File size: 44,530 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
"""Functions for computing and verifying matchings in a graph."""
from collections import Counter
from itertools import combinations, repeat

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = [
    "is_matching",
    "is_maximal_matching",
    "is_perfect_matching",
    "max_weight_matching",
    "min_weight_matching",
    "maximal_matching",
]


@not_implemented_for("multigraph")
@not_implemented_for("directed")
@nx._dispatch
def maximal_matching(G):
    r"""Find a maximal matching in the graph.

    A matching is a subset of edges in which no node occurs more than once.
    A maximal matching cannot add more edges and still be a matching.

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    Returns
    -------
    matching : set
        A maximal matching of the graph.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
    >>> sorted(nx.maximal_matching(G))
    [(1, 2), (3, 5)]

    Notes
    -----
    The algorithm greedily selects a maximal matching M of the graph G
    (i.e. no superset of M exists). It runs in $O(|E|)$ time.
    """
    matching = set()
    nodes = set()
    for edge in G.edges():
        # If the edge isn't covered, add it to the matching
        # then remove neighborhood of u and v from consideration.
        u, v = edge
        if u not in nodes and v not in nodes and u != v:
            matching.add(edge)
            nodes.update(edge)
    return matching


def matching_dict_to_set(matching):
    """Converts matching dict format to matching set format

    Converts a dictionary representing a matching (as returned by
    :func:`max_weight_matching`) to a set representing a matching (as
    returned by :func:`maximal_matching`).

    In the definition of maximal matching adopted by NetworkX,
    self-loops are not allowed, so the provided dictionary is expected
    to never have any mapping from a key to itself. However, the
    dictionary is expected to have mirrored key/value pairs, for
    example, key ``u`` with value ``v`` and key ``v`` with value ``u``.

    """
    edges = set()
    for edge in matching.items():
        u, v = edge
        if (v, u) in edges or edge in edges:
            continue
        if u == v:
            raise nx.NetworkXError(f"Selfloops cannot appear in matchings {edge}")
        edges.add(edge)
    return edges


@nx._dispatch
def is_matching(G, matching):
    """Return True if ``matching`` is a valid matching of ``G``

    A *matching* in a graph is a set of edges in which no two distinct
    edges share a common endpoint. Each node is incident to at most one
    edge in the matching. The edges are said to be independent.

    Parameters
    ----------
    G : NetworkX graph

    matching : dict or set
        A dictionary or set representing a matching. If a dictionary, it
        must have ``matching[u] == v`` and ``matching[v] == u`` for each
        edge ``(u, v)`` in the matching. If a set, it must have elements
        of the form ``(u, v)``, where ``(u, v)`` is an edge in the
        matching.

    Returns
    -------
    bool
        Whether the given set or dictionary represents a valid matching
        in the graph.

    Raises
    ------
    NetworkXError
        If the proposed matching has an edge to a node not in G.
        Or if the matching is not a collection of 2-tuple edges.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
    >>> nx.is_maximal_matching(G, {1: 3, 2: 4})  # using dict to represent matching
    True

    >>> nx.is_matching(G, {(1, 3), (2, 4)})  # using set to represent matching
    True

    """
    if isinstance(matching, dict):
        matching = matching_dict_to_set(matching)

    nodes = set()
    for edge in matching:
        if len(edge) != 2:
            raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
        u, v = edge
        if u not in G or v not in G:
            raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
        if u == v:
            return False
        if not G.has_edge(u, v):
            return False
        if u in nodes or v in nodes:
            return False
        nodes.update(edge)
    return True


@nx._dispatch
def is_maximal_matching(G, matching):
    """Return True if ``matching`` is a maximal matching of ``G``

    A *maximal matching* in a graph is a matching in which adding any
    edge would cause the set to no longer be a valid matching.

    Parameters
    ----------
    G : NetworkX graph

    matching : dict or set
        A dictionary or set representing a matching. If a dictionary, it
        must have ``matching[u] == v`` and ``matching[v] == u`` for each
        edge ``(u, v)`` in the matching. If a set, it must have elements
        of the form ``(u, v)``, where ``(u, v)`` is an edge in the
        matching.

