Spaces:
Running
Running
File size: 15,504 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
"""
Functions for constructing matrix-like objects from graph attributes.
"""
import networkx as nx
__all__ = ["attr_matrix", "attr_sparse_matrix"]
def _node_value(G, node_attr):
"""Returns a function that returns a value from G.nodes[u].
We return a function expecting a node as its sole argument. Then, in the
simplest scenario, the returned function will return G.nodes[u][node_attr].
However, we also handle the case when `node_attr` is None or when it is a
function itself.
Parameters
----------
G : graph
A NetworkX graph
node_attr : {None, str, callable}
Specification of how the value of the node attribute should be obtained
from the node attribute dictionary.
Returns
-------
value : function
A function expecting a node as its sole argument. The function will
returns a value from G.nodes[u] that depends on `edge_attr`.
"""
if node_attr is None:
def value(u):
return u
elif not callable(node_attr):
# assume it is a key for the node attribute dictionary
def value(u):
return G.nodes[u][node_attr]
else:
# Advanced: Allow users to specify something else.
#
# For example,
# node_attr = lambda u: G.nodes[u].get('size', .5) * 3
#
value = node_attr
return value
def _edge_value(G, edge_attr):
"""Returns a function that returns a value from G[u][v].
Suppose there exists an edge between u and v. Then we return a function
expecting u and v as arguments. For Graph and DiGraph, G[u][v] is
the edge attribute dictionary, and the function (essentially) returns
G[u][v][edge_attr]. However, we also handle cases when `edge_attr` is None
and when it is a function itself. For MultiGraph and MultiDiGraph, G[u][v]
is a dictionary of all edges between u and v. In this case, the returned
function sums the value of `edge_attr` for every edge between u and v.
Parameters
----------
G : graph
A NetworkX graph
edge_attr : {None, str, callable}
Specification of how the value of the edge attribute should be obtained
from the edge attribute dictionary, G[u][v]. For multigraphs, G[u][v]
is a dictionary of all the edges between u and v. This allows for
special treatment of multiedges.
Returns
-------
value : function
A function expecting two nodes as parameters. The nodes should
represent the from- and to- node of an edge. The function will
return a value from G[u][v] that depends on `edge_attr`.
"""
if edge_attr is None:
# topological count of edges
if G.is_multigraph():
def value(u, v):
return len(G[u][v])
else:
def value(u, v):
return 1
elif not callable(edge_attr):
# assume it is a key for the edge attribute dictionary
if edge_attr == "weight":
# provide a default value
if G.is_multigraph():
def value(u, v):
return sum(d.get(edge_attr, 1) for d in G[u][v].values())
else:
def value(u, v):
return G[u][v].get(edge_attr, 1)
else:
# otherwise, the edge attribute MUST exist for each edge
if G.is_multigraph():
def value(u, v):
return sum(d[edge_attr] for d in G[u][v].values())
else:
def value(u, v):
return G[u][v][edge_attr]
else:
# Advanced: Allow users to specify something else.
#
# Alternative default value:
# edge_attr = lambda u,v: G[u][v].get('thickness', .5)
#
# Function on an attribute:
# edge_attr = lambda u,v: abs(G[u][v]['weight'])
#
# Handle Multi(Di)Graphs differently:
# edge_attr = lambda u,v: numpy.prod([d['size'] for d in G[u][v].values()])
#
# Ignore multiple edges
# edge_attr = lambda u,v: 1 if len(G[u][v]) else 0
#
value = edge_attr
return value
@nx._dispatch(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
def attr_matrix(
G,
edge_attr=None,
node_attr=None,
normalized=False,
rc_order=None,
dtype=None,
order=None,
):
"""Returns the attribute matrix using attributes from `G` as a numpy array.
If only `G` is passed in, then the adjacency matrix is constructed.
Let A be a discrete set of values for the node attribute `node_attr`. Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in `G` and consider the value
of the edge attribute `edge_attr`. If ua and va are the values of the
node attribute `node_attr` for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).
Parameters
----------
G : graph
The NetworkX graph used to construct the attribute matrix.
edge_attr : str, optional
Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matrix. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.
node_attr : str, optional
Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.
normalized : bool, optional
If True, then each row is normalized by the summation of its values.
rc_order : list, optional
A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).
Other Parameters
----------------
dtype : NumPy data-type, optional
A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. This parameter is passed to
numpy.zeros(). If unspecified, the NumPy default is used.
Returns
-------
M : 2D NumPy ndarray
The attribute matrix.
ordering : list
If `rc_order` was specified, then only the attribute matrix is returned.
However, if `rc_order` was None, then the ordering used to construct
the matrix is returned as well.
Examples
--------
Construct an adjacency matrix:
>>> G = nx.Graph()
>>> G.add_edge(0, 1, thickness=1, weight=3)
>>> G.add_edge(0, 2, thickness=2)
>>> G.add_edge(1, 2, thickness=3)
>>> nx.attr_matrix(G, rc_order=[0, 1, 2])
array([[0., 1., 1.],
[1., 0., 1.],
[1., 1., 0.]])
Alternatively, we can obtain the matrix describing edge thickness.
