File size: 60,680 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
from __future__ import annotations

import ast
import builtins
import collections
import dataclasses
import enum
import functools
import importlib
import inspect
import itertools
import logging
import math
import os
import re
import sys
import textwrap
import types
import weakref
from inspect import currentframe, getframeinfo
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from weakref import ReferenceType


try:
    import numpy as np
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]

import torch
import torch.utils._device
from torch._dynamo.source import (
    is_from_local_source,
    TensorProperty,
    TensorPropertySource,
)

from torch._guards import (
    DuplicateInputs,
    Guard,
    GuardBuilderBase,
    GuardEnvExpr,
    GuardSource,
    Source,
)

from torch._logging import structured
from torch.fx.experimental.symbolic_shapes import (
    EqualityConstraint,
    is_symbolic,
    SYMPY_INTERP,
)
from torch.utils._traceback import format_frame, report_compile_source_on_error
from torch.utils.weak import TensorWeakRef

from . import config, convert_frame, exc, mutation_guard
from .eval_frame import set_guard_error_hook
from .source import AttrSource, DefaultsSource, LocalSource, TypeSource
from .types import CacheEntry, ExtraState, GuardedCode, GuardFail, GuardFn  # noqa: F401
from .utils import (
    common_constant_types,
    dict_keys_repr,
    guard_failures,
    istype,
    key_is_id,
    key_to_id,
    orig_code_map,
    tensor_always_has_static_shape,
    tuple_iterator_getitem,
    tuple_iterator_len,
)

log = logging.getLogger(__name__)
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
recompiles_verbose_log = torch._logging.getArtifactLogger(
    __name__, "recompiles_verbose"
)
verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards")

TensorGuards = torch._C._dynamo.guards.TensorGuards
check_obj_id = torch._C._dynamo.guards.check_obj_id
check_type_id = torch._C._dynamo.guards.check_type_id
dict_version = torch._C._dynamo.guards.dict_version


# For user stack printing
@functools.lru_cache(None)
def uninteresting_files():
    import torch._dynamo.external_utils

    mods = [
        torch._dynamo.external_utils,
    ]
    return {inspect.getfile(m) for m in mods}


CLOSURE_VARS = {
    "___check_type_id": check_type_id,
    "___check_obj_id": check_obj_id,
    "___odict_getitem": collections.OrderedDict.__getitem__,
    "___key_to_id": key_to_id,
    "___dict_version": dict_version,
    "___dict_contains": lambda a, b: a in b,
    "___tuple_iterator_len": tuple_iterator_len,
    "___tuple_iterator_getitem": tuple_iterator_getitem,
    "__math_isnan": math.isnan,
    "__numpy_isnan": None if np is None else np.isnan,
    "inf": float("inf"),
    "__load_module": importlib.import_module,
    "utils_device": torch.utils._device,
    "device": torch.device,
    "___from_numpy":
    # If not numpy array, piggy back on e.g. tensor guards to check type
    (lambda a: torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a),
    "torch": torch,
    "inspect": inspect,
}

if sys.version_info[:2] <= (3, 8):
    # [Note: Python Version <= 3.8]
    # This branch should be dropped when we drop support for Python 3.8.
    # Reason: 'ast.unparse' function was introduced in Python 3.9.

    try:
        import astunparse  # type: ignore[import]

        def _ast_unparse(node: ast.AST) -> str:
            return astunparse.unparse(node).replace("\n", "")

        HAS_UNPARSE_FUNCTIONS = True
    except ImportError:
        HAS_UNPARSE_FUNCTIONS = False
        pass
else:
    HAS_UNPARSE_FUNCTIONS = True

    def _ast_unparse(node: ast.AST) -> str:
        return ast.unparse(node).replace("\n", "")


def strip_function_call(name):
    """

    "___odict_getitem(a, 1)" => "a"

    "a.layers[slice(2)][0]._xyz" ==> "a"

    "getattr(a.layers[slice(2)][0]._abc, '0')" ==> "a"

    "getattr(getattr(a.x[3], '0'), '3')" ==> "a"

    "a.layers[slice(None, -1, None)][0]._xyz" ==> "a"

    """
    # recursively find valid object name in function
    valid_name = re.compile("[A-Za-z_].*")
    curr = ""
    for char in name:
        if char in " (":
            curr = ""
        elif char in "),[]":
            if curr and curr != "None" and valid_name.match(curr):
                return strip_function_call(curr)
        else:
            curr += char

    return strip_getattr_getitem(name)


def strip_getattr_getitem(name):
    """