    Returns
    -------
    bool
        Whether the given set or dictionary represents a valid maximal
        matching in the graph.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
    >>> nx.is_maximal_matching(G, {(1, 2), (3, 4)})
    True

    """
    if isinstance(matching, dict):
        matching = matching_dict_to_set(matching)
    # If the given set is not a matching, then it is not a maximal matching.
    edges = set()
    nodes = set()
    for edge in matching:
        if len(edge) != 2:
            raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
        u, v = edge
        if u not in G or v not in G:
            raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
        if u == v:
            return False
        if not G.has_edge(u, v):
            return False
        if u in nodes or v in nodes:
            return False
        nodes.update(edge)
        edges.add(edge)
        edges.add((v, u))
    # A matching is maximal if adding any new edge from G to it
    # causes the resulting set to match some node twice.
    # Be careful to check for adding selfloops
    for u, v in G.edges:
        if (u, v) not in edges:
            # could add edge (u, v) to edges and have a bigger matching
            if u not in nodes and v not in nodes and u != v:
                return False
    return True


@nx._dispatch
def is_perfect_matching(G, matching):
    """Return True if ``matching`` is a perfect matching for ``G``

    A *perfect matching* in a graph is a matching in which exactly one edge
    is incident upon each vertex.

    Parameters
    ----------
    G : NetworkX graph

    matching : dict or set
        A dictionary or set representing a matching. If a dictionary, it
        must have ``matching[u] == v`` and ``matching[v] == u`` for each
        edge ``(u, v)`` in the matching. If a set, it must have elements
        of the form ``(u, v)``, where ``(u, v)`` is an edge in the
        matching.

    Returns
    -------
    bool
        Whether the given set or dictionary represents a valid perfect
        matching in the graph.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5), (4, 6)])
    >>> my_match = {1: 2, 3: 5, 4: 6}
    >>> nx.is_perfect_matching(G, my_match)
    True

    """
    if isinstance(matching, dict):
        matching = matching_dict_to_set(matching)

    nodes = set()
    for edge in matching:
        if len(edge) != 2:
            raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
        u, v = edge
        if u not in G or v not in G:
            raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
        if u == v:
            return False
        if not G.has_edge(u, v):
            return False
        if u in nodes or v in nodes:
            return False
        nodes.update(edge)
    return len(nodes) == len(G)


@not_implemented_for("multigraph")
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def min_weight_matching(G, weight="weight"):
    """Computing a minimum-weight maximal matching of G.

    Use the maximum-weight algorithm with edge weights subtracted
    from the maximum weight of all edges.

    A matching is a subset of edges in which no node occurs more than once.
    The weight of a matching is the sum of the weights of its edges.
    A maximal matching cannot add more edges and still be a matching.
    The cardinality of a matching is the number of matched edges.

    This method replaces the edge weights with 1 plus the maximum edge weight
    minus the original edge weight.

    new_weight = (max_weight + 1) - edge_weight

    then runs :func:`max_weight_matching` with the new weights.
    The max weight matching with these new weights corresponds
    to the min weight matching using the original weights.
    Adding 1 to the max edge weight keeps all edge weights positive
    and as integers if they started as integers.

    You might worry that adding 1 to each weight would make the algorithm
    favor matchings with more edges. But we use the parameter
    `maxcardinality=True` in `max_weight_matching` to ensure that the
    number of edges in the competing matchings are the same and thus
    the optimum does not change due to changes in the number of edges.

    Read the documentation of `max_weight_matching` for more information.

    Parameters
    ----------
    G : NetworkX graph
      Undirected graph

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight.
       If key not found, uses 1 as weight.

    Returns
    -------
    matching : set
        A minimal weight matching of the graph.

    See Also
    --------
    max_weight_matching
    """
    if len(G.edges) == 0:
        return max_weight_matching(G, maxcardinality=True, weight=weight)
    G_edges = G.edges(data=weight, default=1)
    max_weight = 1 + max(w for _, _, w in G_edges)
    InvG = nx.Graph()
    edges = ((u, v, max_weight - w) for u, v, w in G_edges)
    InvG.add_weighted_edges_from(edges, weight=weight)
    return max_weight_matching(InvG, maxcardinality=True, weight=weight)


@not_implemented_for("multigraph")
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def max_weight_matching(G, maxcardinality=False, weight="weight"):
    """Compute a maximum-weighted matching of G.

    A matching is a subset of edges in which no node occurs more than once.
    The weight of a matching is the sum of the weights of its edges.
    A maximal matching cannot add more edges and still be a matching.
    The cardinality of a matching is the number of matched edges.

    Parameters
    ----------
    G : NetworkX graph
      Undirected graph

    maxcardinality: bool, optional (default=False)
       If maxcardinality is True, compute the maximum-cardinality matching
       with maximum weight among all maximum-cardinality matchings.

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight.
       If key not found, uses 1 as weight.


    Returns
    -------
    matching : set
        A maximal matching of the graph.

     Examples
    --------
    >>> G = nx.Graph()
    >>> edges = [(1, 2, 6), (1, 3, 2), (2, 3, 1), (2, 4, 7), (3, 5, 9), (4, 5, 3)]
    >>> G.add_weighted_edges_from(edges)
    >>> sorted(nx.max_weight_matching(G))
    [(2, 4), (5, 3)]

    Notes
    -----
    If G has edges with weight attributes the edge data are used as
    weight values else the weights are assumed to be 1.

