Spaces:
Running
Running
File size: 39,144 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 |
"""Algorithms for directed acyclic graphs (DAGs).
Note that most of these functions are only guaranteed to work for DAGs.
In general, these functions do not check for acyclic-ness, so it is up
to the user to check for that.
"""
import heapq
from collections import deque
from functools import partial
from itertools import chain, combinations, product, starmap
from math import gcd
import networkx as nx
from networkx.utils import arbitrary_element, not_implemented_for, pairwise
__all__ = [
"descendants",
"ancestors",
"topological_sort",
"lexicographical_topological_sort",
"all_topological_sorts",
"topological_generations",
"is_directed_acyclic_graph",
"is_aperiodic",
"transitive_closure",
"transitive_closure_dag",
"transitive_reduction",
"antichains",
"dag_longest_path",
"dag_longest_path_length",
"dag_to_branching",
"compute_v_structures",
]
chaini = chain.from_iterable
@nx._dispatch
def descendants(G, source):
"""Returns all nodes reachable from `source` in `G`.
Parameters
----------
G : NetworkX Graph
source : node in `G`
Returns
-------
set()
The descendants of `source` in `G`
Raises
------
NetworkXError
If node `source` is not in `G`.
Examples
--------
>>> DG = nx.path_graph(5, create_using=nx.DiGraph)
>>> sorted(nx.descendants(DG, 2))
[3, 4]
The `source` node is not a descendant of itself, but can be included manually:
>>> sorted(nx.descendants(DG, 2) | {2})
[2, 3, 4]
See also
--------
ancestors
"""
return {child for parent, child in nx.bfs_edges(G, source)}
@nx._dispatch
def ancestors(G, source):
"""Returns all nodes having a path to `source` in `G`.
Parameters
----------
G : NetworkX Graph
source : node in `G`
Returns
-------
set()
The ancestors of `source` in `G`
Raises
------
NetworkXError
If node `source` is not in `G`.
Examples
--------
>>> DG = nx.path_graph(5, create_using=nx.DiGraph)
>>> sorted(nx.ancestors(DG, 2))
[0, 1]
The `source` node is not an ancestor of itself, but can be included manually:
>>> sorted(nx.ancestors(DG, 2) | {2})
[0, 1, 2]
See also
--------
descendants
"""
return {child for parent, child in nx.bfs_edges(G, source, reverse=True)}
@nx._dispatch
def has_cycle(G):
"""Decides whether the directed graph has a cycle."""
try:
# Feed the entire iterator into a zero-length deque.
deque(topological_sort(G), maxlen=0)
except nx.NetworkXUnfeasible:
return True
else:
return False
@nx._dispatch
def is_directed_acyclic_graph(G):
"""Returns True if the graph `G` is a directed acyclic graph (DAG) or
False if not.
Parameters
----------
G : NetworkX graph
Returns
-------
bool
True if `G` is a DAG, False otherwise
Examples
--------
Undirected graph::
>>> G = nx.Graph([(1, 2), (2, 3)])
>>> nx.is_directed_acyclic_graph(G)
False
Directed graph with cycle::
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
>>> nx.is_directed_acyclic_graph(G)
False
Directed acyclic graph::
>>> G = nx.DiGraph([(1, 2), (2, 3)])
>>> nx.is_directed_acyclic_graph(G)
True
See also
--------
topological_sort
"""
return G.is_directed() and not has_cycle(G)
@nx._dispatch
def topological_generations(G):
"""Stratifies a DAG into generations.
A topological generation is node collection in which ancestors of a node in each
generation are guaranteed to be in a previous generation, and any descendants of
a node are guaranteed to be in a following generation. Nodes are guaranteed to
be in the earliest possible generation that they can belong to.
Parameters
----------
G : NetworkX digraph
A directed acyclic graph (DAG)
Yields
------
sets of nodes
Yields sets of nodes representing each generation.
Raises
------
NetworkXError
Generations are defined for directed graphs only. If the graph
`G` is undirected, a :exc:`NetworkXError` is raised.
