File size: 15,504 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
    Functions for constructing matrix-like objects from graph attributes.
"""
import networkx as nx

__all__ = ["attr_matrix", "attr_sparse_matrix"]


def _node_value(G, node_attr):
    """Returns a function that returns a value from G.nodes[u].

    We return a function expecting a node as its sole argument. Then, in the
    simplest scenario, the returned function will return G.nodes[u][node_attr].
    However, we also handle the case when `node_attr` is None or when it is a
    function itself.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    node_attr : {None, str, callable}
        Specification of how the value of the node attribute should be obtained
        from the node attribute dictionary.

    Returns
    -------
    value : function
        A function expecting a node as its sole argument. The function will
        returns a value from G.nodes[u] that depends on `edge_attr`.

    """
    if node_attr is None:

        def value(u):
            return u

    elif not callable(node_attr):
        # assume it is a key for the node attribute dictionary
        def value(u):
            return G.nodes[u][node_attr]

    else:
        # Advanced:  Allow users to specify something else.
        #
        # For example,
        #     node_attr = lambda u: G.nodes[u].get('size', .5) * 3
        #
        value = node_attr

    return value


def _edge_value(G, edge_attr):
    """Returns a function that returns a value from G[u][v].

    Suppose there exists an edge between u and v.  Then we return a function
    expecting u and v as arguments.  For Graph and DiGraph, G[u][v] is
    the edge attribute dictionary, and the function (essentially) returns
    G[u][v][edge_attr].  However, we also handle cases when `edge_attr` is None
    and when it is a function itself. For MultiGraph and MultiDiGraph, G[u][v]
    is a dictionary of all edges between u and v.  In this case, the returned
    function sums the value of `edge_attr` for every edge between u and v.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    edge_attr : {None, str, callable}
        Specification of how the value of the edge attribute should be obtained
        from the edge attribute dictionary, G[u][v].  For multigraphs, G[u][v]
        is a dictionary of all the edges between u and v.  This allows for
        special treatment of multiedges.

    Returns
    -------
    value : function
        A function expecting two nodes as parameters. The nodes should
        represent the from- and to- node of an edge. The function will
        return a value from G[u][v] that depends on `edge_attr`.

    """

    if edge_attr is None:
        # topological count of edges

        if G.is_multigraph():

            def value(u, v):
                return len(G[u][v])

        else:

            def value(u, v):
                return 1

    elif not callable(edge_attr):
        # assume it is a key for the edge attribute dictionary

        if edge_attr == "weight":
            # provide a default value
            if G.is_multigraph():

                def value(u, v):
                    return sum(d.get(edge_attr, 1) for d in G[u][v].values())

            else:

                def value(u, v):
                    return G[u][v].get(edge_attr, 1)

        else:
            # otherwise, the edge attribute MUST exist for each edge
            if G.is_multigraph():

                def value(u, v):
                    return sum(d[edge_attr] for d in G[u][v].values())

            else:

                def value(u, v):
                    return G[u][v][edge_attr]

    else:
        # Advanced:  Allow users to specify something else.
        #
        # Alternative default value:
        #     edge_attr = lambda u,v: G[u][v].get('thickness', .5)
        #
        # Function on an attribute:
        #     edge_attr = lambda u,v: abs(G[u][v]['weight'])
        #
        # Handle Multi(Di)Graphs differently:
        #     edge_attr = lambda u,v: numpy.prod([d['size'] for d in G[u][v].values()])
        #
        # Ignore multiple edges
        #     edge_attr = lambda u,v: 1 if len(G[u][v]) else 0
        #
        value = edge_attr

    return value


@nx._dispatch(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
def attr_matrix(
    G,
    edge_attr=None,
    node_attr=None,
    normalized=False,
    rc_order=None,
    dtype=None,
    order=None,
):
    """Returns the attribute matrix using attributes from `G` as a numpy array.

    If only `G` is passed in, then the adjacency matrix is constructed.

    Let A be a discrete set of values for the node attribute `node_attr`. Then
    the elements of A represent the rows and columns of the constructed matrix.
    Now, iterate through every edge e=(u,v) in `G` and consider the value
    of the edge attribute `edge_attr`.  If ua and va are the values of the
    node attribute `node_attr` for u and v, respectively, then the value of
    the edge attribute is added to the matrix element at (ua, va).