    This function takes time O(number_of_nodes ** 3).

    If all edge weights are integers, the algorithm uses only integer
    computations.  If floating point weights are used, the algorithm
    could return a slightly suboptimal matching due to numeric
    precision errors.

    This method is based on the "blossom" method for finding augmenting
    paths and the "primal-dual" method for finding a matching of maximum
    weight, both methods invented by Jack Edmonds [1]_.

    Bipartite graphs can also be matched using the functions present in
    :mod:`networkx.algorithms.bipartite.matching`.

    References
    ----------
    .. [1] "Efficient Algorithms for Finding Maximum Matching in Graphs",
       Zvi Galil, ACM Computing Surveys, 1986.
    """
    #
    # The algorithm is taken from "Efficient Algorithms for Finding Maximum
    # Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986.
    # It is based on the "blossom" method for finding augmenting paths and
    # the "primal-dual" method for finding a matching of maximum weight, both
    # methods invented by Jack Edmonds.
    #
    # A C program for maximum weight matching by Ed Rothberg was used
    # extensively to validate this new code.
    #
    # Many terms used in the code comments are explained in the paper
    # by Galil. You will probably need the paper to make sense of this code.
    #

    class NoNode:
        """Dummy value which is different from any node."""

    class Blossom:
        """Representation of a non-trivial blossom or sub-blossom."""

        __slots__ = ["childs", "edges", "mybestedges"]

        # b.childs is an ordered list of b's sub-blossoms, starting with
        # the base and going round the blossom.

        # b.edges is the list of b's connecting edges, such that
        # b.edges[i] = (v, w) where v is a vertex in b.childs[i]
        # and w is a vertex in b.childs[wrap(i+1)].

        # If b is a top-level S-blossom,
        # b.mybestedges is a list of least-slack edges to neighbouring
        # S-blossoms, or None if no such list has been computed yet.
        # This is used for efficient computation of delta3.

        # Generate the blossom's leaf vertices.
        def leaves(self):
            stack = [*self.childs]
            while stack:
                t = stack.pop()
                if isinstance(t, Blossom):
                    stack.extend(t.childs)
                else:
                    yield t

    # Get a list of vertices.
    gnodes = list(G)
    if not gnodes:
        return set()  # don't bother with empty graphs

    # Find the maximum edge weight.
    maxweight = 0
    allinteger = True
    for i, j, d in G.edges(data=True):
        wt = d.get(weight, 1)
        if i != j and wt > maxweight:
            maxweight = wt
        allinteger = allinteger and (str(type(wt)).split("'")[1] in ("int", "long"))

    # If v is a matched vertex, mate[v] is its partner vertex.
    # If v is a single vertex, v does not occur as a key in mate.
    # Initially all vertices are single; updated during augmentation.
    mate = {}

    # If b is a top-level blossom,
    # label.get(b) is None if b is unlabeled (free),
    #                 1 if b is an S-blossom,
    #                 2 if b is a T-blossom.
    # The label of a vertex is found by looking at the label of its top-level
    # containing blossom.
    # If v is a vertex inside a T-blossom, label[v] is 2 iff v is reachable
    # from an S-vertex outside the blossom.
    # Labels are assigned during a stage and reset after each augmentation.
    label = {}

    # If b is a labeled top-level blossom,
    # labeledge[b] = (v, w) is the edge through which b obtained its label
    # such that w is a vertex in b, or None if b's base vertex is single.
    # If w is a vertex inside a T-blossom and label[w] == 2,
    # labeledge[w] = (v, w) is an edge through which w is reachable from
    # outside the blossom.
    labeledge = {}

    # If v is a vertex, inblossom[v] is the top-level blossom to which v
    # belongs.
    # If v is a top-level vertex, inblossom[v] == v since v is itself
    # a (trivial) top-level blossom.
    # Initially all vertices are top-level trivial blossoms.
    inblossom = dict(zip(gnodes, gnodes))

    # If b is a sub-blossom,
    # blossomparent[b] is its immediate parent (sub-)blossom.
    # If b is a top-level blossom, blossomparent[b] is None.
    blossomparent = dict(zip(gnodes, repeat(None)))

    # If b is a (sub-)blossom,
    # blossombase[b] is its base VERTEX (i.e. recursive sub-blossom).
    blossombase = dict(zip(gnodes, gnodes))

