_attrs="weight")
def global_reaching_centrality(G, weight=None, normalized=True):
"""Returns the global reaching centrality of a directed graph.
The *global reaching centrality* of a weighted directed graph is the
average over all nodes of the difference between the local reaching
centrality of the node and the greatest local reaching centrality of
any node in the graph [1]_. For more information on the local
reaching centrality, see :func:`local_reaching_centrality`.
Informally, the local reaching centrality is the proportion of the
graph that is reachable from the neighbors of the node.
Parameters
----------
G : DiGraph
A networkx DiGraph.
weight : None or string, optional (default=None)
Attribute to use for edge weights. If ``None``, each edge weight
is assumed to be one. A higher weight implies a stronger
connection between nodes and a *shorter* path length.
normalized : bool, optional (default=True)
Whether to normalize the edge weights by the total sum of edge
weights.
Returns
-------
h : float
The global reaching centrality of the graph.
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edge(1, 2)
>>> G.add_edge(1, 3)
>>> nx.global_reaching_centrality(G)
1.0
>>> G.add_edge(3, 2)
>>> nx.global_reaching_centrality(G)
0.75
See also
--------
local_reaching_centrality
References
----------
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
"Hierarchy Measure for Complex Networks."
*PLoS ONE* 7.3 (2012): e33799.
https://doi.org/10.1371/journal.pone.0033799
"""
if nx.is_negatively_weighted(G, weight=weight):
raise nx.NetworkXError("edge weights must be positive")
total_weight = G.size(weight=weight)
if total_weight <= 0:
raise nx.NetworkXError("Size of G must be positive")
# If provided, weights must be interpreted as connection strength
# (so higher weights are more likely to be chosen). However, the
# shortest path algorithms in NetworkX assume the provided "weight"
# is actually a distance (so edges with higher weight are less
# likely to be chosen). Therefore we need to invert the weights when
# computing shortest paths.
#
# If weight is None, we leave it as-is so that the shortest path
# algorithm can use a faster, unweighted algorithm.
if weight is not None:
def as_distance(u, v, d):
return total_weight / d.get(weight, 1)
shortest_paths = nx.shortest_path(G, weight=as_distance)
else:
shortest_paths = nx.shortest_path(G)
centrality = local_reaching_centrality
# TODO This can be trivially parallelized.
lrc = [
centrality(G, node, paths=paths, weight=weight, normalized=normalized)
for node, paths in shortest_paths.items()
]
max_lrc = max(lrc)
return sum(max_lrc - c for c in lrc) / (len(G) - 1)
@nx._dispatch(edge_attrs="weight")
def local_reaching_centrality(G, v, paths=None, weight=None, normalized=True):
"""Returns the local reaching centrality of a node in a directed
graph.
The *local reaching centrality* of a node in a directed graph is the
proportion of other nodes reachable from that node [1]_.
Parameters
----------
G : DiGraph
A NetworkX DiGraph.
v : node
A node in the directed graph `G`.
paths : dictionary (default=None)
If this is not `None` it must be a dictionary representation
of single-source shortest paths, as computed by, for example,
:func:`networkx.shortest_path` with source node `v`. Use this
keyword argument if you intend to invoke this function many
times but don't want the paths to be recomputed each time.
weight : None or string, optional (default=None)
Attribute to use for edge weights. If `None`, each edge weight
is assumed to be one. A higher weight implies a stronger
connection between nodes and a *shorter* path length.
normalized : bool, optional (default=True)
Whether to normalize the edge weights by the total sum of edge
weights.
Returns
-------
h : float
The local reaching centrality of the node ``v`` in the graph
``G``.
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2), (1, 3)])
>>> nx.local_reaching_centrality(G, 3)
0.0
>>> G.add_edge(3, 2)
>>> nx.local_reaching_centrality(G, 3)
0.5
See also
--------
global_reaching_centrality
References
----------
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
"Hierarchy Measure for Complex Networks."
*PLoS ONE* 7.3 (2012): e33799.
https://doi.org/10.1371/journal.pone.0033799
"""
if paths is None:
if nx.is_negatively_weighted(G, weight=weight):
raise nx.NetworkXError("edge weights must be positive")
total_weight = G.size(weight=weight)
if total_weight <= 0:
raise nx.NetworkXError("Size of G must be positive")
if weight is not None:
# Interpret weights as lengths.
def as_distance(u, v, d):
return total_weight / d.get(weight, 1)
paths = nx.shortest_path(G, source=v, weight=as_distance)
else:
paths = nx.shortest_path(G, source=v)
# If the graph is unweighted, simply return the proportion of nodes
# reachable from the source node ``v``.
if weight is None and G.is_directed():
return (len(paths) - 1) / (len(G) - 1)
if normalized and weight is not None:
norm = G.size(weight=weight) / G.size()
else:
norm = 1
# TODO This can be trivially parallelized.
avgw = (_average_weight(G, path, weight=weight) for path in paths.values())
sum_avg_weight = sum(avgw) / norm
return sum_avg_weight / (len(G) - 1)
|