NetworkXUnfeasible
If `G` is not a directed acyclic graph (DAG) no topological generations
exist and a :exc:`NetworkXUnfeasible` exception is raised. This can also
be raised if `G` is changed while the returned iterator is being processed
RuntimeError
If `G` is changed while the returned iterator is being processed.
Examples
--------
>>> DG = nx.DiGraph([(2, 1), (3, 1)])
>>> [sorted(generation) for generation in nx.topological_generations(DG)]
[[2, 3], [1]]
Notes
-----
The generation in which a node resides can also be determined by taking the
max-path-distance from the node to the farthest leaf node. That value can
be obtained with this function using `enumerate(topological_generations(G))`.
See also
--------
topological_sort
"""
if not G.is_directed():
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
multigraph = G.is_multigraph()
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
zero_indegree = [v for v, d in G.in_degree() if d == 0]
while zero_indegree:
this_generation = zero_indegree
zero_indegree = []
for node in this_generation:
if node not in G:
raise RuntimeError("Graph changed during iteration")
for child in G.neighbors(node):
try:
indegree_map[child] -= len(G[node][child]) if multigraph else 1
except KeyError as err:
raise RuntimeError("Graph changed during iteration") from err
if indegree_map[child] == 0:
zero_indegree.append(child)
del indegree_map[child]
yield this_generation
if indegree_map:
raise nx.NetworkXUnfeasible(
"Graph contains a cycle or graph changed during iteration"
)
@nx._dispatch
def topological_sort(G):
"""Returns a generator of nodes in topologically sorted order.
A topological sort is a nonunique permutation of the nodes of a
directed graph such that an edge from u to v implies that u
appears before v in the topological sort order. This ordering is
valid only if the graph has no directed cycles.
Parameters
----------
G : NetworkX digraph
A directed acyclic graph (DAG)
Yields
------
nodes
Yields the nodes in topological sorted order.
Raises
------
NetworkXError
Topological sort is defined for directed graphs only. If the graph `G`
is undirected, a :exc:`NetworkXError` is raised.
NetworkXUnfeasible
If `G` is not a directed acyclic graph (DAG) no topological sort exists
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
raised if `G` is changed while the returned iterator is being processed
RuntimeError
If `G` is changed while the returned iterator is being processed.
Examples
--------
To get the reverse order of the topological sort:
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
>>> list(reversed(list(nx.topological_sort(DG))))
[3, 2, 1]
If your DiGraph naturally has the edges representing tasks/inputs
and nodes representing people/processes that initiate tasks, then
topological_sort is not quite what you need. You will have to change
the tasks to nodes with dependence reflected by edges. The result is
a kind of topological sort of the edges. This can be done
with :func:`networkx.line_graph` as follows:
>>> list(nx.topological_sort(nx.line_graph(DG)))
[(1, 2), (2, 3)]
Notes
-----
This algorithm is based on a description and proof in
"Introduction to Algorithms: A Creative Approach" [1]_ .
See also
--------
is_directed_acyclic_graph, lexicographical_topological_sort
References
----------
.. [1] Manber, U. (1989).
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
"""
for generation in nx.topological_generations(G):
yield from generation
@nx._dispatch
def lexicographical_topological_sort(G, key=None):
"""Generate the nodes in the unique lexicographical topological sort order.
Generates a unique ordering of nodes by first sorting topologically (for which there are often
multiple valid orderings) and then additionally by sorting lexicographically.
A topological sort arranges the nodes of a directed graph so that the
upstream node of each directed edge precedes the downstream node.
It is always possible to find a solution for directed graphs that have no cycles.
There may be more than one valid solution.
Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the
topological sort and to determine a single, unique ordering. This can be useful in comparing
sort results.
The lexicographical order can be customized by providing a function to the `key=` parameter.
The definition of the key function is the same as used in python's built-in `sort()`.
The function takes a single argument and returns a key to use for sorting purposes.
Lexicographical sorting can fail if the node names are un-sortable. See the example below.
The solution is to provide a function to the `key=` argument that returns sortable keys.
Parameters
----------
G : NetworkX digraph
A directed acyclic graph (DAG)
key : function, optional
A function of one argument that converts a node name to a comparison key.