    # If w is a free vertex (or an unreached vertex inside a T-blossom),
    # bestedge[w] = (v, w) is the least-slack edge from an S-vertex,
    # or None if there is no such edge.
    # If b is a (possibly trivial) top-level S-blossom,
    # bestedge[b] = (v, w) is the least-slack edge to a different S-blossom
    # (v inside b), or None if there is no such edge.
    # This is used for efficient computation of delta2 and delta3.
    bestedge = {}

    # If v is a vertex,
    # dualvar[v] = 2 * u(v) where u(v) is the v's variable in the dual
    # optimization problem (if all edge weights are integers, multiplication
    # by two ensures that all values remain integers throughout the algorithm).
    # Initially, u(v) = maxweight / 2.
    dualvar = dict(zip(gnodes, repeat(maxweight)))

    # If b is a non-trivial blossom,
    # blossomdual[b] = z(b) where z(b) is b's variable in the dual
    # optimization problem.
    blossomdual = {}

    # If (v, w) in allowedge or (w, v) in allowedg, then the edge
    # (v, w) is known to have zero slack in the optimization problem;
    # otherwise the edge may or may not have zero slack.
    allowedge = {}

    # Queue of newly discovered S-vertices.
    queue = []

    # Return 2 * slack of edge (v, w) (does not work inside blossoms).
    def slack(v, w):
        return dualvar[v] + dualvar[w] - 2 * G[v][w].get(weight, 1)

    # Assign label t to the top-level blossom containing vertex w,
    # coming through an edge from vertex v.
    def assignLabel(w, t, v):
        b = inblossom[w]
        assert label.get(w) is None and label.get(b) is None
        label[w] = label[b] = t
        if v is not None:
            labeledge[w] = labeledge[b] = (v, w)
        else:
            labeledge[w] = labeledge[b] = None
        bestedge[w] = bestedge[b] = None
        if t == 1:
            # b became an S-vertex/blossom; add it(s vertices) to the queue.
            if isinstance(b, Blossom):
                queue.extend(b.leaves())
            else:
                queue.append(b)
        elif t == 2:
            # b became a T-vertex/blossom; assign label S to its mate.
            # (If b is a non-trivial blossom, its base is the only vertex
            # with an external mate.)
            base = blossombase[b]
            assignLabel(mate[base], 1, base)

    # Trace back from vertices v and w to discover either a new blossom
    # or an augmenting path. Return the base vertex of the new blossom,
    # or NoNode if an augmenting path was found.
    def scanBlossom(v, w):
        # Trace back from v and w, placing breadcrumbs as we go.
        path = []
        base = NoNode
        while v is not NoNode:
            # Look for a breadcrumb in v's blossom or put a new breadcrumb.
            b = inblossom[v]
            if label[b] & 4:
                base = blossombase[b]
                break
            assert label[b] == 1
            path.append(b)
            label[b] = 5
            # Trace one step back.
            if labeledge[b] is None:
                # The base of blossom b is single; stop tracing this path.
                assert blossombase[b] not in mate
                v = NoNode
            else:
                assert labeledge[b][0] == mate[blossombase[b]]
                v = labeledge[b][0]
                b = inblossom[v]
                assert label[b] == 2
                # b is a T-blossom; trace one more step back.
                v = labeledge[b][0]
            # Swap v and w so that we alternate between both paths.
            if w is not NoNode:
                v, w = w, v
        # Remove breadcrumbs.
        for b in path:
            label[b] = 1
        # Return base vertex, if we found one.
        return base