    "a[1]" => "a"

    "a.foo" => "a"

    """
    return re.split(r"[.\[]", name)[0]


def get_verbose_code_part(code_part, guard):
    extra = ""
    if guard.user_stack:
        for fs in reversed(guard.user_stack):
            if fs.filename not in uninteresting_files():
                extra = f"  # {format_frame(fs, line=True)}"
                break
    elif guard.stack:
        extra = f"  # {format_frame(guard.stack.summary()[-1])}"

    return f"{code_part:<60}{extra}"


def convert_to_concrete_values(size_or_stride):
    converted: List[Optional[int]] = []
    for dim in size_or_stride:
        if not is_symbolic(dim):
            converted.append(dim)
        else:
            assert isinstance(dim, torch.SymInt)
            converted.append(dim.node.maybe_as_int())
    return converted


def get_tensor_guard_code_part(value, name, sizes, strides):
    pytype = type(value)
    dispatch_key = (
        torch._C._dispatch_keys(value) | torch._C._dispatch_tls_local_include_set()
    ) - torch._C._dispatch_tls_local_exclude_set()
    dtype = value.dtype
    device_index = value.device.index
    requires_grad = value.requires_grad
    guard_str = (
        f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, "
        f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})"
    )
    return guard_str


# The ready to eval generated code (possibly multiple parts) for a guard, plus
# the original guard object that created it for provenance
@dataclasses.dataclass
class GuardCodeList:
    code_list: List[str]
    guard: Guard


class GuardBuilder(GuardBuilderBase):
    def __init__(

        self,

        id_ref: Callable[[Any], str],

        source_ref: Callable[[Source], str],

        lookup_weakrefs: Callable[[object], ReferenceType[object]],

        local_scope: Dict[str, object],

        global_scope: Dict[str, object],

        check_fn_manager: CheckFunctionManager,

    ):
        self.id_ref = id_ref
        self.source_ref = source_ref
        self.lookup_weakrefs = lookup_weakrefs
        self.scope: Dict[str, Dict[str, object]] = {"L": local_scope, "G": global_scope}
        self.scope["__builtins__"] = builtins.__dict__.copy()
        for (
            name,
            package_module,
        ) in torch.package.package_importer._package_imported_modules.items():
            name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
            # Write the package module into the scope so that we can import it
            self.scope["__builtins__"][name] = package_module
            # Write the demangled name to the scope so that we can use it
            self.scope[name] = package_module

        self.argnames: List[str] = []
        # Code is python expression strings generated for each guard
        self.code: List[GuardCodeList] = []
        # shape_env_code is only used by builder and is used for
        # shape env code.  This exists only because we need to make sure
        # shape env guards get run after tensor match guards (since the
        # tensor match guards make sure we actually have tensors)
        self.shape_env_code: List[GuardCodeList] = []

        # [Note - On Eager Tensor Guards]
        # Most of the time, we generate Python code in a guard to directly
        # check various properties.  However, tensors are a bit special;
        # it is too slow to check their properties one-by-one in Python.
        # Instead, there is a C++ function TensorGuards.check which takes
        # all of the tensor arguments and checks them all against compile-time
        # examples entirely in C++.  Thus, every time we process a
        # TENSOR_MATCH guard, we just add another entry to
        # tensor_check_names/tensor_check_examples, saying "for this local,
        # check it against this example", and it all ends up getting
        # swept up into a single call to ___check_tensors.  Invariant:
        # len(tensor_check_names) == len(tensor_check_examples).
        # TODO: something here
        self.tensor_check_names: List[str] = []
        self.tensor_check_examples: List[torch.Tensor] = []
        self.tensor_check_guards: List[Guard] = []

        self.check_fn_manager: CheckFunctionManager = check_fn_manager
        # Keep track of weak references of objects with ID_MATCH guard. This
        # info is stored alongside optimized_code and check_fn and is used to
        # limit the number of cache entries with same ID_MATCH'd object.
        self.id_matched_objs: Dict[str, ReferenceType[object]] = {}

    # Warning: use this with care!  This lets you access what the current
    # value of the value you are guarding on is.  You probably don't want
    # to actually durably save this value though (because it's specific
    # to this frame!)  Instead, you should be reading out some property
    # (like its type) which is what you permanently install into the
    # guard code.
    def get(self, name: str) -> Any:
        return eval(name, self.scope, CLOSURE_VARS)