It defines and resolves ambiguities in the sort order. Defaults to the identity function.
Yields
------
nodes
Yields the nodes of G in lexicographical topological sort order.
Raises
------
NetworkXError
Topological sort is defined for directed graphs only. If the graph `G`
is undirected, a :exc:`NetworkXError` is raised.
NetworkXUnfeasible
If `G` is not a directed acyclic graph (DAG) no topological sort exists
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
raised if `G` is changed while the returned iterator is being processed
RuntimeError
If `G` is changed while the returned iterator is being processed.
TypeError
Results from un-sortable node names.
Consider using `key=` parameter to resolve ambiguities in the sort order.
Examples
--------
>>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)])
>>> list(nx.lexicographical_topological_sort(DG))
[2, 1, 3, 5, 4]
>>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x))
[2, 5, 1, 4, 3]
The sort will fail for any graph with integer and string nodes. Comparison of integer to strings
is not defined in python. Is 3 greater or less than 'red'?
>>> DG = nx.DiGraph([(1, 'red'), (3, 'red'), (1, 'green'), (2, 'blue')])
>>> list(nx.lexicographical_topological_sort(DG))
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
...
Incomparable nodes can be resolved using a `key` function. This example function
allows comparison of integers and strings by returning a tuple where the first
element is True for `str`, False otherwise. The second element is the node name.
This groups the strings and integers separately so they can be compared only among themselves.
>>> key = lambda node: (isinstance(node, str), node)
>>> list(nx.lexicographical_topological_sort(DG, key=key))
[1, 2, 3, 'blue', 'green', 'red']
Notes
-----
This algorithm is based on a description and proof in
"Introduction to Algorithms: A Creative Approach" [1]_ .
See also
--------
topological_sort
References
----------
.. [1] Manber, U. (1989).
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
"""
if not G.is_directed():
msg = "Topological sort not defined on undirected graphs."
raise nx.NetworkXError(msg)
if key is None:
def key(node):
return node
nodeid_map = {n: i for i, n in enumerate(G)}
def create_tuple(node):
return key(node), nodeid_map[node], node
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
# These nodes have zero indegree and ready to be returned.
zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0]
heapq.heapify(zero_indegree)
while zero_indegree:
_, _, node = heapq.heappop(zero_indegree)
if node not in G:
raise RuntimeError("Graph changed during iteration")
for _, child in G.edges(node):
try:
indegree_map[child] -= 1
except KeyError as err:
raise RuntimeError("Graph changed during iteration") from err
if indegree_map[child] == 0:
try:
heapq.heappush(zero_indegree, create_tuple(child))
except TypeError as err:
raise TypeError(
f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order."
)
del indegree_map[child]
yield node
if indegree_map:
msg = "Graph contains a cycle or graph changed during iteration"
raise nx.NetworkXUnfeasible(msg)
@not_implemented_for("undirected")
@nx._dispatch
def all_topological_sorts(G):
"""Returns a generator of _all_ topological sorts of the directed graph G.
A topological sort is a nonunique permutation of the nodes such that an
edge from u to v implies that u appears before v in the topological sort
order.
Parameters
----------
G : NetworkX DiGraph
A directed graph
Yields
------
topological_sort_order : list
a list of nodes in `G`, representing one of the topological sort orders
Raises
------
NetworkXNotImplemented
If `G` is not directed
NetworkXUnfeasible
If `G` is not acyclic
Examples
--------
To enumerate all topological sorts of directed graph:
>>> DG = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
>>> list(nx.all_topological_sorts(DG))
[[1, 2, 4, 3], [1, 2, 3, 4]]
Notes
-----
Implements an iterative version of the algorithm given in [1].
References
----------
.. [1] Knuth, Donald E., Szwarcfiter, Jayme L. (1974).
"A Structured Program to Generate All Topological Sorting Arrangements"
Information Processing Letters, Volume 2, Issue 6, 1974, Pages 153-157,
ISSN 0020-0190,
https://doi.org/10.1016/0020-0190(74)90001-5.