    # Construct a new blossom with given base, through S-vertices v and w.
    # Label the new blossom as S; set its dual variable to zero;
    # relabel its T-vertices to S and add them to the queue.
    def addBlossom(base, v, w):
        bb = inblossom[base]
        bv = inblossom[v]
        bw = inblossom[w]
        # Create blossom.
        b = Blossom()
        blossombase[b] = base
        blossomparent[b] = None
        blossomparent[bb] = b
        # Make list of sub-blossoms and their interconnecting edge endpoints.
        b.childs = path = []
        b.edges = edgs = [(v, w)]
        # Trace back from v to base.
        while bv != bb:
            # Add bv to the new blossom.
            blossomparent[bv] = b
            path.append(bv)
            edgs.append(labeledge[bv])
            assert label[bv] == 2 or (
                label[bv] == 1 and labeledge[bv][0] == mate[blossombase[bv]]
            )
            # Trace one step back.
            v = labeledge[bv][0]
            bv = inblossom[v]
        # Add base sub-blossom; reverse lists.
        path.append(bb)
        path.reverse()
        edgs.reverse()
        # Trace back from w to base.
        while bw != bb:
            # Add bw to the new blossom.
            blossomparent[bw] = b
            path.append(bw)
            edgs.append((labeledge[bw][1], labeledge[bw][0]))
            assert label[bw] == 2 or (
                label[bw] == 1 and labeledge[bw][0] == mate[blossombase[bw]]
            )
            # Trace one step back.
            w = labeledge[bw][0]
            bw = inblossom[w]
        # Set label to S.
        assert label[bb] == 1
        label[b] = 1
        labeledge[b] = labeledge[bb]
        # Set dual variable to zero.
        blossomdual[b] = 0
        # Relabel vertices.
        for v in b.leaves():
            if label[inblossom[v]] == 2:
                # This T-vertex now turns into an S-vertex because it becomes
                # part of an S-blossom; add it to the queue.
                queue.append(v)
            inblossom[v] = b
        # Compute b.mybestedges.
        bestedgeto = {}
        for bv in path:
            if isinstance(bv, Blossom):
                if bv.mybestedges is not None:
                    # Walk this subblossom's least-slack edges.
                    nblist = bv.mybestedges
                    # The sub-blossom won't need this data again.
                    bv.mybestedges = None
                else:
                    # This subblossom does not have a list of least-slack
                    # edges; get the information from the vertices.
                    nblist = [
                        (v, w) for v in bv.leaves() for w in G.neighbors(v) if v != w
                    ]
            else:
                nblist = [(bv, w) for w in G.neighbors(bv) if bv != w]
            for k in nblist:
                (i, j) = k
                if inblossom[j] == b:
                    i, j = j, i
                bj = inblossom[j]
                if (
                    bj != b
                    and label.get(bj) == 1
                    and ((bj not in bestedgeto) or slack(i, j) < slack(*bestedgeto[bj]))
                ):
                    bestedgeto[bj] = k
            # Forget about least-slack edge of the subblossom.
            bestedge[bv] = None
        b.mybestedges = list(bestedgeto.values())
        # Select bestedge[b].
        mybestedge = None
        bestedge[b] = None
        for k in b.mybestedges:
            kslack = slack(*k)
            if mybestedge is None or kslack < mybestslack:
                mybestedge = k
                mybestslack = kslack
        bestedge[b] = mybestedge

    # Expand the given top-level blossom.
    def expandBlossom(b, endstage):
        # This is an obnoxiously complicated recursive function for the sake of
        # a stack-transformation.  So, we hack around the complexity by using
        # a trampoline pattern.  By yielding the arguments to each recursive
        # call, we keep the actual callstack flat.

        def _recurse(b, endstage):
            # Convert sub-blossoms into top-level blossoms.
            for s in b.childs:
                blossomparent[s] = None
                if isinstance(s, Blossom):
                    if endstage and blossomdual[s] == 0:
                        # Recursively expand this sub-blossom.
                        yield s
                    else:
                        for v in s.leaves():
                            inblossom[v] = s
                else:
                    inblossom[s] = s
            # If we expand a T-blossom during a stage, its sub-blossoms must be
            # relabeled.
            if (not endstage) and label.get(b) == 2:
                # Start at the sub-blossom through which the expanding
                # blossom obtained its label, and relabel sub-blossoms untili
                # we reach the base.
                # Figure out through which sub-blossom the expanding blossom
                # obtained its label initially.
                entrychild = inblossom[labeledge[b][1]]
                # Decide in which direction we will go round the blossom.
                j = b.childs.index(entrychild)
                if j & 1:
                    # Start index is odd; go forward and wrap.
                    j -= len(b.childs)
                    jstep = 1
                else:
                    # Start index is even; go backward.
                    jstep = -1
                # Move along the blossom until we get to the base.
                v, w = labeledge[b]
                while j != 0:
                    # Relabel the T-sub-blossom.
                    if jstep == 1:
                        p, q = b.edges[j]
                    else:
                        q, p = b.edges[j - 1]
                    label[w] = None
                    label[q] = None
                    assignLabel(w, 2, v)
                    # Step to the next S-sub-blossom and note its forward edge.
                    allowedge[(p, q)] = allowedge[(q, p)] = True
                    j += jstep
                    if jstep == 1:
                        v, w = b.edges[j]
                    else:
                        w, v = b.edges[j - 1]
                    # Step to the next T-sub-blossom.
                    allowedge[(v, w)] = allowedge[(w, v)] = True
                    j += jstep
                # Relabel the base T-sub-blossom WITHOUT stepping through to
                # its mate (so don't call assignLabel).
                bw = b.childs[j]
                label[w] = label[bw] = 2
                labeledge[w] = labeledge[bw] = (v, w)
                bestedge[bw] = None
                # Continue along the blossom until we get back to entrychild.
                j += jstep
                while b.childs[j] != entrychild:
                    # Examine the vertices of the sub-blossom to see whether
                    # it is reachable from a neighbouring S-vertex outside the
                    # expanding blossom.
                    bv = b.childs[j]
                    if label.get(bv) == 1:
                        # This sub-blossom just got label S through one of its
                        # neighbours; leave it be.
                        j += jstep
                        continue
                    if isinstance(bv, Blossom):
                        for v in bv.leaves():
                            if label.get(v):
                                break
                    else:
                        v = bv
                    # If the sub-blossom contains a reachable vertex, assign
                    # label T to the sub-blossom.
                    if label.get(v):
                        assert label[v] == 2
                        assert inblossom[v] == bv
                        label[v] = None
                        label[mate[blossombase[bv]]] = None
                        assignLabel(v, 2, labeledge[v][0])
                    j += jstep
            # Remove the expanded blossom entirely.
            label.pop(b, None)
            labeledge.pop(b, None)
            bestedge.pop(b, None)
            del blossomparent[b]
            del blossombase[b]
            del blossomdual[b]

