File size: 32,132 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
"""
Text-based visual representations of graphs
"""
import sys
import warnings
from collections import defaultdict

import networkx as nx
from networkx.utils import open_file

__all__ = ["forest_str", "generate_network_text", "write_network_text"]


class BaseGlyphs:
    @classmethod
    def as_dict(cls):
        return {
            a: getattr(cls, a)
            for a in dir(cls)
            if not a.startswith("_") and a != "as_dict"
        }


class AsciiBaseGlyphs(BaseGlyphs):
    empty: str = "+"
    newtree_last: str = "+-- "
    newtree_mid: str = "+-- "
    endof_forest: str = "    "
    within_forest: str = ":   "
    within_tree: str = "|   "


class AsciiDirectedGlyphs(AsciiBaseGlyphs):
    last: str = "L-> "
    mid: str = "|-> "
    backedge: str = "<-"
    vertical_edge: str = "!"


class AsciiUndirectedGlyphs(AsciiBaseGlyphs):
    last: str = "L-- "
    mid: str = "|-- "
    backedge: str = "-"
    vertical_edge: str = "|"


class UtfBaseGlyphs(BaseGlyphs):
    # Notes on available box and arrow characters
    # https://en.wikipedia.org/wiki/Box-drawing_character
    # https://stackoverflow.com/questions/2701192/triangle-arrow
    empty: str = "β•™"
    newtree_last: str = "╙── "
    newtree_mid: str = "β•Ÿβ”€β”€ "
    endof_forest: str = "    "
    within_forest: str = "β•Ž   "
    within_tree: str = "β”‚   "


class UtfDirectedGlyphs(UtfBaseGlyphs):
    last: str = "└─╼ "
    mid: str = "β”œβ”€β•Ό "
    backedge: str = "β•Ύ"
    vertical_edge: str = "β•½"


class UtfUndirectedGlyphs(UtfBaseGlyphs):
    last: str = "└── "
    mid: str = "β”œβ”€β”€ "
    backedge: str = "─"
    vertical_edge: str = "β”‚"


def generate_network_text(
    graph,
    with_labels=True,
    sources=None,
    max_depth=None,
    ascii_only=False,
    vertical_chains=False,
):
    """Generate lines in the "network text" format

    This works via a depth-first traversal of the graph and writing a line for
    each unique node encountered. Non-tree edges are written to the right of
    each node, and connection to a non-tree edge is indicated with an ellipsis.
    This representation works best when the input graph is a forest, but any
    graph can be represented.

    This notation is original to networkx, although it is simple enough that it
    may be known in existing literature. See #5602 for details. The procedure
    is summarized as follows:

    1. Given a set of source nodes (which can be specified, or automatically
    discovered via finding the (strongly) connected components and choosing one
    node with minimum degree from each), we traverse the graph in depth first
    order.

    2. Each reachable node will be printed exactly once on it's own line.

    3. Edges are indicated in one of four ways:

        a. a parent "L-style" connection on the upper left. This corresponds to
        a traversal in the directed DFS tree.

        b. a backref "<-style" connection shown directly on the right. For
        directed graphs, these are drawn for any incoming edges to a node that
        is not a parent edge. For undirected graphs, these are drawn for only
        the non-parent edges that have already been represented (The edges that
        have not been represented will be handled in the recursive case).

        c. a child "L-style" connection on the lower right. Drawing of the
        children are handled recursively.

        d. if ``vertical_chains`` is true, and a parent node only has one child
        a "vertical-style" edge is drawn between them.

    4. The children of each node (wrt the directed DFS tree) are drawn
    underneath and to the right of it. In the case that a child node has already
    been drawn the connection is replaced with an ellipsis ("...") to indicate
    that there is one or more connections represented elsewhere.