>>> nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
array([[0., 1., 2.],
[1., 0., 3.],
[2., 3., 0.]])
We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:
Pr(v has color Y | u has color X)
>>> G.nodes[0]["color"] = "red"
>>> G.nodes[1]["color"] = "red"
>>> G.nodes[2]["color"] = "blue"
>>> rc = ["red", "blue"]
>>> nx.attr_matrix(G, node_attr="color", normalized=True, rc_order=rc)
array([[0.33333333, 0.66666667],
[1. , 0. ]])
For example, the above tells us that for all edges (u,v):
Pr( v is red | u is red) = 1/3
Pr( v is blue | u is red) = 2/3
Pr( v is red | u is blue) = 1
Pr( v is blue | u is blue) = 0
Finally, we can obtain the total weights listed by the node colors.
>>> nx.attr_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
array([[3., 2.],
[2., 0.]])
Thus, the total weight over all edges (u,v) with u and v having colors:
(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints
"""
import numpy as np
edge_value = _edge_value(G, edge_attr)
node_value = _node_value(G, node_attr)
if rc_order is None:
ordering = list({node_value(n) for n in G})
else:
ordering = rc_order
N = len(ordering)
undirected = not G.is_directed()
index = dict(zip(ordering, range(N)))
M = np.zeros((N, N), dtype=dtype, order=order)
seen = set()
for u, nbrdict in G.adjacency():
for v in nbrdict:
# Obtain the node attribute values.
i, j = index[node_value(u)], index[node_value(v)]
if v not in seen:
M[i, j] += edge_value(u, v)
if undirected:
M[j, i] = M[i, j]
if undirected:
seen.add(u)
if normalized:
M /= M.sum(axis=1).reshape((N, 1))
if rc_order is None:
return M, ordering
else:
return M
@nx._dispatch(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
def attr_sparse_matrix(
G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None
):
"""Returns a SciPy sparse array using attributes from G.
If only `G` is passed in, then the adjacency matrix is constructed.
Let A be a discrete set of values for the node attribute `node_attr`. Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in `G` and consider the value
of the edge attribute `edge_attr`. If ua and va are the values of the
node attribute `node_attr` for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).
Parameters
----------
G : graph
The NetworkX graph used to construct the NumPy matrix.
edge_attr : str, optional
Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matrix. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.
node_attr : str, optional
Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.
normalized : bool, optional
If True, then each row is normalized by the summation of its values.
rc_order : list, optional
A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).
Other Parameters
----------------
dtype : NumPy data-type, optional
A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.
Returns
-------
M : SciPy sparse array
The attribute matrix.
ordering : list
If `rc_order` was specified, then only the matrix is returned.
However, if `rc_order` was None, then the ordering used to construct
the matrix is returned as well.
Examples
--------
Construct an adjacency matrix:
>>> G = nx.Graph()
>>> G.add_edge(0, 1, thickness=1, weight=3)
>>> G.add_edge(0, 2, thickness=2)
>>> G.add_edge(1, 2, thickness=3)
>>> M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
>>> M.toarray()
array([[0., 1., 1.],
[1., 0., 1.],
[1., 1., 0.]])
Alternatively, we can obtain the matrix describing edge thickness.
>>> M = nx.attr_sparse_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
>>> M.toarray()
array([[0., 1., 2.],
[1., 0., 3.],
[2., 3., 0.]])
We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:
Pr(v has color Y | u has color X)
>>> G.nodes[0]["color"] = "red"
>>> G.nodes[1]["color"] = "red"
>>> G.nodes[2]["color"] = "blue"
>>> rc = ["red", "blue"]
>>> M = nx.attr_sparse_matrix(G, node_attr="color", normalized=True, rc_order=rc)
>>> M.toarray()
array([[0.33333333, 0.66666667],
[1. , 0. ]])
For example, the above tells us that for all edges (u,v):
Pr( v is red | u is red) = 1/3
Pr( v is blue | u is red) = 2/3
Pr( v is red | u is blue) = 1
Pr( v is blue | u is blue) = 0
Finally, we can obtain the total weights listed by the node colors.
>>> M = nx.attr_sparse_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
>>> M.toarray()
array([[3., 2.],
[2., 0.]])
Thus, the total weight over all edges (u,v) with u and v having colors:
(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints
"""
import numpy as np
import scipy as sp
edge_value = _edge_value(G, edge_attr)
node_value = _node_value(G, node_attr)
if rc_order is None:
ordering = list({node_value(n) for n in G})
else:
ordering = rc_order
N = len(ordering)
undirected = not G.is_directed()
index = dict(zip(ordering, range(N)))
M = sp.sparse.lil_array((N, N), dtype=dtype)
seen = set()
for u, nbrdict in G.adjacency():
for v in nbrdict:
# Obtain the node attribute values.
i, j = index[node_value(u)], index[node_value(v)]
if v not in seen:
M[i, j] += edge_value(u, v)
if undirected:
M[j, i] = M[i, j]
if undirected:
seen.add(u)
if normalized:
M *= 1 / M.sum(axis=1)[:, np.newaxis] # in-place mult preserves sparse
if rc_order is None:
return M, ordering
else:
return M
|