        # Now, we apply the trampoline pattern.  We simulate a recursive
        # callstack by maintaining a stack of generators, each yielding a
        # sequence of function arguments.  We grow the stack by appending a call
        # to _recurse on each argument tuple, and shrink the stack whenever a
        # generator is exhausted.
        stack = [_recurse(b, endstage)]
        while stack:
            top = stack[-1]
            for s in top:
                stack.append(_recurse(s, endstage))
                break
            else:
                stack.pop()

    # Swap matched/unmatched edges over an alternating path through blossom b
    # between vertex v and the base vertex. Keep blossom bookkeeping
    # consistent.
    def augmentBlossom(b, v):
        # This is an obnoxiously complicated recursive function for the sake of
        # a stack-transformation.  So, we hack around the complexity by using
        # a trampoline pattern.  By yielding the arguments to each recursive
        # call, we keep the actual callstack flat.

        def _recurse(b, v):
            # Bubble up through the blossom tree from vertex v to an immediate
            # sub-blossom of b.
            t = v
            while blossomparent[t] != b:
                t = blossomparent[t]
            # Recursively deal with the first sub-blossom.
            if isinstance(t, Blossom):
                yield (t, v)
            # Decide in which direction we will go round the blossom.
            i = j = b.childs.index(t)
            if i & 1:
                # Start index is odd; go forward and wrap.
                j -= len(b.childs)
                jstep = 1
            else:
                # Start index is even; go backward.
                jstep = -1
            # Move along the blossom until we get to the base.
            while j != 0:
                # Step to the next sub-blossom and augment it recursively.
                j += jstep
                t = b.childs[j]
                if jstep == 1:
                    w, x = b.edges[j]
                else:
                    x, w = b.edges[j - 1]
                if isinstance(t, Blossom):
                    yield (t, w)
                # Step to the next sub-blossom and augment it recursively.
                j += jstep
                t = b.childs[j]
                if isinstance(t, Blossom):
                    yield (t, x)
                # Match the edge connecting those sub-blossoms.
                mate[w] = x
                mate[x] = w
            # Rotate the list of sub-blossoms to put the new base at the front.
            b.childs = b.childs[i:] + b.childs[:i]
            b.edges = b.edges[i:] + b.edges[:i]
            blossombase[b] = blossombase[b.childs[0]]
            assert blossombase[b] == v

        # Now, we apply the trampoline pattern.  We simulate a recursive
        # callstack by maintaining a stack of generators, each yielding a
        # sequence of function arguments.  We grow the stack by appending a call
        # to _recurse on each argument tuple, and shrink the stack whenever a
        # generator is exhausted.
        stack = [_recurse(b, v)]
        while stack:
            top = stack[-1]
            for args in top:
                stack.append(_recurse(*args))
                break
            else:
                stack.pop()

    # Swap matched/unmatched edges over an alternating path between two
    # single vertices. The augmenting path runs through S-vertices v and w.
    def augmentMatching(v, w):
        for s, j in ((v, w), (w, v)):
            # Match vertex s to vertex j. Then trace back from s
            # until we find a single vertex, swapping matched and unmatched
            # edges as we go.
            while 1:
                bs = inblossom[s]
                assert label[bs] == 1
                assert (labeledge[bs] is None and blossombase[bs] not in mate) or (
                    labeledge[bs][0] == mate[blossombase[bs]]
                )
                # Augment through the S-blossom from s to base.
                if isinstance(bs, Blossom):
                    augmentBlossom(bs, s)
                # Update mate[s]
                mate[s] = j
                # Trace one step back.
                if labeledge[bs] is None:
                    # Reached single vertex; stop.
                    break
                t = labeledge[bs][0]
                bt = inblossom[t]
                assert label[bt] == 2
                # Trace one more step back.
                s, j = labeledge[bt]
                # Augment through the T-blossom from j to base.
                assert blossombase[bt] == t
                if isinstance(bt, Blossom):
                    augmentBlossom(bt, j)
                # Update mate[j]
                mate[j] = s

