File size: 2,833 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import pytest

np = pytest.importorskip("numpy")

import networkx as nx


def test_attr_matrix():
    G = nx.Graph()
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 2, thickness=2)
    G.add_edge(1, 2, thickness=3)

    def node_attr(u):
        return G.nodes[u].get("size", 0.5) * 3

    def edge_attr(u, v):
        return G[u][v].get("thickness", 0.5)

    M = nx.attr_matrix(G, edge_attr=edge_attr, node_attr=node_attr)
    np.testing.assert_equal(M[0], np.array([[6.0]]))
    assert M[1] == [1.5]


def test_attr_matrix_directed():
    G = nx.DiGraph()
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 2, thickness=2)
    G.add_edge(1, 2, thickness=3)
    M = nx.attr_matrix(G, rc_order=[0, 1, 2])
    # fmt: off
    data = np.array(
        [[0., 1., 1.],
         [0., 0., 1.],
         [0., 0., 0.]]
    )
    # fmt: on
    np.testing.assert_equal(M, np.array(data))


def test_attr_matrix_multigraph():
    G = nx.MultiGraph()
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 2, thickness=2)
    G.add_edge(1, 2, thickness=3)
    M = nx.attr_matrix(G, rc_order=[0, 1, 2])
    # fmt: off
    data = np.array(
        [[0., 3., 1.],
         [3., 0., 1.],
         [1., 1., 0.]]
    )
    # fmt: on
    np.testing.assert_equal(M, np.array(data))
    M = nx.attr_matrix(G, edge_attr="weight", rc_order=[0, 1, 2])
    # fmt: off
    data = np.array(
        [[0., 9., 1.],
         [9., 0., 1.],
         [1., 1., 0.]]
    )
    # fmt: on
    np.testing.assert_equal(M, np.array(data))
    M = nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
    # fmt: off
    data = np.array(
        [[0., 3., 2.],
         [3., 0., 3.],
         [2., 3., 0.]]
    )
    # fmt: on
    np.testing.assert_equal(M, np.array(data))


def test_attr_sparse_matrix():
    pytest.importorskip("scipy")
    G = nx.Graph()
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 2, thickness=2)
    G.add_edge(1, 2, thickness=3)
    M = nx.attr_sparse_matrix(G)
    mtx = M[0]
    data = np.ones((3, 3), float)
    np.fill_diagonal(data, 0)
    np.testing.assert_equal(mtx.todense(), np.array(data))
    assert M[1] == [0, 1, 2]


def test_attr_sparse_matrix_directed():
    pytest.importorskip("scipy")
    G = nx.DiGraph()
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 1, thickness=1, weight=3)
    G.add_edge(0, 2, thickness=2)
    G.add_edge(1, 2, thickness=3)
    M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
    # fmt: off
    data = np.array(
        [[0., 1., 1.],
         [0., 0., 1.],
         [0., 0., 0.]]
    )
    # fmt: on
    np.testing.assert_equal(M.todense(), np.array(data))