    5. If a maximum depth is specified, an edge to nodes past this maximum
    depth will be represented by an ellipsis.

    6. If a a node has a truthy "collapse" value, then we do not traverse past
    that node.

    Parameters
    ----------
    graph : nx.DiGraph | nx.Graph
        Graph to represent

    with_labels : bool | str
        If True will use the "label" attribute of a node to display if it
        exists otherwise it will use the node value itself. If given as a
        string, then that attribute name will be used instead of "label".
        Defaults to True.

    sources : List
        Specifies which nodes to start traversal from. Note: nodes that are not
        reachable from one of these sources may not be shown. If unspecified,
        the minimal set of nodes needed to reach all others will be used.

    max_depth : int | None
        The maximum depth to traverse before stopping. Defaults to None.

    ascii_only : Boolean
        If True only ASCII characters are used to construct the visualization

    vertical_chains : Boolean
        If True, chains of nodes will be drawn vertically when possible.

    Yields
    ------
    str : a line of generated text

    Examples
    --------
    >>> graph = nx.path_graph(10)
    >>> graph.add_node('A')
    >>> graph.add_node('B')
    >>> graph.add_node('C')
    >>> graph.add_node('D')
    >>> graph.add_edge(9, 'A')
    >>> graph.add_edge(9, 'B')
    >>> graph.add_edge(9, 'C')
    >>> graph.add_edge('C', 'D')
    >>> graph.add_edge('C', 'E')
    >>> graph.add_edge('C', 'F')
    >>> nx.write_network_text(graph)
    ╙── 0
        └── 1
            └── 2
                └── 3
                    └── 4
                        └── 5
                            └── 6
                                └── 7
                                    └── 8
                                        └── 9
                                            β”œβ”€β”€ A
                                            β”œβ”€β”€ B
                                            └── C
                                                β”œβ”€β”€ D
                                                β”œβ”€β”€ E
                                                └── F
    >>> nx.write_network_text(graph, vertical_chains=True)
    ╙── 0
        β”‚
        1
        β”‚
        2
        β”‚
        3
        β”‚
        4
        β”‚
        5
        β”‚
        6
        β”‚
        7
        β”‚
        8
        β”‚
        9
        β”œβ”€β”€ A
        β”œβ”€β”€ B
        └── C
            β”œβ”€β”€ D
            β”œβ”€β”€ E
            └── F
    """
    from typing import Any, NamedTuple

    class StackFrame(NamedTuple):
        parent: Any
        node: Any
        indents: list
        this_islast: bool
        this_vertical: bool

    collapse_attr = "collapse"

    is_directed = graph.is_directed()

    if is_directed:
        glyphs = AsciiDirectedGlyphs if ascii_only else UtfDirectedGlyphs
        succ = graph.succ
        pred = graph.pred
    else:
        glyphs = AsciiUndirectedGlyphs if ascii_only else UtfUndirectedGlyphs
        succ = graph.adj
        pred = graph.adj

    if isinstance(with_labels, str):
        label_attr = with_labels
    elif with_labels:
        label_attr = "label"
    else:
        label_attr = None

    if max_depth == 0:
        yield glyphs.empty + " ..."
    elif len(graph.nodes) == 0:
        yield glyphs.empty
    else:
        # If the nodes to traverse are unspecified, find the minimal set of
        # nodes that will reach the entire graph
        if sources is None:
            sources = _find_sources(graph)

        # Populate the stack with each:
        # 1. parent node in the DFS tree (or None for root nodes),
        # 2. the current node in the DFS tree
        # 2. a list of indentations indicating depth
        # 3. a flag indicating if the node is the final one to be written.
        # Reverse the stack so sources are popped in the correct order.
        last_idx = len(sources) - 1
        stack = [
            StackFrame(None, node, [], (idx == last_idx), False)
            for idx, node in enumerate(sources)
        ][::-1]

        num_skipped_children = defaultdict(lambda: 0)
        seen_nodes = set()
        while stack:
            parent, node, indents, this_islast, this_vertical = stack.pop()

            if node is not Ellipsis:
                skip = node in seen_nodes
                if skip:
                    # Mark that we skipped a parent's child
                    num_skipped_children[parent] += 1

                if this_islast:
                    # If we reached the last child of a parent, and we skipped
                    # any of that parents children, then we should emit an
                    # ellipsis at the end after this.
                    if num_skipped_children[parent] and parent is not None:
                        # Append the ellipsis to be emitted last
                        next_islast = True
                        try_frame = StackFrame(
                            node, Ellipsis, indents, next_islast, False
                        )
                        stack.append(try_frame)