    # Verify that the optimum solution has been reached.
    def verifyOptimum():
        if maxcardinality:
            # Vertices may have negative dual;
            # find a constant non-negative number to add to all vertex duals.
            vdualoffset = max(0, -min(dualvar.values()))
        else:
            vdualoffset = 0
        # 0. all dual variables are non-negative
        assert min(dualvar.values()) + vdualoffset >= 0
        assert len(blossomdual) == 0 or min(blossomdual.values()) >= 0
        # 0. all edges have non-negative slack and
        # 1. all matched edges have zero slack;
        for i, j, d in G.edges(data=True):
            wt = d.get(weight, 1)
            if i == j:
                continue  # ignore self-loops
            s = dualvar[i] + dualvar[j] - 2 * wt
            iblossoms = [i]
            jblossoms = [j]
            while blossomparent[iblossoms[-1]] is not None:
                iblossoms.append(blossomparent[iblossoms[-1]])
            while blossomparent[jblossoms[-1]] is not None:
                jblossoms.append(blossomparent[jblossoms[-1]])
            iblossoms.reverse()
            jblossoms.reverse()
            for bi, bj in zip(iblossoms, jblossoms):
                if bi != bj:
                    break
                s += 2 * blossomdual[bi]
            assert s >= 0
            if mate.get(i) == j or mate.get(j) == i:
                assert mate[i] == j and mate[j] == i
                assert s == 0
        # 2. all single vertices have zero dual value;
        for v in gnodes:
            assert (v in mate) or dualvar[v] + vdualoffset == 0
        # 3. all blossoms with positive dual value are full.
        for b in blossomdual:
            if blossomdual[b] > 0:
                assert len(b.edges) % 2 == 1
                for i, j in b.edges[1::2]:
                    assert mate[i] == j and mate[j] == i
        # Ok.

    # Main loop: continue until no further improvement is possible.
    while 1:
        # Each iteration of this loop is a "stage".
        # A stage finds an augmenting path and uses that to improve
        # the matching.

        # Remove labels from top-level blossoms/vertices.
        label.clear()
        labeledge.clear()

        # Forget all about least-slack edges.
        bestedge.clear()
        for b in blossomdual:
            b.mybestedges = None

        # Loss of labeling means that we can not be sure that currently
        # allowable edges remain allowable throughout this stage.
        allowedge.clear()

        # Make queue empty.
        queue[:] = []

        # Label single blossoms/vertices with S and put them in the queue.
        for v in gnodes:
            if (v not in mate) and label.get(inblossom[v]) is None:
                assignLabel(v, 1, None)

        # Loop until we succeed in augmenting the matching.
        augmented = 0
        while 1:
            # Each iteration of this loop is a "substage".
            # A substage tries to find an augmenting path;
            # if found, the path is used to improve the matching and
            # the stage ends. If there is no augmenting path, the
            # primal-dual method is used to pump some slack out of
            # the dual variables.

            # Continue labeling until all vertices which are reachable
            # through an alternating path have got a label.
            while queue and not augmented:
                # Take an S vertex from the queue.
                v = queue.pop()
                assert label[inblossom[v]] == 1

                # Scan its neighbours:
                for w in G.neighbors(v):
                    if w == v:
                        continue  # ignore self-loops
                    # w is a neighbour to v
                    bv = inblossom[v]
                    bw = inblossom[w]
                    if bv == bw:
                        # this edge is internal to a blossom; ignore it
                        continue
                    if (v, w) not in allowedge:
                        kslack = slack(v, w)
                        if kslack <= 0:
                            # edge k has zero slack => it is allowable
                            allowedge[(v, w)] = allowedge[(w, v)] = True
                    if (v, w) in allowedge:
                        if label.get(bw) is None:
                            # (C1) w is a free vertex;
                            # label w with T and label its mate with S (R12).
                            assignLabel(w, 2, v)
                        elif label.get(bw) == 1:
                            # (C2) w is an S-vertex (not in the same blossom);
                            # follow back-links to discover either an
                            # augmenting path or a new blossom.
                            base = scanBlossom(v, w)
                            if base is not NoNode:
                                # Found a new blossom; add it to the blossom
                                # bookkeeping and turn it into an S-blossom.
                                addBlossom(base, v, w)
                            else:
                                # Found an augmenting path; augment the
                                # matching and end this stage.
                                augmentMatching(v, w)
                                augmented = 1
                                break
                        elif label.get(w) is None:
                            # w is inside a T-blossom, but w itself has not
                            # yet been reached from outside the blossom;
                            # mark it as reached (we need this to relabel
                            # during T-blossom expansion).
                            assert label[bw] == 2
                            label[w] = 2
                            labeledge[w] = (v, w)
                    elif label.get(bw) == 1:
                        # keep track of the least-slack non-allowable edge to
                        # a different S-blossom.
                        if bestedge.get(bv) is None or kslack < slack(*bestedge[bv]):
                            bestedge[bv] = (v, w)
                    elif label.get(w) is None:
                        # w is a free vertex (or an unreached vertex inside
                        # a T-blossom) but we can not reach it yet;
                        # keep track of the least-slack edge that reaches w.
                        if bestedge.get(w) is None or kslack < slack(*bestedge[w]):
                            bestedge[w] = (v, w)

