Spaces:
Running
Running
File size: 29,912 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
"""
Flow based connectivity algorithms
"""
import itertools
from operator import itemgetter
import networkx as nx
# Define the default maximum flow function to use in all flow based
# connectivity algorithms.
from networkx.algorithms.flow import (
boykov_kolmogorov,
build_residual_network,
dinitz,
edmonds_karp,
shortest_augmenting_path,
)
default_flow_func = edmonds_karp
from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
__all__ = [
"average_node_connectivity",
"local_node_connectivity",
"node_connectivity",
"local_edge_connectivity",
"edge_connectivity",
"all_pairs_node_connectivity",
]
@nx._dispatch(
graphs={"G": 0, "auxiliary?": 4, "residual?": 5},
preserve_edge_attrs={"residual": {"capacity": float("inf")}},
preserve_graph_attrs={"auxiliary", "residual"},
)
def local_node_connectivity(
G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
):
r"""Computes local node connectivity for nodes s and t.
Local node connectivity for two non adjacent nodes s and t is the
minimum number of nodes that must be removed (along with their incident
edges) to disconnect them.
This is a flow based implementation of node connectivity. We compute the
maximum flow on an auxiliary digraph build from the original input
graph (see below for details).
Parameters
----------
G : NetworkX graph
Undirected graph
s : node
Source node
t : node
Target node
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See below for details. The choice
of the default function may change from version to version and
should not be relied on. Default value: None.
auxiliary : NetworkX DiGraph
Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.
residual : NetworkX DiGraph
Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.
cutoff : integer, float, or None (default: None)
If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This only works for flows
that support the cutoff parameter (most do) and is ignored otherwise.
Returns
-------
K : integer
local node connectivity for nodes s and t
Examples
--------
This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:
>>> from networkx.algorithms.connectivity import local_node_connectivity
We use in this example the platonic icosahedral graph, which has node
connectivity 5.
>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5
If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for node connectivity, and the residual
network for the underlying maximum flow computation.
Example of how to compute local node connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.
>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
...
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, "capacity")
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
...
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
You can also use alternative flow algorithms for computing node
connectivity. For instance, in dense networks the algorithm
:meth:`shortest_augmenting_path` will usually perform better than
the default :meth:`edmonds_karp` which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
Notes
-----
This is a flow based implementation of node connectivity. We compute the
maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see:
:meth:`maximum_flow`) on an auxiliary digraph build from the original
input graph:
For an undirected graph G having `n` nodes and `m` edges we derive a
directed graph H with `2n` nodes and `2m+n` arcs by replacing each
original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
arc in H. Then for each edge (`u`, `v`) in G we add two arcs
(`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute
capacity = 1 for each arc in H [1]_ .
For a directed graph G having `n` nodes and `m` arcs we derive a
directed graph H with `2n` nodes and `m+n` arcs by replacing each
original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc
(`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for
each arc in H.
This is equal to the local node connectivity because the value of
a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.
See also
--------
:meth:`local_edge_connectivity`
:meth:`node_connectivity`
:meth:`minimum_node_cut`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
References
----------
.. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
Erlebach, 'Network Analysis: Methodological Foundations', Lecture
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
"""
if flow_func is None:
flow_func = default_flow_func
if auxiliary is None:
H = build_auxiliary_node_connectivity(G)
else:
H = auxiliary
mapping = H.graph.get("mapping", None)
if mapping is None:
raise nx.NetworkXError("Invalid auxiliary digraph.")
kwargs = {"flow_func": flow_func, "residual": residual}
if flow_func is shortest_augmenting_path:
kwargs["cutoff"] = cutoff
kwargs["two_phase"] = True
elif flow_func is edmonds_karp:
kwargs["cutoff"] = cutoff
elif flow_func is dinitz:
kwargs["cutoff"] = cutoff
elif flow_func is boykov_kolmogorov:
kwargs["cutoff"] = cutoff
return nx.maximum_flow_value(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
@nx._dispatch
def node_connectivity(G, s=None, t=None, flow_func=None):
r"""Returns node connectivity for a graph or digraph G.