                        # Redo this frame, but not as a last object
                        next_islast = False
                        try_frame = StackFrame(
                            parent, node, indents, next_islast, this_vertical
                        )
                        stack.append(try_frame)
                        continue

                if skip:
                    continue
                seen_nodes.add(node)

            if not indents:
                # Top level items (i.e. trees in the forest) get different
                # glyphs to indicate they are not actually connected
                if this_islast:
                    this_vertical = False
                    this_prefix = indents + [glyphs.newtree_last]
                    next_prefix = indents + [glyphs.endof_forest]
                else:
                    this_prefix = indents + [glyphs.newtree_mid]
                    next_prefix = indents + [glyphs.within_forest]

            else:
                # Non-top-level items
                if this_vertical:
                    this_prefix = indents
                    next_prefix = indents
                else:
                    if this_islast:
                        this_prefix = indents + [glyphs.last]
                        next_prefix = indents + [glyphs.endof_forest]
                    else:
                        this_prefix = indents + [glyphs.mid]
                        next_prefix = indents + [glyphs.within_tree]

            if node is Ellipsis:
                label = " ..."
                suffix = ""
                children = []
            else:
                if label_attr is not None:
                    label = str(graph.nodes[node].get(label_attr, node))
                else:
                    label = str(node)

                # Determine if we want to show the children of this node.
                if collapse_attr is not None:
                    collapse = graph.nodes[node].get(collapse_attr, False)
                else:
                    collapse = False

                # Determine:
                # (1) children to traverse into after showing this node.
                # (2) parents to immediately show to the right of this node.
                if is_directed:
                    # In the directed case we must show every successor node
                    # note: it may be skipped later, but we don't have that
                    # information here.
                    children = list(succ[node])
                    # In the directed case we must show every predecessor
                    # except for parent we directly traversed from.
                    handled_parents = {parent}
                else:
                    # Showing only the unseen children results in a more
                    # concise representation for the undirected case.
                    children = [
                        child for child in succ[node] if child not in seen_nodes
                    ]

                    # In the undirected case, parents are also children, so we
                    # only need to immediately show the ones we can no longer
                    # traverse
                    handled_parents = {*children, parent}

                if max_depth is not None and len(indents) == max_depth - 1:
                    # Use ellipsis to indicate we have reached maximum depth
                    if children:
                        children = [Ellipsis]
                    handled_parents = {parent}

                if collapse:
                    # Collapsing a node is the same as reaching maximum depth
                    if children:
                        children = [Ellipsis]
                    handled_parents = {parent}

                # The other parents are other predecessors of this node that
                # are not handled elsewhere.
                other_parents = [p for p in pred[node] if p not in handled_parents]
                if other_parents:
                    if label_attr is not None:
                        other_parents_labels = ", ".join(
                            [
                                str(graph.nodes[p].get(label_attr, p))
                                for p in other_parents
                            ]
                        )
                    else:
                        other_parents_labels = ", ".join(
                            [str(p) for p in other_parents]
                        )
                    suffix = " ".join(["", glyphs.backedge, other_parents_labels])
                else:
                    suffix = ""

            # Emit the line for this node, this will be called for each node
            # exactly once.
            if this_vertical:
                yield "".join(this_prefix + [glyphs.vertical_edge])

            yield "".join(this_prefix + [label, suffix])

            if vertical_chains:
                if is_directed:
                    num_children = len(set(children))
                else:
                    num_children = len(set(children) - {parent})
                # The next node can be drawn vertically if it is the only
                # remaining child of this node.
                next_is_vertical = num_children == 1
            else:
                next_is_vertical = False

            # Push children on the stack in reverse order so they are popped in
            # the original order.
            for idx, child in enumerate(children[::-1]):
                next_islast = idx == 0
                try_frame = StackFrame(
                    node, child, next_prefix, next_islast, next_is_vertical
                )
                stack.append(try_frame)


@open_file(1, "w")
def write_network_text(
    graph,
    path=None,
    with_labels=True,
    sources=None,
    max_depth=None,
    ascii_only=False,
    end="\n",
    vertical_chains=False,
):
    """Creates a nice text representation of a graph

    This works via a depth-first traversal of the graph and writing a line for
    each unique node encountered. Non-tree edges are written to the right of
    each node, and connection to a non-tree edge is indicated with an ellipsis.
    This representation works best when the input graph is a forest, but any
    graph can be represented.