    # Registers the usage of the source name referenced by the
    # string (or stored in the Guard) as being guarded upon.  It's important
    # to call this before generating some code that makes use of 'guard',
    # because without this call, we won't actually bind the variable
    # you reference in the actual guard closure (oops!)
    def arg_ref(self, guard: Union[str, Guard]) -> str:
        name: str
        if isinstance(guard, str):
            name = guard
        else:
            name = guard.name
        base = strip_getattr_getitem(strip_function_call(name))
        if base not in self.argnames:
            if re.match(r"[a-zA-Z0-9_]+", base):
                if re.match(r"^\d+$", base):
                    log.warning("invalid var name: %s", guard)
                self.argnames.append(base)

        return name

    def _guard_on_attribute(self, guard: Guard, attr_name: str, guard_fn):
        attr_source = AttrSource(guard.originating_source, attr_name)
        # Copy the stack info
        new_guard = Guard(
            attr_source, guard_fn, stack=guard.stack, user_stack=guard.user_stack
        )
        new_guard.create(self)

    def TYPE_MATCH(self, guard: Guard) -> None:
        # ___check_type_id is same as `id(type(x)) == y`
        t = type(self.get(guard.name))
        obj_id = self.id_ref(t)
        code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
        self._produce_guard_code(guard, [code])

    def DICT_VERSION(self, guard: Guard):
        # ___check_dict_version is same as `dict_version(x) == y`
        ref = self.arg_ref(guard)
        version = dict_version(self.get(guard.name))
        code = f"___dict_version({ref}) == {version}"
        self._produce_guard_code(guard, [code])

    def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool):
        dict_ref = self.arg_ref(guard)

        maybe_not = "not " if invert else ""
        code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})"
        return self._produce_guard_code(guard, [code])

    def BOOL_FALSE(self, guard: Guard):
        # Guard on the runtime value being 'False',
        # can be faster than seemingly equivalent checks like DICT_KEYS for empty dict
        #
        # WARNING: this guard is not safe to use generally.  It only works if the runtime
        # value is of a type that supports bool(), and some types e.g. Tensor do not.
        # Only use this guard in cases you can guarantee the runtime type will be friendly.
        # (e.g. Specialized NNModule with mutation protection via setattr)
        #
        # Why not simply check the runtime type inside this guard?  It's slow enough to defeat
        # the purpose of using this guard, which itself is supposed to be a faster alternative
        # to DICT_KEYS.
        ref = self.arg_ref(guard)
        code = f"not {ref}"
        self._produce_guard_code(guard, [code])

    def ID_MATCH(self, guard: Guard):
        # ___check_obj_id is same as `id(x) == y`
        if isinstance(guard.originating_source, TypeSource):
            # optional optimization to produce cleaner/faster guard code
            return self.TYPE_MATCH(
                Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH)  # type: ignore[arg-type]
            )

        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        code = f"___check_obj_id({ref}, {self.id_ref(val)})"
        self._produce_guard_code(guard, [code])

        # Keep track of ID_MATCH'd objects. This will be used to modify the
        # cache size logic
        if isinstance(guard.originating_source, LocalSource):
            # TODO(janimesh) - This is currently restricted to nn.Module objects
            # because many other ID_MATCH'd objects fail - like DeviceMesh.
            # Increase the scope of ID_MATCH'd objects.
            if isinstance(val, torch.nn.Module):
                local_name = guard.originating_source.local_name
                weak_id = self.lookup_weakrefs(val)
                if weak_id is not None:
                    self.id_matched_objs[local_name] = weak_id

    def NAME_MATCH(self, guard: Guard):
        obj = self.get(guard.name)
        self._guard_on_attribute(guard, "__name__", GuardBuilder.EQUALS_MATCH)

    def DATA_PTR_MATCH(self, guard: Guard):
        obj = self.get(guard.name)
        code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}"
        self._produce_guard_code(guard, [code])

    def HASATTR(self, guard: Guard):
        assert isinstance(
            guard.originating_source, AttrSource
        ), f"invalid source {guard.name}"
        base_source = guard.originating_source.base
        base = base_source.name()
        attr = guard.originating_source.member