Elsevier (North-Holland), Amsterdam
"""
if not G.is_directed():
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
# the names of count and D are chosen to match the global variables in [1]
# number of edges originating in a vertex v
count = dict(G.in_degree())
# vertices with indegree 0
D = deque([v for v, d in G.in_degree() if d == 0])
# stack of first value chosen at a position k in the topological sort
bases = []
current_sort = []
# do-while construct
while True:
assert all(count[v] == 0 for v in D)
if len(current_sort) == len(G):
yield list(current_sort)
# clean-up stack
while len(current_sort) > 0:
assert len(bases) == len(current_sort)
q = current_sort.pop()
# "restores" all edges (q, x)
# NOTE: it is important to iterate over edges instead
# of successors, so count is updated correctly in multigraphs
for _, j in G.out_edges(q):
count[j] += 1
assert count[j] >= 0
# remove entries from D
while len(D) > 0 and count[D[-1]] > 0:
D.pop()
# corresponds to a circular shift of the values in D
# if the first value chosen (the base) is in the first
# position of D again, we are done and need to consider the
# previous condition
D.appendleft(q)
if D[-1] == bases[-1]:
# all possible values have been chosen at current position
# remove corresponding marker
bases.pop()
else:
# there are still elements that have not been fixed
# at the current position in the topological sort
# stop removing elements, escape inner loop
break
else:
if len(D) == 0:
raise nx.NetworkXUnfeasible("Graph contains a cycle.")
# choose next node
q = D.pop()
# "erase" all edges (q, x)
# NOTE: it is important to iterate over edges instead
# of successors, so count is updated correctly in multigraphs
for _, j in G.out_edges(q):
count[j] -= 1
assert count[j] >= 0
if count[j] == 0:
D.append(j)
current_sort.append(q)
# base for current position might _not_ be fixed yet
if len(bases) < len(current_sort):
bases.append(q)
if len(bases) == 0:
break
@nx._dispatch
def is_aperiodic(G):
"""Returns True if `G` is aperiodic.
A directed graph is aperiodic if there is no integer k > 1 that
divides the length of every cycle in the graph.
Parameters
----------
G : NetworkX DiGraph
A directed graph
Returns
-------
bool
True if the graph is aperiodic False otherwise
Raises
------
NetworkXError
If `G` is not directed
Examples
--------
A graph consisting of one cycle, the length of which is 2. Therefore ``k = 2``
divides the length of every cycle in the graph and thus the graph
is *not aperiodic*::
>>> DG = nx.DiGraph([(1, 2), (2, 1)])
>>> nx.is_aperiodic(DG)
False
A graph consisting of two cycles: one of length 2 and the other of length 3.
The cycle lengths are coprime, so there is no single value of k where ``k > 1``
that divides each cycle length and therefore the graph is *aperiodic*::
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)])
>>> nx.is_aperiodic(DG)
True
A graph consisting of two cycles: one of length 2 and the other of length 4.
The lengths of the cycles share a common factor ``k = 2``, and therefore
the graph is *not aperiodic*::
>>> DG = nx.DiGraph([(1, 2), (2, 1), (3, 4), (4, 5), (5, 6), (6, 3)])
>>> nx.is_aperiodic(DG)
False
An acyclic graph, therefore the graph is *not aperiodic*::
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
>>> nx.is_aperiodic(DG)
False
Notes
-----
This uses the method outlined in [1]_, which runs in $O(m)$ time
given $m$ edges in `G`. Note that a graph is not aperiodic if it is
acyclic as every integer trivial divides length 0 cycles.
References
----------
.. [1] Jarvis, J. P.; Shier, D. R. (1996),
"Graph-theoretic analysis of finite Markov chains,"
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
A Multidisciplinary Approach, CRC Press.