    Parameters
    ----------
    graph : nx.DiGraph | nx.Graph
        Graph to represent

    path : string or file or callable or None
       Filename or file handle for data output.
       if a function, then it will be called for each generated line.
       if None, this will default to "sys.stdout.write"

    with_labels : bool | str
        If True will use the "label" attribute of a node to display if it
        exists otherwise it will use the node value itself. If given as a
        string, then that attribute name will be used instead of "label".
        Defaults to True.

    sources : List
        Specifies which nodes to start traversal from. Note: nodes that are not
        reachable from one of these sources may not be shown. If unspecified,
        the minimal set of nodes needed to reach all others will be used.

    max_depth : int | None
        The maximum depth to traverse before stopping. Defaults to None.

    ascii_only : Boolean
        If True only ASCII characters are used to construct the visualization

    end : string
        The line ending character

    vertical_chains : Boolean
        If True, chains of nodes will be drawn vertically when possible.

    Examples
    --------
    >>> graph = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
    >>> nx.write_network_text(graph)
    ╙── 0
        β”œβ”€β•Ό 1
        β”‚   β”œβ”€β•Ό 3
        β”‚   └─╼ 4
        └─╼ 2
            β”œβ”€β•Ό 5
            └─╼ 6

    >>> # A near tree with one non-tree edge
    >>> graph.add_edge(5, 1)
    >>> nx.write_network_text(graph)
    ╙── 0
        β”œβ”€β•Ό 1 β•Ύ 5
        β”‚   β”œβ”€β•Ό 3
        β”‚   └─╼ 4
        └─╼ 2
            β”œβ”€β•Ό 5
            β”‚   └─╼  ...
            └─╼ 6

    >>> graph = nx.cycle_graph(5)
    >>> nx.write_network_text(graph)
    ╙── 0
        β”œβ”€β”€ 1
        β”‚   └── 2
        β”‚       └── 3
        β”‚           └── 4 ─ 0
        └──  ...

    >>> graph = nx.cycle_graph(5, nx.DiGraph)
    >>> nx.write_network_text(graph, vertical_chains=True)
    ╙── 0 β•Ύ 4
        β•½
        1
        β•½
        2
        β•½
        3
        β•½
        4
        └─╼  ...

    >>> nx.write_network_text(graph, vertical_chains=True, ascii_only=True)
    +-- 0 <- 4
        !
        1
        !
        2
        !
        3
        !
        4
        L->  ...

    >>> graph = nx.generators.barbell_graph(4, 2)
    >>> nx.write_network_text(graph, vertical_chains=False)
    ╙── 4
        β”œβ”€β”€ 5
        β”‚   └── 6
        β”‚       β”œβ”€β”€ 7
        β”‚       β”‚   β”œβ”€β”€ 8 ─ 6
        β”‚       β”‚   β”‚   └── 9 ─ 6, 7
        β”‚       β”‚   └──  ...
        β”‚       └──  ...
        └── 3
            β”œβ”€β”€ 0
            β”‚   β”œβ”€β”€ 1 ─ 3
            β”‚   β”‚   └── 2 ─ 0, 3
            β”‚   └──  ...
            └──  ...
    >>> nx.write_network_text(graph, vertical_chains=True)
    ╙── 4
        β”œβ”€β”€ 5
        β”‚   β”‚
        β”‚   6
        β”‚   β”œβ”€β”€ 7
        β”‚   β”‚   β”œβ”€β”€ 8 ─ 6
        β”‚   β”‚   β”‚   β”‚
        β”‚   β”‚   β”‚   9 ─ 6, 7
        β”‚   β”‚   └──  ...
        β”‚   └──  ...
        └── 3
            β”œβ”€β”€ 0
            β”‚   β”œβ”€β”€ 1 ─ 3
            β”‚   β”‚   β”‚
            β”‚   β”‚   2 ─ 0, 3
            β”‚   └──  ...
            └──  ...