Node connectivity is equal to the minimum number of nodes that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local node
connectivity: the minimum number of nodes that must be removed to break
all paths from source to target in G.
Parameters
----------
G : NetworkX graph
Undirected graph
s : node
Source node. Optional. Default value: None.
t : node
Target node. Optional. Default value: None.
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.
Returns
-------
K : integer
Node connectivity of G, or local node connectivity if source
and target are provided.
Examples
--------
>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5
You can use alternative flow algorithms for the underlying maximum
flow computation. In dense networks the algorithm
:meth:`shortest_augmenting_path` will usually perform better
than the default :meth:`edmonds_karp`, which is faster for
sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
5
If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local node connectivity.
>>> nx.node_connectivity(G, 3, 7)
5
If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
:meth:`local_node_connectivity` for details.
Notes
-----
This is a flow based implementation of node connectivity. The
algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$
maximum flow problems on an auxiliary digraph. Where $\delta$
is the minimum degree of G. For details about the auxiliary
digraph and the computation of local node connectivity see
:meth:`local_node_connectivity`. This implementation is based
on algorithm 11 in [1]_.
See also
--------
:meth:`local_node_connectivity`
:meth:`edge_connectivity`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
if (s is not None and t is None) or (s is None and t is not None):
raise nx.NetworkXError("Both source and target must be specified.")
# Local node connectivity
if s is not None and t is not None:
if s not in G:
raise nx.NetworkXError(f"node {s} not in graph")
if t not in G:
raise nx.NetworkXError(f"node {t} not in graph")
return local_node_connectivity(G, s, t, flow_func=flow_func)
# Global node connectivity
if G.is_directed():
if not nx.is_weakly_connected(G):
return 0
iter_func = itertools.permutations
# It is necessary to consider both predecessors
# and successors for directed graphs
def neighbors(v):
return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)])
else:
if not nx.is_connected(G):
return 0
iter_func = itertools.combinations
neighbors = G.neighbors
# Reuse the auxiliary digraph and the residual network
H = build_auxiliary_node_connectivity(G)
R = build_residual_network(H, "capacity")
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
# Pick a node with minimum degree
# Node connectivity is bounded by degree.
v, K = min(G.degree(), key=itemgetter(1))
# compute local node connectivity with all its non-neighbors nodes
for w in set(G) - set(neighbors(v)) - {v}:
kwargs["cutoff"] = K
K = min(K, local_node_connectivity(G, v, w, **kwargs))
# Also for non adjacent pairs of neighbors of v
for x, y in iter_func(neighbors(v), 2):
if y in G[x]:
continue
kwargs["cutoff"] = K
K = min(K, local_node_connectivity(G, x, y, **kwargs))
return K
@nx._dispatch
def average_node_connectivity(G, flow_func=None):
r"""Returns the average connectivity of a graph G.
The average connectivity `\bar{\kappa}` of a graph G is the average
of local node connectivity over all pairs of nodes of G [1]_ .
.. math::
\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}
Parameters
----------
G : NetworkX graph
Undirected graph
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity`
for details. The choice of the default function may change from
version to version and should not be relied on. Default value: None.
Returns
-------
K : float
Average node connectivity
See also
--------
:meth:`local_node_connectivity`
:meth:`node_connectivity`
:meth:`edge_connectivity`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
References
----------
.. [1] Beineke, L., O. Oellermann, and R. Pippert (2002). The average
connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
http://www.sciencedirect.com/science/article/pii/S0012365X01001807
"""
if G.is_directed():
iter_func = itertools.permutations
else:
iter_func = itertools.combinations
# Reuse the auxiliary digraph and the residual network
H = build_auxiliary_node_connectivity(G)
R = build_residual_network(H, "capacity")
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
num, den = 0, 0
for u, v in iter_func(G, 2):
num += local_node_connectivity(G, u, v, **kwargs)
den += 1
if den == 0: # Null Graph
return 0
return num / den
@nx._dispatch
def all_pairs_node_connectivity(G, nbunch=None, flow_func=None):
"""Compute node connectivity between all pairs of nodes of G.