            if augmented:
                break

            # There is no augmenting path under these constraints;
            # compute delta and reduce slack in the optimization problem.
            # (Note that our vertex dual variables, edge slacks and delta's
            # are pre-multiplied by two.)
            deltatype = -1
            delta = deltaedge = deltablossom = None

            # Compute delta1: the minimum value of any vertex dual.
            if not maxcardinality:
                deltatype = 1
                delta = min(dualvar.values())

            # Compute delta2: the minimum slack on any edge between
            # an S-vertex and a free vertex.
            for v in G.nodes():
                if label.get(inblossom[v]) is None and bestedge.get(v) is not None:
                    d = slack(*bestedge[v])
                    if deltatype == -1 or d < delta:
                        delta = d
                        deltatype = 2
                        deltaedge = bestedge[v]

            # Compute delta3: half the minimum slack on any edge between
            # a pair of S-blossoms.
            for b in blossomparent:
                if (
                    blossomparent[b] is None
                    and label.get(b) == 1
                    and bestedge.get(b) is not None
                ):
                    kslack = slack(*bestedge[b])
                    if allinteger:
                        assert (kslack % 2) == 0
                        d = kslack // 2
                    else:
                        d = kslack / 2.0
                    if deltatype == -1 or d < delta:
                        delta = d
                        deltatype = 3
                        deltaedge = bestedge[b]

            # Compute delta4: minimum z variable of any T-blossom.
            for b in blossomdual:
                if (
                    blossomparent[b] is None
                    and label.get(b) == 2
                    and (deltatype == -1 or blossomdual[b] < delta)
                ):
                    delta = blossomdual[b]
                    deltatype = 4
                    deltablossom = b

            if deltatype == -1:
                # No further improvement possible; max-cardinality optimum
                # reached. Do a final delta update to make the optimum
                # verifiable.
                assert maxcardinality
                deltatype = 1
                delta = max(0, min(dualvar.values()))

            # Update dual variables according to delta.
            for v in gnodes:
                if label.get(inblossom[v]) == 1:
                    # S-vertex: 2*u = 2*u - 2*delta
                    dualvar[v] -= delta
                elif label.get(inblossom[v]) == 2:
                    # T-vertex: 2*u = 2*u + 2*delta
                    dualvar[v] += delta
            for b in blossomdual:
                if blossomparent[b] is None:
                    if label.get(b) == 1:
                        # top-level S-blossom: z = z + 2*delta
                        blossomdual[b] += delta
                    elif label.get(b) == 2:
                        # top-level T-blossom: z = z - 2*delta
                        blossomdual[b] -= delta

            # Take action at the point where minimum delta occurred.
            if deltatype == 1:
                # No further improvement possible; optimum reached.
                break
            elif deltatype == 2:
                # Use the least-slack edge to continue the search.
                (v, w) = deltaedge
                assert label[inblossom[v]] == 1
                allowedge[(v, w)] = allowedge[(w, v)] = True
                queue.append(v)
            elif deltatype == 3:
                # Use the least-slack edge to continue the search.
                (v, w) = deltaedge
                allowedge[(v, w)] = allowedge[(w, v)] = True
                assert label[inblossom[v]] == 1
                queue.append(v)
            elif deltatype == 4:
                # Expand the least-z blossom.
                expandBlossom(deltablossom, False)

            # End of a this substage.

        # Paranoia check that the matching is symmetric.
        for v in mate:
            assert mate[mate[v]] == v

        # Stop when no more augmenting path can be found.
        if not augmented:
            break

        # End of a stage; expand all S-blossoms which have zero dual.
        for b in list(blossomdual.keys()):
            if b not in blossomdual:
                continue  # already expanded
            if blossomparent[b] is None and label.get(b) == 1 and blossomdual[b] == 0:
                expandBlossom(b, True)

    # Verify that we reached the optimum solution (only for integer weights).
    if allinteger:
        verifyOptimum()

    return matching_dict_to_set(mate)