    >>> graph = nx.complete_graph(5, create_using=nx.Graph)
    >>> nx.write_network_text(graph)
    ╙── 0
        β”œβ”€β”€ 1
        β”‚   β”œβ”€β”€ 2 ─ 0
        β”‚   β”‚   β”œβ”€β”€ 3 ─ 0, 1
        β”‚   β”‚   β”‚   └── 4 ─ 0, 1, 2
        β”‚   β”‚   └──  ...
        β”‚   └──  ...
        └──  ...

    >>> graph = nx.complete_graph(3, create_using=nx.DiGraph)
    >>> nx.write_network_text(graph)
    ╙── 0 β•Ύ 1, 2
        β”œβ”€β•Ό 1 β•Ύ 2
        β”‚   β”œβ”€β•Ό 2 β•Ύ 0
        β”‚   β”‚   └─╼  ...
        β”‚   └─╼  ...
        └─╼  ...
    """
    if path is None:
        # The path is unspecified, write to stdout
        _write = sys.stdout.write
    elif hasattr(path, "write"):
        # The path is already an open file
        _write = path.write
    elif callable(path):
        # The path is a custom callable
        _write = path
    else:
        raise TypeError(type(path))

    for line in generate_network_text(
        graph,
        with_labels=with_labels,
        sources=sources,
        max_depth=max_depth,
        ascii_only=ascii_only,
        vertical_chains=vertical_chains,
    ):
        _write(line + end)


def _find_sources(graph):
    """
    Determine a minimal set of nodes such that the entire graph is reachable
    """
    # For each connected part of the graph, choose at least
    # one node as a starting point, preferably without a parent
    if graph.is_directed():
        # Choose one node from each SCC with minimum in_degree
        sccs = list(nx.strongly_connected_components(graph))
        # condensing the SCCs forms a dag, the nodes in this graph with
        # 0 in-degree correspond to the SCCs from which the minimum set
        # of nodes from which all other nodes can be reached.
        scc_graph = nx.condensation(graph, sccs)
        supernode_to_nodes = {sn: [] for sn in scc_graph.nodes()}
        # Note: the order of mapping differs between pypy and cpython
        # so we have to loop over graph nodes for consistency
        mapping = scc_graph.graph["mapping"]
        for n in graph.nodes:
            sn = mapping[n]
            supernode_to_nodes[sn].append(n)
        sources = []
        for sn in scc_graph.nodes():
            if scc_graph.in_degree[sn] == 0:
                scc = supernode_to_nodes[sn]
                node = min(scc, key=lambda n: graph.in_degree[n])
                sources.append(node)
    else:
        # For undirected graph, the entire graph will be reachable as
        # long as we consider one node from every connected component
        sources = [
            min(cc, key=lambda n: graph.degree[n])
            for cc in nx.connected_components(graph)
        ]
        sources = sorted(sources, key=lambda n: graph.degree[n])
    return sources


def forest_str(graph, with_labels=True, sources=None, write=None, ascii_only=False):
    """Creates a nice utf8 representation of a forest

    This function has been superseded by
    :func:`nx.readwrite.text.generate_network_text`, which should be used
    instead.

    Parameters
    ----------
    graph : nx.DiGraph | nx.Graph
        Graph to represent (must be a tree, forest, or the empty graph)

    with_labels : bool
        If True will use the "label" attribute of a node to display if it
        exists otherwise it will use the node value itself. Defaults to True.

    sources : List
        Mainly relevant for undirected forests, specifies which nodes to list
        first. If unspecified the root nodes of each tree will be used for
        directed forests; for undirected forests this defaults to the nodes
        with the smallest degree.

    write : callable
        Function to use to write to, if None new lines are appended to
        a list and returned. If set to the `print` function, lines will
        be written to stdout as they are generated. If specified,
        this function will return None. Defaults to None.

    ascii_only : Boolean
        If True only ASCII characters are used to construct the visualization

