File size: 3,422 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Dominance algorithms.
"""

from functools import reduce

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = ["immediate_dominators", "dominance_frontiers"]


@not_implemented_for("undirected")
@nx._dispatch
def immediate_dominators(G, start):
    """Returns the immediate dominators of all nodes of a directed graph.

    Parameters
    ----------
    G : a DiGraph or MultiDiGraph
        The graph where dominance is to be computed.

    start : node
        The start node of dominance computation.

    Returns
    -------
    idom : dict keyed by nodes
        A dict containing the immediate dominators of each node reachable from
        `start`.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is undirected.

    NetworkXError
        If `start` is not in `G`.

    Notes
    -----
    Except for `start`, the immediate dominators are the parents of their
    corresponding nodes in the dominator tree.

    Examples
    --------
    >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
    >>> sorted(nx.immediate_dominators(G, 1).items())
    [(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]

    References
    ----------
    .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
           A simple, fast dominance algorithm.
           Software Practice & Experience, 4:110, 2001.
    """
    if start not in G:
        raise nx.NetworkXError("start is not in G")

    idom = {start: start}

    order = list(nx.dfs_postorder_nodes(G, start))
    dfn = {u: i for i, u in enumerate(order)}
    order.pop()
    order.reverse()

    def intersect(u, v):
        while u != v:
            while dfn[u] < dfn[v]:
                u = idom[u]
            while dfn[u] > dfn[v]:
                v = idom[v]
        return u

    changed = True
    while changed:
        changed = False
        for u in order:
            new_idom = reduce(intersect, (v for v in G.pred[u] if v in idom))
            if u not in idom or idom[u] != new_idom:
                idom[u] = new_idom
                changed = True

    return idom


@nx._dispatch
def dominance_frontiers(G, start):
    """Returns the dominance frontiers of all nodes of a directed graph.

    Parameters
    ----------
    G : a DiGraph or MultiDiGraph
        The graph where dominance is to be computed.

    start : node
        The start node of dominance computation.

    Returns
    -------
    df : dict keyed by nodes
        A dict containing the dominance frontiers of each node reachable from
        `start` as lists.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is undirected.

    NetworkXError
        If `start` is not in `G`.

    Examples
    --------
    >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
    >>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
    [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]

    References
    ----------
    .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
           A simple, fast dominance algorithm.
           Software Practice & Experience, 4:110, 2001.
    """
    idom = nx.immediate_dominators(G, start)

    df = {u: set() for u in idom}
    for u in idom:
        if len(G.pred[u]) >= 2:
            for v in G.pred[u]:
                if v in idom:
                    while v != idom[u]:
                        df[v].add(u)
                        v = idom[v]
    return df