File size: 8,086 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""Lukes Algorithm for exact optimal weighted tree partitioning."""

from copy import deepcopy
from functools import lru_cache
from random import choice

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = ["lukes_partitioning"]

D_EDGE_W = "weight"
D_EDGE_VALUE = 1.0
D_NODE_W = "weight"
D_NODE_VALUE = 1
PKEY = "partitions"
CLUSTER_EVAL_CACHE_SIZE = 2048


def _split_n_from(n, min_size_of_first_part):
    # splits j in two parts of which the first is at least
    # the second argument
    assert n >= min_size_of_first_part
    for p1 in range(min_size_of_first_part, n + 1):
        yield p1, n - p1


@nx._dispatch(node_attrs="node_weight", edge_attrs="edge_weight")
def lukes_partitioning(G, max_size, node_weight=None, edge_weight=None):
    """Optimal partitioning of a weighted tree using the Lukes algorithm.

    This algorithm partitions a connected, acyclic graph featuring integer
    node weights and float edge weights. The resulting clusters are such
    that the total weight of the nodes in each cluster does not exceed
    max_size and that the weight of the edges that are cut by the partition
    is minimum. The algorithm is based on [1]_.

    Parameters
    ----------
    G : NetworkX graph

    max_size : int
        Maximum weight a partition can have in terms of sum of
        node_weight for all nodes in the partition

    edge_weight : key
        Edge data key to use as weight. If None, the weights are all
        set to one.

    node_weight : key
        Node data key to use as weight. If None, the weights are all
        set to one. The data must be int.

    Returns
    -------
    partition : list
        A list of sets of nodes representing the clusters of the
        partition.

    Raises
    ------
    NotATree
        If G is not a tree.
    TypeError
        If any of the values of node_weight is not int.

    References
    ----------
    .. [1] Lukes, J. A. (1974).
       "Efficient Algorithm for the Partitioning of Trees."
       IBM Journal of Research and Development, 18(3), 217–224.

    """
    # First sanity check and tree preparation
    if not nx.is_tree(G):
        raise nx.NotATree("lukes_partitioning works only on trees")
    else:
        if nx.is_directed(G):
            root = [n for n, d in G.in_degree() if d == 0]
            assert len(root) == 1
            root = root[0]
            t_G = deepcopy(G)
        else:
            root = choice(list(G.nodes))
            # this has the desirable side effect of not inheriting attributes
            t_G = nx.dfs_tree(G, root)

    # Since we do not want to screw up the original graph,
    # if we have a blank attribute, we make a deepcopy
    if edge_weight is None or node_weight is None:
        safe_G = deepcopy(G)
        if edge_weight is None:
            nx.set_edge_attributes(safe_G, D_EDGE_VALUE, D_EDGE_W)
            edge_weight = D_EDGE_W
        if node_weight is None:
            nx.set_node_attributes(safe_G, D_NODE_VALUE, D_NODE_W)
            node_weight = D_NODE_W
    else:
        safe_G = G

    # Second sanity check
    # The values of node_weight MUST BE int.
    # I cannot see any room for duck typing without incurring serious
    # danger of subtle bugs.
    all_n_attr = nx.get_node_attributes(safe_G, node_weight).values()
    for x in all_n_attr:
        if not isinstance(x, int):
            raise TypeError(
                "lukes_partitioning needs integer "
                f"values for node_weight ({node_weight})"
            )

    # SUBROUTINES -----------------------
    # these functions are defined here for two reasons:
    # - brevity: we can leverage global "safe_G"
    # - caching: signatures are hashable

    @not_implemented_for("undirected")
    # this is intended to be called only on t_G
    def _leaves(gr):
        for x in gr.nodes:
            if not nx.descendants(gr, x):
                yield x

    @not_implemented_for("undirected")
    def _a_parent_of_leaves_only(gr):
        tleaves = set(_leaves(gr))
        for n in set(gr.nodes) - tleaves:
            if all(x in tleaves for x in nx.descendants(gr, n)):
                return n