    Returns
    -------
    str | None :
        utf8 representation of the tree / forest

    Examples
    --------
    >>> graph = nx.balanced_tree(r=2, h=3, create_using=nx.DiGraph)
    >>> print(nx.forest_str(graph))
    ╙── 0
        β”œβ”€β•Ό 1
        β”‚   β”œβ”€β•Ό 3
        β”‚   β”‚   β”œβ”€β•Ό 7
        β”‚   β”‚   └─╼ 8
        β”‚   └─╼ 4
        β”‚       β”œβ”€β•Ό 9
        β”‚       └─╼ 10
        └─╼ 2
            β”œβ”€β•Ό 5
            β”‚   β”œβ”€β•Ό 11
            β”‚   └─╼ 12
            └─╼ 6
                β”œβ”€β•Ό 13
                └─╼ 14


    >>> graph = nx.balanced_tree(r=1, h=2, create_using=nx.Graph)
    >>> print(nx.forest_str(graph))
    ╙── 0
        └── 1
            └── 2

    >>> print(nx.forest_str(graph, ascii_only=True))
    +-- 0
        L-- 1
            L-- 2
    """
    msg = (
        "\nforest_str is deprecated as of version 3.1 and will be removed "
        "in version 3.3. Use generate_network_text or write_network_text "
        "instead.\n"
    )
    warnings.warn(msg, DeprecationWarning)

    if len(graph.nodes) > 0:
        if not nx.is_forest(graph):
            raise nx.NetworkXNotImplemented("input must be a forest or the empty graph")

    printbuf = []
    if write is None:
        _write = printbuf.append
    else:
        _write = write

    write_network_text(
        graph,
        _write,
        with_labels=with_labels,
        sources=sources,
        ascii_only=ascii_only,
        end="",
    )

    if write is None:
        # Only return a string if the custom write function was not specified
        return "\n".join(printbuf)


def _parse_network_text(lines):
    """Reconstructs a graph from a network text representation.

    This is mainly used for testing.  Network text is for display, not
    serialization, as such this cannot parse all network text representations
    because node labels can be ambiguous with the glyphs and indentation used
    to represent edge structure. Additionally, there is no way to determine if
    disconnected graphs were originally directed or undirected.

    Parameters
    ----------
    lines : list or iterator of strings
        Input data in network text format

    Returns
    -------
    G: NetworkX graph
        The graph corresponding to the lines in network text format.
    """
    from itertools import chain
    from typing import Any, NamedTuple, Union

    class ParseStackFrame(NamedTuple):
        node: Any
        indent: int
        has_vertical_child: Union[int, None]

    initial_line_iter = iter(lines)

    is_ascii = None
    is_directed = None

    ##############
    # Initial Pass
    ##############

    # Do an initial pass over the lines to determine what type of graph it is.
    # Remember what these lines were, so we can reiterate over them in the
    # parsing pass.
    initial_lines = []
    try:
        first_line = next(initial_line_iter)
    except StopIteration:
        ...
    else:
        initial_lines.append(first_line)
        # The first character indicates if it is an ASCII or UTF graph
        first_char = first_line[0]
        if first_char in {
            UtfBaseGlyphs.empty,
            UtfBaseGlyphs.newtree_mid[0],
            UtfBaseGlyphs.newtree_last[0],
        }:
            is_ascii = False
        elif first_char in {
            AsciiBaseGlyphs.empty,
            AsciiBaseGlyphs.newtree_mid[0],
            AsciiBaseGlyphs.newtree_last[0],
        }:
            is_ascii = True
        else:
            raise AssertionError(f"Unexpected first character: {first_char}")

    if is_ascii:
        directed_glyphs = AsciiDirectedGlyphs.as_dict()
        undirected_glyphs = AsciiUndirectedGlyphs.as_dict()
    else:
        directed_glyphs = UtfDirectedGlyphs.as_dict()
        undirected_glyphs = UtfUndirectedGlyphs.as_dict()