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the attribute matrix.

    edge_attr : str, optional
        Each element of the matrix represents a running total of the
        specified edge attribute for edges whose node attributes correspond
        to the rows/cols of the matrix. The attribute must be present for
        all edges in the graph. If no attribute is specified, then we
        just count the number of edges whose node attributes correspond
        to the matrix element.

    node_attr : str, optional
        Each row and column in the matrix represents a particular value
        of the node attribute.  The attribute must be present for all nodes
        in the graph. Note, the values of this attribute should be reliably
        hashable. So, float values are not recommended. If no attribute is
        specified, then the rows and columns will be the nodes of the graph.

    normalized : bool, optional
        If True, then each row is normalized by the summation of its values.

    rc_order : list, optional
        A list of the node attribute values. This list specifies the ordering
        of rows and columns of the array. If no ordering is provided, then
        the ordering will be random (and also, a return value).

    Other Parameters
    ----------------
    dtype : NumPy data-type, optional
        A valid NumPy dtype used to initialize the array. Keep in mind certain
        dtypes can yield unexpected results if the array is to be normalized.
        The parameter is passed to numpy.zeros(). If unspecified, the NumPy
        default is used.

    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory. This parameter is passed to
        numpy.zeros(). If unspecified, the NumPy default is used.

    Returns
    -------
    M : 2D NumPy ndarray
        The attribute matrix.

    ordering : list
        If `rc_order` was specified, then only the attribute matrix is returned.
        However, if `rc_order` was None, then the ordering used to construct
        the matrix is returned as well.

    Examples
    --------
    Construct an adjacency matrix:

    >>> G = nx.Graph()
    >>> G.add_edge(0, 1, thickness=1, weight=3)
    >>> G.add_edge(0, 2, thickness=2)
    >>> G.add_edge(1, 2, thickness=3)
    >>> nx.attr_matrix(G, rc_order=[0, 1, 2])
    array([[0., 1., 1.],
           [1., 0., 1.],
           [1., 1., 0.]])

    Alternatively, we can obtain the matrix describing edge thickness.

    >>> nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
    array([[0., 1., 2.],
           [1., 0., 3.],
           [2., 3., 0.]])

    We can also color the nodes and ask for the probability distribution over
    all edges (u,v) describing:

        Pr(v has color Y | u has color X)

    >>> G.nodes[0]["color"] = "red"
    >>> G.nodes[1]["color"] = "red"
    >>> G.nodes[2]["color"] = "blue"
    >>> rc = ["red", "blue"]
    >>> nx.attr_matrix(G, node_attr="color", normalized=True, rc_order=rc)
    array([[0.33333333, 0.66666667],
           [1.        , 0.        ]])

    For example, the above tells us that for all edges (u,v):

        Pr( v is red  | u is red)  = 1/3
        Pr( v is blue | u is red)  = 2/3

        Pr( v is red  | u is blue) = 1
        Pr( v is blue | u is blue) = 0

    Finally, we can obtain the total weights listed by the node colors.

    >>> nx.attr_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
    array([[3., 2.],
           [2., 0.]])

    Thus, the total weight over all edges (u,v) with u and v having colors:

        (red, red)   is 3   # the sole contribution is from edge (0,1)
        (red, blue)  is 2   # contributions from edges (0,2) and (1,2)
        (blue, red)  is 2   # same as (red, blue) since graph is undirected
        (blue, blue) is 0   # there are no edges with blue endpoints

    """
    import numpy as np

    edge_value = _edge_value(G, edge_attr)
    node_value = _node_value(G, node_attr)

    if rc_order is None:
        ordering = list({node_value(n) for n in G})
    else:
        ordering = rc_order

    N = len(ordering)
    undirected = not G.is_directed()
    index = dict(zip(ordering, range(N)))
    M = np.zeros((N, N), dtype=dtype, order=order)

    seen = set()
    for u, nbrdict in G.adjacency():
        for v in nbrdict:
            # Obtain the node attribute values.
            i, j = index[node_value(u)], index[node_value(v)]
            if v not in seen:
                M[i, j] += edge_value(u, v)
                if undirected:
                    M[j, i] = M[i, j]

        if undirected:
            seen.add(u)

    if normalized:
        M /= M.sum(axis=1).reshape((N, 1))

    if rc_order is None:
        return M, ordering
    else:
        return M


@nx._dispatch(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
def attr_sparse_matrix(
    G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None
):
    """Returns a SciPy sparse array using attributes from G.

    If only `G` is passed in, then the adjacency matrix is constructed.

    Let A be a discrete set of values for the node attribute `node_attr`. Then
    the elements of A represent the rows and columns of the constructed matrix.
    Now, iterate through every edge e=(u,v) in `G` and consider the value
    of the edge attribute `edge_attr`.  If ua and va are the values of the
    node attribute `node_attr` for u and v, respectively, then the value of
    the edge attribute is added to the matrix element at (ua, va).