"""
if not G.is_directed():
raise nx.NetworkXError("is_aperiodic not defined for undirected graphs")
s = arbitrary_element(G)
levels = {s: 0}
this_level = [s]
g = 0
lev = 1
while this_level:
next_level = []
for u in this_level:
for v in G[u]:
if v in levels: # Non-Tree Edge
g = gcd(g, levels[u] - levels[v] + 1)
else: # Tree Edge
next_level.append(v)
levels[v] = lev
this_level = next_level
lev += 1
if len(levels) == len(G): # All nodes in tree
return g == 1
else:
return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
@nx._dispatch(preserve_all_attrs=True)
def transitive_closure(G, reflexive=False):
"""Returns transitive closure of a graph
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
for all v, w in V there is an edge (v, w) in E+ if and only if there
is a path from v to w in G.
Handling of paths from v to v has some flexibility within this definition.
A reflexive transitive closure creates a self-loop for the path
from v to v of length 0. The usual transitive closure creates a
self-loop only if a cycle exists (a path from v to v with length > 0).
We also allow an option for no self-loops.
Parameters
----------
G : NetworkX Graph
A directed/undirected graph/multigraph.
reflexive : Bool or None, optional (default: False)
Determines when cycles create self-loops in the Transitive Closure.
If True, trivial cycles (length 0) create self-loops. The result
is a reflexive transitive closure of G.
If False (the default) non-trivial cycles create self-loops.
If None, self-loops are not created.
Returns
-------
NetworkX graph
The transitive closure of `G`
Raises
------
NetworkXError
If `reflexive` not in `{None, True, False}`
Examples
--------
The treatment of trivial (i.e. length 0) cycles is controlled by the
`reflexive` parameter.
Trivial (i.e. length 0) cycles do not create self-loops when
``reflexive=False`` (the default)::
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
>>> TC = nx.transitive_closure(DG, reflexive=False)
>>> TC.edges()
OutEdgeView([(1, 2), (1, 3), (2, 3)])
However, nontrivial (i.e. length greater than 0) cycles create self-loops
when ``reflexive=False`` (the default)::
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
>>> TC = nx.transitive_closure(DG, reflexive=False)
>>> TC.edges()
OutEdgeView([(1, 2), (1, 3), (1, 1), (2, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)])
Trivial cycles (length 0) create self-loops when ``reflexive=True``::
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
>>> TC = nx.transitive_closure(DG, reflexive=True)
>>> TC.edges()
OutEdgeView([(1, 2), (1, 1), (1, 3), (2, 3), (2, 2), (3, 3)])
And the third option is not to create self-loops at all when ``reflexive=None``::
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
>>> TC = nx.transitive_closure(DG, reflexive=None)
>>> TC.edges()
OutEdgeView([(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)])
References
----------
.. [1] https://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
"""
TC = G.copy()
if reflexive not in {None, True, False}:
raise nx.NetworkXError("Incorrect value for the parameter `reflexive`")
for v in G:
if reflexive is None:
TC.add_edges_from((v, u) for u in nx.descendants(G, v) if u not in TC[v])
elif reflexive is True:
TC.add_edges_from(
(v, u) for u in nx.descendants(G, v) | {v} if u not in TC[v]
)
elif reflexive is False:
TC.add_edges_from((v, e[1]) for e in nx.edge_bfs(G, v) if e[1] not in TC[v])
return TC
@not_implemented_for("undirected")
@nx._dispatch(preserve_all_attrs=True)
def transitive_closure_dag(G, topo_order=None):
"""Returns the transitive closure of a directed acyclic graph.
This function is faster than the function `transitive_closure`, but fails
if the graph has a cycle.
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
for all v, w in V there is an edge (v, w) in E+ if and only if there
is a non-null path from v to w in G.
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
topo_order: list or tuple, optional
A topological order for G (if None, the function will compute one)
Returns
-------
NetworkX DiGraph
The transitive closure of `G`
Raises
------
NetworkXNotImplemented
If `G` is not directed
NetworkXUnfeasible
If `G` has a cycle
Examples
--------
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
>>> TC = nx.transitive_closure_dag(DG)
>>> TC.edges()
OutEdgeView([(1, 2), (1, 3), (2, 3)])
Notes
-----
This algorithm is probably simple enough to be well-known but I didn't find
a mention in the literature.