Parameters
----------
G : NetworkX graph
Undirected graph
nbunch: container
Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.
Returns
-------
all_pairs : dict
A dictionary with node connectivity between all pairs of nodes
in G, or in nbunch if provided.
See also
--------
:meth:`local_node_connectivity`
:meth:`edge_connectivity`
:meth:`local_edge_connectivity`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
"""
if nbunch is None:
nbunch = G
else:
nbunch = set(nbunch)
directed = G.is_directed()
if directed:
iter_func = itertools.permutations
else:
iter_func = itertools.combinations
all_pairs = {n: {} for n in nbunch}
# Reuse auxiliary digraph and residual network
H = build_auxiliary_node_connectivity(G)
mapping = H.graph["mapping"]
R = build_residual_network(H, "capacity")
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
for u, v in iter_func(nbunch, 2):
K = local_node_connectivity(G, u, v, **kwargs)
all_pairs[u][v] = K
if not directed:
all_pairs[v][u] = K
return all_pairs
@nx._dispatch(
graphs={"G": 0, "auxiliary?": 4, "residual?": 5},
preserve_edge_attrs={"residual": {"capacity": float("inf")}},
preserve_graph_attrs={"residual"},
)
def local_edge_connectivity(
G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
):
r"""Returns local edge connectivity for nodes s and t in G.
Local edge connectivity for two nodes s and t is the minimum number
of edges that must be removed to disconnect them.
This is a flow based implementation of edge connectivity. We compute the
maximum flow on an auxiliary digraph build from the original
network (see below for details). This is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .
Parameters
----------
G : NetworkX graph
Undirected or directed graph
s : node
Source node
t : node
Target node
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.
auxiliary : NetworkX DiGraph
Auxiliary digraph for computing flow based edge connectivity. If
provided it will be reused instead of recreated. Default value: None.
residual : NetworkX DiGraph
Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.
cutoff : integer, float, or None (default: None)
If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This only works for flows
that support the cutoff parameter (most do) and is ignored otherwise.
Returns
-------
K : integer
local edge connectivity for nodes s and t.
Examples
--------
This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:
>>> from networkx.algorithms.connectivity import local_edge_connectivity
We use in this example the platonic icosahedral graph, which has edge
connectivity 5.
>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5
If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for edge connectivity, and the residual
network for the underlying maximum flow computation.
Example of how to compute local edge connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.
>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, "capacity")
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
You can also use alternative flow algorithms for computing edge
connectivity. For instance, in dense networks the algorithm
:meth:`shortest_augmenting_path` will usually perform better than
the default :meth:`edmonds_karp` which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
Notes
-----
This is a flow based implementation of edge connectivity. We compute the
maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an
auxiliary digraph build from the original input graph:
If the input graph is undirected, we replace each edge (`u`,`v`) with
two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute
'capacity' for each arc to 1. If the input graph is directed we simply
add the 'capacity' attribute. This is an implementation of algorithm 1
in [1]_.
The maximum flow in the auxiliary network is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem).
See also
--------
:meth:`edge_connectivity`
:meth:`local_node_connectivity`
:meth:`node_connectivity`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
if flow_func is None:
flow_func = default_flow_func
if auxiliary is None:
H = build_auxiliary_edge_connectivity(G)
else:
H = auxiliary
kwargs = {"flow_func": flow_func, "residual": residual}
if flow_func is shortest_augmenting_path:
kwargs["cutoff"] = cutoff
kwargs["two_phase"] = True
elif flow_func is edmonds_karp:
kwargs["cutoff"] = cutoff
elif flow_func is dinitz:
kwargs["cutoff"] = cutoff
elif flow_func is boykov_kolmogorov:
kwargs["cutoff"] = cutoff
return nx.maximum_flow_value(H, s, t, **kwargs)
@nx._dispatch
def edge_connectivity(G, s=None, t=None, flow_func=None, cutoff=None):
r"""Returns the edge connectivity of the graph or digraph G.