    # For both directed / undirected glyphs, determine which glyphs never
    # appear as substrings in the other undirected / directed glyphs.  Glyphs
    # with this property unambiguously indicates if a graph is directed /
    # undirected.
    directed_items = set(directed_glyphs.values())
    undirected_items = set(undirected_glyphs.values())
    unambiguous_directed_items = []
    for item in directed_items:
        other_items = undirected_items
        other_supersets = [other for other in other_items if item in other]
        if not other_supersets:
            unambiguous_directed_items.append(item)
    unambiguous_undirected_items = []
    for item in undirected_items:
        other_items = directed_items
        other_supersets = [other for other in other_items if item in other]
        if not other_supersets:
            unambiguous_undirected_items.append(item)

    for line in initial_line_iter:
        initial_lines.append(line)
        if any(item in line for item in unambiguous_undirected_items):
            is_directed = False
            break
        elif any(item in line for item in unambiguous_directed_items):
            is_directed = True
            break

    if is_directed is None:
        # Not enough information to determine, choose undirected by default
        is_directed = False

    glyphs = directed_glyphs if is_directed else undirected_glyphs

    # the backedge symbol by itself can be ambiguous, but with spaces around it
    # becomes unambiguous.
    backedge_symbol = " " + glyphs["backedge"] + " "

    # Reconstruct an iterator over all of the lines.
    parsing_line_iter = chain(initial_lines, initial_line_iter)

    ##############
    # Parsing Pass
    ##############

    edges = []
    nodes = []
    is_empty = None

    noparent = object()  # sentinel value

    # keep a stack of previous nodes that could be parents of subsequent nodes
    stack = [ParseStackFrame(noparent, -1, None)]

    for line in parsing_line_iter:
        if line == glyphs["empty"]:
            # If the line is the empty glyph, we are done.
            # There shouldn't be anything else after this.
            is_empty = True
            continue

        if backedge_symbol in line:
            # This line has one or more backedges, separate those out
            node_part, backedge_part = line.split(backedge_symbol)
            backedge_nodes = [u.strip() for u in backedge_part.split(", ")]
            # Now the node can be parsed
            node_part = node_part.rstrip()
            prefix, node = node_part.rsplit(" ", 1)
            node = node.strip()
            # Add the backedges to the edge list
            edges.extend([(u, node) for u in backedge_nodes])
        else:
            # No backedge, the tail of this line is the node
            prefix, node = line.rsplit(" ", 1)
            node = node.strip()

        prev = stack.pop()

        if node in glyphs["vertical_edge"]:
            # Previous node is still the previous node, but we know it will
            # have exactly one child, which will need to have its nesting level
            # adjusted.
            modified_prev = ParseStackFrame(
                prev.node,
                prev.indent,
                True,
            )
            stack.append(modified_prev)
            continue

        # The length of the string before the node characters give us a hint
        # about our nesting level. The only case where this doesn't work is
        # when there are vertical chains, which is handled explicitly.
        indent = len(prefix)
        curr = ParseStackFrame(node, indent, None)

        if prev.has_vertical_child:
            # In this case we know prev must be the parent of our current line,
            # so we don't have to search the stack. (which is good because the
            # indentation check wouldn't work in this case).
            ...
        else:
            # If the previous node nesting-level is greater than the current
            # nodes nesting-level than the previous node was the end of a path,
            # and is not our parent. We can safely pop nodes off the stack
            # until we find one with a comparable nesting-level, which is our
            # parent.
            while curr.indent <= prev.indent:
                prev = stack.pop()

        if node == "...":
            # The current previous node is no longer a valid parent,
            # keep it popped from the stack.
            stack.append(prev)
        else:
            # The previous and current nodes may still be parents, so add them
            # back onto the stack.
            stack.append(prev)
            stack.append(curr)

            # Add the node and the edge to its parent to the node / edge lists.
            nodes.append(curr.node)
            if prev.node is not noparent:
                edges.append((prev.node, curr.node))

    if is_empty:
        # Sanity check
        assert len(nodes) == 0

    # Reconstruct the graph
    cls = nx.DiGraph if is_directed else nx.Graph
    new = cls()
    new.add_nodes_from(nodes)
    new.add_edges_from(edges)
    return new