"""
if topo_order is None:
topo_order = list(topological_sort(G))
TC = G.copy()
# idea: traverse vertices following a reverse topological order, connecting
# each vertex to its descendants at distance 2 as we go
for v in reversed(topo_order):
TC.add_edges_from((v, u) for u in nx.descendants_at_distance(TC, v, 2))
return TC
@not_implemented_for("undirected")
@nx._dispatch
def transitive_reduction(G):
"""Returns transitive reduction of a directed graph
The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that
for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is
in E and there is no path from v to w in G with length greater than 1.
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
Returns
-------
NetworkX DiGraph
The transitive reduction of `G`
Raises
------
NetworkXError
If `G` is not a directed acyclic graph (DAG) transitive reduction is
not uniquely defined and a :exc:`NetworkXError` exception is raised.
Examples
--------
To perform transitive reduction on a DiGraph:
>>> DG = nx.DiGraph([(1, 2), (2, 3), (1, 3)])
>>> TR = nx.transitive_reduction(DG)
>>> list(TR.edges)
[(1, 2), (2, 3)]
To avoid unnecessary data copies, this implementation does not return a
DiGraph with node/edge data.
To perform transitive reduction on a DiGraph and transfer node/edge data:
>>> DG = nx.DiGraph()
>>> DG.add_edges_from([(1, 2), (2, 3), (1, 3)], color='red')
>>> TR = nx.transitive_reduction(DG)
>>> TR.add_nodes_from(DG.nodes(data=True))
>>> TR.add_edges_from((u, v, DG.edges[u, v]) for u, v in TR.edges)
>>> list(TR.edges(data=True))
[(1, 2, {'color': 'red'}), (2, 3, {'color': 'red'})]
References
----------
https://en.wikipedia.org/wiki/Transitive_reduction
"""
if not is_directed_acyclic_graph(G):
msg = "Directed Acyclic Graph required for transitive_reduction"
raise nx.NetworkXError(msg)
TR = nx.DiGraph()
TR.add_nodes_from(G.nodes())
descendants = {}
# count before removing set stored in descendants
check_count = dict(G.in_degree)
for u in G:
u_nbrs = set(G[u])
for v in G[u]:
if v in u_nbrs:
if v not in descendants:
descendants[v] = {y for x, y in nx.dfs_edges(G, v)}
u_nbrs -= descendants[v]
check_count[v] -= 1
if check_count[v] == 0:
del descendants[v]
TR.add_edges_from((u, v) for v in u_nbrs)
return TR
@not_implemented_for("undirected")
@nx._dispatch
def antichains(G, topo_order=None):
"""Generates antichains from a directed acyclic graph (DAG).
An antichain is a subset of a partially ordered set such that any
two elements in the subset are incomparable.
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
topo_order: list or tuple, optional
A topological order for G (if None, the function will compute one)
Yields
------
antichain : list
a list of nodes in `G` representing an antichain
Raises
------
NetworkXNotImplemented
If `G` is not directed
NetworkXUnfeasible
If `G` contains a cycle
Examples
--------
>>> DG = nx.DiGraph([(1, 2), (1, 3)])
>>> list(nx.antichains(DG))
[[], [3], [2], [2, 3], [1]]
Notes
-----
This function was originally developed by Peter Jipsen and Franco Saliola
for the SAGE project. It's included in NetworkX with permission from the
authors. Original SAGE code at:
https://github.com/sagemath/sage/blob/master/src/sage/combinat/posets/hasse_diagram.py
References
----------
.. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
AMS, Vol 42, 1995, p. 226.
"""
if topo_order is None:
topo_order = list(nx.topological_sort(G))
TC = nx.transitive_closure_dag(G, topo_order)
antichains_stacks = [([], list(reversed(topo_order)))]
while antichains_stacks:
(antichain, stack) = antichains_stacks.pop()
# Invariant:
# - the elements of antichain are independent
# - the elements of stack are independent from those of antichain
yield antichain
while stack:
x = stack.pop()
new_antichain = antichain + [x]
new_stack = [t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
antichains_stacks.append((new_antichain, new_stack))
@not_implemented_for("undirected")
@nx._dispatch(edge_attrs={"weight": "default_weight"})
def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None):
"""Returns the longest path in a directed acyclic graph (DAG).