The edge connectivity is equal to the minimum number of edges that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local edge
connectivity: the minimum number of edges that must be removed to
break all paths from source to target in G.
Parameters
----------
G : NetworkX graph
Undirected or directed graph
s : node
Source node. Optional. Default value: None.
t : node
Target node. Optional. Default value: None.
flow_func : function
A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see :meth:`maximum_flow` for
details). If flow_func is None, the default maximum flow function
(:meth:`edmonds_karp`) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.
cutoff : integer, float, or None (default: None)
If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This only works for flows
that support the cutoff parameter (most do) and is ignored otherwise.
Returns
-------
K : integer
Edge connectivity for G, or local edge connectivity if source
and target were provided
Examples
--------
>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5
You can use alternative flow algorithms for the underlying
maximum flow computation. In dense networks the algorithm
:meth:`shortest_augmenting_path` will usually perform better
than the default :meth:`edmonds_karp`, which is faster for
sparse networks with highly skewed degree distributions.
Alternative flow functions have to be explicitly imported
from the flow package.
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5
If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local edge connectivity.
>>> nx.edge_connectivity(G, 3, 7)
5
If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
:meth:`local_edge_connectivity` for details.
Notes
-----
This is a flow based implementation of global edge connectivity.
For undirected graphs the algorithm works by finding a 'small'
dominating set of nodes of G (see algorithm 7 in [1]_ ) and
computing local maximum flow (see :meth:`local_edge_connectivity`)
between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in [1]_ .
For directed graphs, the algorithm does n calls to the maximum
flow function. This is an implementation of algorithm 8 in [1]_ .
See also
--------
:meth:`local_edge_connectivity`
:meth:`local_node_connectivity`
:meth:`node_connectivity`
:meth:`maximum_flow`
:meth:`edmonds_karp`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
:meth:`k_edge_components`
:meth:`k_edge_subgraphs`
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
if (s is not None and t is None) or (s is None and t is not None):
raise nx.NetworkXError("Both source and target must be specified.")
# Local edge connectivity
if s is not None and t is not None:
if s not in G:
raise nx.NetworkXError(f"node {s} not in graph")
if t not in G:
raise nx.NetworkXError(f"node {t} not in graph")
return local_edge_connectivity(G, s, t, flow_func=flow_func, cutoff=cutoff)
# Global edge connectivity
# reuse auxiliary digraph and residual network
H = build_auxiliary_edge_connectivity(G)
R = build_residual_network(H, "capacity")
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
if G.is_directed():
# Algorithm 8 in [1]
if not nx.is_weakly_connected(G):
return 0
# initial value for \lambda is minimum degree
L = min(d for n, d in G.degree())
nodes = list(G)
n = len(nodes)
if cutoff is not None:
L = min(cutoff, L)
for i in range(n):
kwargs["cutoff"] = L
try:
L = min(L, local_edge_connectivity(G, nodes[i], nodes[i + 1], **kwargs))
except IndexError: # last node!
L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs))
return L
else: # undirected
# Algorithm 6 in [1]
if not nx.is_connected(G):
return 0
# initial value for \lambda is minimum degree
L = min(d for n, d in G.degree())
if cutoff is not None:
L = min(cutoff, L)
# A dominating set is \lambda-covering
# We need a dominating set with at least two nodes
for node in G:
D = nx.dominating_set(G, start_with=node)
v = D.pop()
if D:
break
else:
# in complete graphs the dominating sets will always be of one node
# thus we return min degree
return L
for w in D:
kwargs["cutoff"] = L
L = min(L, local_edge_connectivity(G, v, w, **kwargs))
return L
|