        ref = self.arg_ref(base)
        val = hasattr(self.get(base), attr)
        code = None
        if val:
            code = f"hasattr({ref}, {attr!r})"
        else:
            code = f"not hasattr({ref}, {attr!r})"

        self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base))

    def FUNCTORCH_STACK_MATCH(self, guard: Guard):
        # Invalidate functorch code if current level is different than
        # the one when FX graph was generated
        # if torch._C._functorch.peek_interpreter_stack() is not None:
        cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters()
        states = [ci.get_state() for ci in cis]
        code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"]
        self._produce_guard_code(guard, code)

    def EQUALS_MATCH(self, guard: Guard):
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        t = type(val)
        if np:
            np_types: Tuple[Type[Any], ...] = (
                np.int8,
                np.int16,
                np.int32,
                np.int64,
                np.uint8,
                np.uint16,
                np.uint32,
                np.uint64,
                np.float16,
                np.float32,
                np.float64,
            )
        else:
            np_types = ()
        ok_types = tuple(
            common_constant_types
            | {
                type,
                list,
                tuple,
                set,
                frozenset,
                slice,
                range,
                torch.Size,
                *np_types,
            }
        )
        if istype(val, dict):
            assert all(
                istype(x, ok_types) for x in itertools.chain(val.keys(), val.values())
            )
        else:
            assert istype(
                val,
                ok_types,
            ), f"Unexpected type {type(val)}, not in {ok_types}"

        # Special case for nan because float("nan") == float("nan") evaluates to False
        if istype(val, float) and math.isnan(val):
            self.TYPE_MATCH(guard)
            code = list()
            code.append(f"__math_isnan({ref})")
            self._produce_guard_code(guard, code)
            return
        # Python math library doesn't support complex nan, so we need to use numpy
        elif istype(val, complex) and np.isnan(val):
            self.TYPE_MATCH(guard)
            code = list()
            code.append(f"__numpy_isnan({ref})")
            self._produce_guard_code(guard, code)
            return

        code = list()

        # If matching equality against list/tuple, we must also check that
        # the internal types match.  (TODO: what about nested lists?)
        if istype(val, (list, tuple)):
            # NB: SEQUENCE_LENGTH takes care of the outer __check_type_id test
            self.SEQUENCE_LENGTH(guard)

            for idx, elem in enumerate(val):
                code.append(
                    f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})"
                )
        else:
            # Add type check to prevent equality check between tensor and non-tensor.
            self.TYPE_MATCH(guard)

        if istype(val, torch.Size):
            val = tuple(val)

        # Code object can not be compared against their string representation
        # I.e `eval(f"{compile('2+2','','exec')!r}")` raises SyntaxError
        assert not istype(val, types.CodeType)

        # TODO: It feels like it would be better to just implement our own
        # equality test in C that handles all of the necessary type checking
        # and NaN tests
        code.append(f"{ref} == {val!r}")
        self._produce_guard_code(guard, code)

    def CONSTANT_MATCH(self, guard: Guard):
        val = self.get(guard.name)
        if istype(val, (bool, type(None), types.CodeType)):
            self.ID_MATCH(guard)
        else:
            self.EQUALS_MATCH(guard)

    def NN_MODULE(self, guard: Guard):
        self.ID_MATCH(guard)
        ref = self.arg_ref(guard)
        val = self.get(guard.name)

        def setup_guard():
            assert istype(val.training, bool)
            self._guard_on_attribute(guard, "training", GuardBuilder.CONSTANT_MATCH)

        if hasattr(val, "training"):
            # There are cases where a monkeypatched object has a guard made between __new__ and __init__
            setup_guard()
        else:
            exc.unimplemented(f"Guard setup for uninitialized class {type(val)}")

    def FUNCTION_MATCH(self, guard: Guard):
        """things like torch.add and user defined functions"""
        if guard.is_local():
            return self.ID_MATCH(guard)

    def CLOSURE_MATCH(self, guard: Guard):
        """matches a closure by __code__ id."""
        if guard.is_local():
            val = self.get(guard.name)
            # Strictly only want user-defined functions
            if type(val) == types.FunctionType and hasattr(val, "__code__"):
                self._guard_on_attribute(guard, "__code__", GuardBuilder.HASATTR)
                self._guard_on_attribute(guard, "__code__", GuardBuilder.FUNCTION_MATCH)
            else:
                self.FUNCTION_MATCH(guard)