If `G` has edges with `weight` attribute the edge data are used as
weight values.
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
weight : str, optional
Edge data key to use for weight
default_weight : int, optional
The weight of edges that do not have a weight attribute
topo_order: list or tuple, optional
A topological order for `G` (if None, the function will compute one)
Returns
-------
list
Longest path
Raises
------
NetworkXNotImplemented
If `G` is not directed
Examples
--------
>>> DG = nx.DiGraph([(0, 1, {'cost':1}), (1, 2, {'cost':1}), (0, 2, {'cost':42})])
>>> list(nx.all_simple_paths(DG, 0, 2))
[[0, 1, 2], [0, 2]]
>>> nx.dag_longest_path(DG)
[0, 1, 2]
>>> nx.dag_longest_path(DG, weight="cost")
[0, 2]
In the case where multiple valid topological orderings exist, `topo_order`
can be used to specify a specific ordering:
>>> DG = nx.DiGraph([(0, 1), (0, 2)])
>>> sorted(nx.all_topological_sorts(DG)) # Valid topological orderings
[[0, 1, 2], [0, 2, 1]]
>>> nx.dag_longest_path(DG, topo_order=[0, 1, 2])
[0, 1]
>>> nx.dag_longest_path(DG, topo_order=[0, 2, 1])
[0, 2]
See also
--------
dag_longest_path_length
"""
if not G:
return []
if topo_order is None:
topo_order = nx.topological_sort(G)
dist = {} # stores {v : (length, u)}
for v in topo_order:
us = [
(
dist[u][0]
+ (
max(data.values(), key=lambda x: x.get(weight, default_weight))
if G.is_multigraph()
else data
).get(weight, default_weight),
u,
)
for u, data in G.pred[v].items()
]
# Use the best predecessor if there is one and its distance is
# non-negative, otherwise terminate.
maxu = max(us, key=lambda x: x[0]) if us else (0, v)
dist[v] = maxu if maxu[0] >= 0 else (0, v)
u = None
v = max(dist, key=lambda x: dist[x][0])
path = []
while u != v:
path.append(v)
u = v
v = dist[v][1]
path.reverse()
return path
@not_implemented_for("undirected")
@nx._dispatch(edge_attrs={"weight": "default_weight"})
def dag_longest_path_length(G, weight="weight", default_weight=1):
"""Returns the longest path length in a DAG
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
weight : string, optional
Edge data key to use for weight
default_weight : int, optional
The weight of edges that do not have a weight attribute
Returns
-------
int
Longest path length
Raises
------
NetworkXNotImplemented
If `G` is not directed
Examples
--------
>>> DG = nx.DiGraph([(0, 1, {'cost':1}), (1, 2, {'cost':1}), (0, 2, {'cost':42})])
>>> list(nx.all_simple_paths(DG, 0, 2))
[[0, 1, 2], [0, 2]]
>>> nx.dag_longest_path_length(DG)
2
>>> nx.dag_longest_path_length(DG, weight="cost")
42
See also
--------
dag_longest_path
"""
path = nx.dag_longest_path(G, weight, default_weight)
path_length = 0
if G.is_multigraph():
for u, v in pairwise(path):
i = max(G[u][v], key=lambda x: G[u][v][x].get(weight, default_weight))
path_length += G[u][v][i].get(weight, default_weight)
else:
for u, v in pairwise(path):
path_length += G[u][v].get(weight, default_weight)
return path_length
@nx._dispatch
def root_to_leaf_paths(G):
"""Yields root-to-leaf paths in a directed acyclic graph.
`G` must be a directed acyclic graph. If not, the behavior of this
function is undefined. A "root" in this graph is a node of in-degree
zero and a "leaf" a node of out-degree zero.
When invoked, this function iterates over each path from any root to
any leaf. A path is a list of nodes.