    @lru_cache(CLUSTER_EVAL_CACHE_SIZE)
    def _value_of_cluster(cluster):
        valid_edges = [e for e in safe_G.edges if e[0] in cluster and e[1] in cluster]
        return sum(safe_G.edges[e][edge_weight] for e in valid_edges)

    def _value_of_partition(partition):
        return sum(_value_of_cluster(frozenset(c)) for c in partition)

    @lru_cache(CLUSTER_EVAL_CACHE_SIZE)
    def _weight_of_cluster(cluster):
        return sum(safe_G.nodes[n][node_weight] for n in cluster)

    def _pivot(partition, node):
        ccx = [c for c in partition if node in c]
        assert len(ccx) == 1
        return ccx[0]

    def _concatenate_or_merge(partition_1, partition_2, x, i, ref_weight):
        ccx = _pivot(partition_1, x)
        cci = _pivot(partition_2, i)
        merged_xi = ccx.union(cci)

        # We first check if we can do the merge.
        # If so, we do the actual calculations, otherwise we concatenate
        if _weight_of_cluster(frozenset(merged_xi)) <= ref_weight:
            cp1 = list(filter(lambda x: x != ccx, partition_1))
            cp2 = list(filter(lambda x: x != cci, partition_2))

            option_2 = [merged_xi] + cp1 + cp2
            return option_2, _value_of_partition(option_2)
        else:
            option_1 = partition_1 + partition_2
            return option_1, _value_of_partition(option_1)

    # INITIALIZATION -----------------------
    leaves = set(_leaves(t_G))
    for lv in leaves:
        t_G.nodes[lv][PKEY] = {}
        slot = safe_G.nodes[lv][node_weight]
        t_G.nodes[lv][PKEY][slot] = [{lv}]
        t_G.nodes[lv][PKEY][0] = [{lv}]

    for inner in [x for x in t_G.nodes if x not in leaves]:
        t_G.nodes[inner][PKEY] = {}
        slot = safe_G.nodes[inner][node_weight]
        t_G.nodes[inner][PKEY][slot] = [{inner}]

    # CORE ALGORITHM -----------------------
    while True:
        x_node = _a_parent_of_leaves_only(t_G)
        weight_of_x = safe_G.nodes[x_node][node_weight]
        best_value = 0
        best_partition = None
        bp_buffer = {}
        x_descendants = nx.descendants(t_G, x_node)
        for i_node in x_descendants:
            for j in range(weight_of_x, max_size + 1):
                for a, b in _split_n_from(j, weight_of_x):
                    if (
                        a not in t_G.nodes[x_node][PKEY]
                        or b not in t_G.nodes[i_node][PKEY]
                    ):
                        # it's not possible to form this particular weight sum
                        continue

                    part1 = t_G.nodes[x_node][PKEY][a]
                    part2 = t_G.nodes[i_node][PKEY][b]
                    part, value = _concatenate_or_merge(part1, part2, x_node, i_node, j)

                    if j not in bp_buffer or bp_buffer[j][1] < value:
                        # we annotate in the buffer the best partition for j
                        bp_buffer[j] = part, value

                    # we also keep track of the overall best partition
                    if best_value <= value:
                        best_value = value
                        best_partition = part

            # as illustrated in Lukes, once we finished a child, we can
            # discharge the partitions we found into the graph
            # (the key phrase is make all x == x')
            # so that they are used by the subsequent children
            for w, (best_part_for_vl, vl) in bp_buffer.items():
                t_G.nodes[x_node][PKEY][w] = best_part_for_vl
            bp_buffer.clear()

        # the absolute best partition for this node
        # across all weights has to be stored at 0
        t_G.nodes[x_node][PKEY][0] = best_partition
        t_G.remove_nodes_from(x_descendants)

        if x_node == root:
            # the 0-labeled partition of root
            # is the optimal one for the whole tree
            return t_G.nodes[root][PKEY][0]