    def BUILTIN_MATCH(self, guard: Guard):
        return self.FUNCTION_MATCH(guard)

    def PYMODULE_MATCH(self, guard: Guard):
        return self.FUNCTION_MATCH(guard)

    def SEQUENCE_LENGTH(self, guard):
        # This guard is used to check lenght of PySequence objects like list,
        # tuple, collections.deque etc
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        self.TYPE_MATCH(guard)
        code = list()
        if len(value) == 0:
            code.append(f"not {ref}")
        else:
            code.append(f"len({ref}) == {len(value)}")

        self._produce_guard_code(guard, code)

    def DICT_LENGTH(self, guard):
        self.SEQUENCE_LENGTH(guard)

    def TUPLE_ITERATOR_LEN(self, guard):
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        self.TYPE_MATCH(guard)
        code = list()
        code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")

        self._produce_guard_code(guard, code)

    # TODO(voz): Deduplicate w/ AOTAutograd dupe input guards
    def DUPLICATE_INPUT(self, guard, source_b):
        ref_a = self.arg_ref(guard)
        ref_b = self.arg_ref(source_b.name())

        code = [f"{ref_b} is {ref_a}"]
        self._produce_guard_code(guard, code)

    def DICT_KEYS(self, guard):
        # Guard on the keys and their order
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        self.TYPE_MATCH(guard)
        code = list()
        any_key_is_id = any(key_is_id(k) for k in value.keys())
        const_keys_repr = dict_keys_repr(
            key_to_id(value),
            local=is_from_local_source(guard.originating_source),
        )
        if any_key_is_id:
            code.append(f"___key_to_id({ref}) == {const_keys_repr}")
        else:
            code.append(f"list({ref}.keys()) == {const_keys_repr}")

        self._produce_guard_code(guard, code)

    def WEAKREF_ALIVE(self, guard):
        self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"])

    def NN_MODULE_PARAM_NAMES(self, guard):
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)
        keys = {k for k, v in value.named_parameters()}

        self.TYPE_MATCH(guard)
        code = list()
        code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}")

        self._produce_guard_code(guard, code)

    def DICT_CONST_KEYS(self, guard):
        """Constant keys match"""
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        self.TYPE_MATCH(guard)
        code = list()
        code.append(f"list({ref}.keys()) == {list(value.keys())!r}")

        self._produce_guard_code(guard, code)

    def OBJECT_MUTATION(self, guard: Guard):
        mutation_guard.watch(self.get(guard.name), self.check_fn_manager)

    def GRAD_MODE(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def TORCH_FUNCTION_STATE(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def DEFAULT_DEVICE(self, guard: Guard):
        """Guard on CURRENT_DEVICE per torch.utils._device"""
        assert guard.source is GuardSource.GLOBAL
        import torch.utils._device as m

        self._produce_guard_code(
            guard, [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
        )

    def BACKEND_MATCH(self, guard: Guard):
        """Guard on backend matching based on id of current_backend"""
        assert guard.source is GuardSource.GLOBAL
        backend_id = (
            f"{id(torch._dynamo.eval_frame.guarded_backend_cache.current_backend)}"
        )
        code = [f"___check_current_backend({backend_id})"]
        self._produce_guard_code(guard, code)

    def SHAPE_ENV(self, guard: Guard):
        # Let's handle ShapeEnv guards.  To do this, we will resolve
        # shape variables to sources from tracked_fakes.  This must happen after
        # tensor checks.
        assert guard.name == ""
        output_graph = self.check_fn_manager.output_graph
        # NB: self.output_graph can be None in the debug_nops tests
        fs = output_graph.tracked_fakes
        input_contexts = [a.symbolic_context for a in fs]

        def get_sources(t_id, dim):
            # Looks up base sources mapped to a tensor id and uses them to create
            # sources for the corresponding tensor dimension.
            return [
                TensorPropertySource(source, TensorProperty.SIZE, dim)
                for source in output_graph.tracked_fakes_id_to_source[t_id]
            ]