"""
roots = (v for v, d in G.in_degree() if d == 0)
leaves = (v for v, d in G.out_degree() if d == 0)
all_paths = partial(nx.all_simple_paths, G)
# TODO In Python 3, this would be better as `yield from ...`.
return chaini(starmap(all_paths, product(roots, leaves)))
@not_implemented_for("multigraph")
@not_implemented_for("undirected")
@nx._dispatch
def dag_to_branching(G):
"""Returns a branching representing all (overlapping) paths from
root nodes to leaf nodes in the given directed acyclic graph.
As described in :mod:`networkx.algorithms.tree.recognition`, a
*branching* is a directed forest in which each node has at most one
parent. In other words, a branching is a disjoint union of
*arborescences*. For this function, each node of in-degree zero in
`G` becomes a root of one of the arborescences, and there will be
one leaf node for each distinct path from that root to a leaf node
in `G`.
Each node `v` in `G` with *k* parents becomes *k* distinct nodes in
the returned branching, one for each parent, and the sub-DAG rooted
at `v` is duplicated for each copy. The algorithm then recurses on
the children of each copy of `v`.
Parameters
----------
G : NetworkX graph
A directed acyclic graph.
Returns
-------
DiGraph
The branching in which there is a bijection between root-to-leaf
paths in `G` (in which multiple paths may share the same leaf)
and root-to-leaf paths in the branching (in which there is a
unique path from a root to a leaf).
Each node has an attribute 'source' whose value is the original
node to which this node corresponds. No other graph, node, or
edge attributes are copied into this new graph.
Raises
------
NetworkXNotImplemented
If `G` is not directed, or if `G` is a multigraph.
HasACycle
If `G` is not acyclic.
Examples
--------
To examine which nodes in the returned branching were produced by
which original node in the directed acyclic graph, we can collect
the mapping from source node to new nodes into a dictionary. For
example, consider the directed diamond graph::
>>> from collections import defaultdict
>>> from operator import itemgetter
>>>
>>> G = nx.DiGraph(nx.utils.pairwise("abd"))
>>> G.add_edges_from(nx.utils.pairwise("acd"))
>>> B = nx.dag_to_branching(G)
>>>
>>> sources = defaultdict(set)
>>> for v, source in B.nodes(data="source"):
... sources[source].add(v)
>>> len(sources["a"])
1
>>> len(sources["d"])
2
To copy node attributes from the original graph to the new graph,
you can use a dictionary like the one constructed in the above
example::
>>> for source, nodes in sources.items():
... for v in nodes:
... B.nodes[v].update(G.nodes[source])
Notes
-----
This function is not idempotent in the sense that the node labels in
the returned branching may be uniquely generated each time the
function is invoked. In fact, the node labels may not be integers;
in order to relabel the nodes to be more readable, you can use the
:func:`networkx.convert_node_labels_to_integers` function.
The current implementation of this function uses
:func:`networkx.prefix_tree`, so it is subject to the limitations of
that function.
"""
if has_cycle(G):
msg = "dag_to_branching is only defined for acyclic graphs"
raise nx.HasACycle(msg)
paths = root_to_leaf_paths(G)
B = nx.prefix_tree(paths)
# Remove the synthetic `root`(0) and `NIL`(-1) nodes from the tree
B.remove_node(0)
B.remove_node(-1)
return B
@not_implemented_for("undirected")
@nx._dispatch
def compute_v_structures(G):
"""Iterate through the graph to compute all v-structures.
V-structures are triples in the directed graph where
two parent nodes point to the same child and the two parent nodes
are not adjacent.
Parameters
----------
G : graph
A networkx DiGraph.
Returns
-------
vstructs : iterator of tuples
The v structures within the graph. Each v structure is a 3-tuple with the
parent, collider, and other parent.
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2), (0, 5), (3, 1), (2, 4), (3, 1), (4, 5), (1, 5)])
>>> sorted(nx.compute_v_structures(G))
[(0, 5, 1), (0, 5, 4), (1, 5, 4)]
Notes
-----
https://en.wikipedia.org/wiki/Collider_(statistics)
"""
for collider, preds in G.pred.items():
for common_parents in combinations(preds, r=2):
# ensure that the colliders are the same
common_parents = sorted(common_parents)
yield (common_parents[0], collider, common_parents[1])
|