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the NumPy matrix.

    edge_attr : str, optional
        Each element of the matrix represents a running total of the
        specified edge attribute for edges whose node attributes correspond
        to the rows/cols of the matrix. The attribute must be present for
        all edges in the graph. If no attribute is specified, then we
        just count the number of edges whose node attributes correspond
        to the matrix element.

    node_attr : str, optional
        Each row and column in the matrix represents a particular value
        of the node attribute.  The attribute must be present for all nodes
        in the graph. Note, the values of this attribute should be reliably
        hashable. So, float values are not recommended. If no attribute is
        specified, then the rows and columns will be the nodes of the graph.

    normalized : bool, optional
        If True, then each row is normalized by the summation of its values.

    rc_order : list, optional
        A list of the node attribute values. This list specifies the ordering
        of rows and columns of the array. If no ordering is provided, then
        the ordering will be random (and also, a return value).

    Other Parameters
    ----------------
    dtype : NumPy data-type, optional
        A valid NumPy dtype used to initialize the array. Keep in mind certain
        dtypes can yield unexpected results if the array is to be normalized.
        The parameter is passed to numpy.zeros(). If unspecified, the NumPy
        default is used.

    Returns
    -------
    M : SciPy sparse array
        The attribute matrix.

    ordering : list
        If `rc_order` was specified, then only the matrix is returned.
        However, if `rc_order` was None, then the ordering used to construct
        the matrix is returned as well.

    Examples
    --------
    Construct an adjacency matrix:

    >>> G = nx.Graph()
    >>> G.add_edge(0, 1, thickness=1, weight=3)
    >>> G.add_edge(0, 2, thickness=2)
    >>> G.add_edge(1, 2, thickness=3)
    >>> M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
    >>> M.toarray()
    array([[0., 1., 1.],
           [1., 0., 1.],
           [1., 1., 0.]])

    Alternatively, we can obtain the matrix describing edge thickness.

    >>> M = nx.attr_sparse_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
    >>> M.toarray()
    array([[0., 1., 2.],
           [1., 0., 3.],
           [2., 3., 0.]])

    We can also color the nodes and ask for the probability distribution over
    all edges (u,v) describing:

        Pr(v has color Y | u has color X)

    >>> G.nodes[0]["color"] = "red"
    >>> G.nodes[1]["color"] = "red"
    >>> G.nodes[2]["color"] = "blue"
    >>> rc = ["red", "blue"]
    >>> M = nx.attr_sparse_matrix(G, node_attr="color", normalized=True, rc_order=rc)
    >>> M.toarray()
    array([[0.33333333, 0.66666667],
           [1.        , 0.        ]])

    For example, the above tells us that for all edges (u,v):

        Pr( v is red  | u is red)  = 1/3
        Pr( v is blue | u is red)  = 2/3

        Pr( v is red  | u is blue) = 1
        Pr( v is blue | u is blue) = 0

    Finally, we can obtain the total weights listed by the node colors.

    >>> M = nx.attr_sparse_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
    >>> M.toarray()
    array([[3., 2.],
           [2., 0.]])

    Thus, the total weight over all edges (u,v) with u and v having colors:

        (red, red)   is 3   # the sole contribution is from edge (0,1)
        (red, blue)  is 2   # contributions from edges (0,2) and (1,2)
        (blue, red)  is 2   # same as (red, blue) since graph is undirected
        (blue, blue) is 0   # there are no edges with blue endpoints

    """
    import numpy as np
    import scipy as sp

    edge_value = _edge_value(G, edge_attr)
    node_value = _node_value(G, node_attr)

    if rc_order is None:
        ordering = list({node_value(n) for n in G})
    else:
        ordering = rc_order

    N = len(ordering)
    undirected = not G.is_directed()
    index = dict(zip(ordering, range(N)))
    M = sp.sparse.lil_array((N, N), dtype=dtype)

    seen = set()
    for u, nbrdict in G.adjacency():
        for v in nbrdict:
            # Obtain the node attribute values.
            i, j = index[node_value(u)], index[node_value(v)]
            if v not in seen:
                M[i, j] += edge_value(u, v)
                if undirected:
                    M[j, i] = M[i, j]

        if undirected:
            seen.add(u)

    if normalized:
        M *= 1 / M.sum(axis=1)[:, np.newaxis]  # in-place mult preserves sparse

    if rc_order is None:
        return M, ordering
    else:
        return M