        if output_graph.export_constraints:
            from sympy import Symbol

            source_pairs: List[Tuple[Source, Source]] = []
            derived_equalities: List[  # type: ignore[type-arg]
                Tuple[Source, Union[Source, Symbol], Callable]
            ] = []
            phantom_symbols: Dict[str, Symbol] = {}
            for constraint in output_graph.export_constraints:
                if constraint.t_id in output_graph.tracked_fakes_id_to_source:
                    torch.export.dynamic_shapes._process_equalities(
                        constraint,
                        get_sources,
                        output_graph.shape_env,
                        source_pairs,
                        derived_equalities,
                        phantom_symbols,
                    )
                else:
                    log.warning("Untracked tensor used in export constraints")
            equalities_inputs = EqualityConstraint(
                source_pairs=source_pairs,
                derived_equalities=derived_equalities,
                phantom_symbols=list(phantom_symbols.values()),
                warn_only=False,
            )
        else:
            equalities_inputs = None
        guards = output_graph.shape_env.produce_guards(
            [a.fake for a in fs],
            [a.source for a in fs],
            input_contexts=input_contexts,
            equalities_inputs=equalities_inputs,
            source_ref=self.source_ref,
            # Export keeps static.
            ignore_static=(not self.check_fn_manager.output_graph.export),
        )
        # When exporting, we may work with the shape constraints some more in
        # postprocessing, so don't freeze yet
        if not self.check_fn_manager.output_graph.export:
            output_graph.shape_env.freeze()
        for shape_guard in guards:
            self._produce_guard_code(guard, [shape_guard], shape_env=True)

    def TENSOR_MATCH(self, guard: Guard, value=None):
        if guard.is_nn_module() or guard.originating_source.is_dict_key():
            self.ID_MATCH(guard)
        else:
            if isinstance(value, TensorWeakRef):
                value = value()

            value = value if value is not None else self.get(guard.name)
            assert isinstance(value, torch.Tensor)

            tensor_name = self.arg_ref(guard)
            # [Note - On Export Tensor Guards]
            #
            # In eager mode, tensor guards are evaluated through C++, in guards.cpp
            # see [Note - On Eager Tensor Guards] for more info.
            #
            # In export mode, we instead maintain parallel logic between C++ and python
            # here, with an exception of checking the dispatch key - with the idea that a dispatch key
            # is an entirely runtime notion that would make no sense to keep in an exported graph.
            #
            # Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
            # not entirely true.
            # For example, suppose one of the input tensors had the negative dispatch key.
            # You should end up with a graph that is specialized for tensors that have a negative dispatch key.
            # If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
            # Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
            # support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
            # TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
            # subset of keys during export.
            #
            # The list of tensor fields and calls we care about can be found in `terms` below.
            # TODO(voz): We are missing storage offset in all our tensor guards?
            code: List[str] = list()
            if self.check_fn_manager.output_graph.export:
                self.TYPE_MATCH(guard)
                terms = [
                    "dtype",
                    "device",
                    "requires_grad",
                    "ndimension()",
                ]

                for term in terms:
                    real_value = self.get(tensor_name + "." + term)
                    if istype(real_value, (torch.device, torch.dtype)):
                        # copy pasted from EQUALS_MATCH
                        code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}")
                    else:
                        code.append(f"{tensor_name}.{term} == {real_value}")
            else:
                self.tensor_check_names.append(tensor_name)
                self.tensor_check_examples.append(value)
                self.tensor_check_guards.append(guard)

            # A frame is valid for reuse with dynamic dimensions if the new
            # (user-requested) dynamic dimensions are a subset of the old
            # (already compiled) dynamic dimensions.
            #
            # It's a little non-obvious why you'd want this: in particular,
            # if an already compiled frame matches all of the guards, why
            # not just use it, why force a recompile?
            #
            # We force it for two reasons:
            #
            #   - The user *required* us to compile with a new dynamic dimension,
            #     we should not ignore that and serve up the old, specialized
            #     frame.  Listen to the user!
            #
            #   - In fact, we are obligated to *raise an error* if we fail to
            #     make the requested dimension dynamic.  If we don't
            #     recompile, we can't tell if that dimension can actually be
            #     made dynamic.
            #
            # If the new dynamic dims are a subset of the old, we already know
            # we can make them dynamic (since we made them dynamic in old).
            # This is slightly unsound, because maybe your input size is
            # [s0, s0, s1] and so you can do it dynamic if you say dynamic
            # dims {0, 1, 2} but you can't if you only do {0, 2} (because now
            # the second s0 is specialized).  But we're not entirely sure if
            # this is a good idea anyway lol... (if you want to try removing
            # this logic, be my guest!  -- ezyang 2024)
            #
            assert guard.source is not None
            static, reason = tensor_always_has_static_shape(
                value, is_tensor=True, guard_source=guard.source
            )
            if not static:
                if hasattr(value, "_dynamo_dynamic_indices"):
                    code.append(
                        f"(({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)"  # noqa: B950
                    )
                # In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
                # raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
                else:
                    code.append(
                        f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
                    )
            if len(code) > 0:
                self._produce_guard_code(guard, code)

    # A util that appends guarded code, or, in the case of export, adds data onto guards
    def _produce_guard_code(

        self, guard, code_list, provided_guarded_object=None, shape_env=False

    ):
        # WARNING: It is important that cur_frame/caller do NOT stay in
        # the current frame, because they will keep things live longer
        # than they should.  See TestMisc.test_release_module_memory
        cur_frame = currentframe()
        assert cur_frame is not None
        caller = cur_frame.f_back
        del cur_frame
        assert caller is not None
        func_name = getframeinfo(caller)[2]
        del caller
        # We use func_name for export, so might as well get a nice defensive check out of it
        assert func_name in dir(
            self.__class__
        ), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"

        if shape_env:
            self.shape_env_code.append(GuardCodeList(code_list, guard))
        else:
            self.code.append(GuardCodeList(code_list, guard))

        # Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
        if provided_guarded_object is None:
            name_valid = guard.name is not None and guard.name != ""

            guarded_object = self.get(guard.name) if name_valid else None
        else:
            guarded_object = provided_guarded_object

        guarded_object_type = (
            weakref.ref(type(guarded_object)) if guarded_object is not None else None
        )
        obj_ref = None
        # Not necessary to have weakref for Enum type, but there is a bug that
        # makes hasattr(guarded_object.__class__, "__weakref__") return True.
        if hasattr(guarded_object.__class__, "__weakref__") and not isinstance(
            guarded_object, enum.Enum
        ):
            obj_ref = weakref.ref(guarded_object)

        guard.set_export_info(
            func_name,
            guarded_object_type,
            code_list,
            obj_ref,
        )


# Common Sub-Expression Elimination for Python expressions.
#
# There are 2 steps to this pass:
#     1. Count the frequency of each sub-expression (i.e. inner
#        node in the AST tree)
#
#     2. Replace those that occur more than once by a fresh variable 'v'.
#        'v' will be defined in the 'preface' list (output argument to
#        'NodeTransformer')
#
# NB: the use of 'ast.unparse' while visiting the nodes makes this pass
# quadratic on the depth of the tree.
#
# NB: this pass creates a new variable for each AST node that is repeated
# more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c'
# and 'a.b' are also used 10 times. So, there will be a new variable for
# each of them.
class PyExprCSEPass:
    # Maximum number of times a given expression can be used without being
    # replaced by a fresh variable.
    USE_THRESHOLD = 1

    # Ad-Hoc: AST nodes this pass focuses on.
    ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript)

    @dataclasses.dataclass
    class Config:
        expr_count: Dict[str, int]
        expr_to_name: Dict[str, str]

    class ExprCounter(ast.NodeVisitor):
        def __init__(self, config: PyExprCSEPass.Config) -> None:
            self._config = config

        def visit(self, node: ast.AST) -> Any:
            if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
                self._config.expr_count[_ast_unparse(node)] += 1
            super().visit(node)

    class Replacer(ast.NodeTransformer):
        def __init__(

            self,

            config: PyExprCSEPass.Config,

            gen_name: Callable[[], str],

        ) -> None:
            super().__init__()
            self._config = config
            self._gen_name = gen_name
            self.preface: List[str] = []

        def visit(self, node: ast.AST) -> Any:
            if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
                expr = _ast_unparse(node)

                # Replacement only occurs if a given expression is used more
                # than once.
                if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD:
                    if expr not in self._config.expr_to_name:
                        # Parent 'visit' is called so that we CSE the inner expressions first.
                        #
                        # The resulting expression is used as right-hand-side of the variable
                        # assignment. i.e. we are CSE-ing the children before the parents.
                        #
                        # Indexing still uses the old 'node', since that's what was counted
                        # by the 'NodeVisitor'.
                        node_ = super().visit(node)
                        expr_ = _ast_unparse(node_)
                        var_name = self._gen_name()
                        self.preface.append(f"{var_name} = {expr_}")
                        self._config.expr_to_name[expr] = var_name
                    else:
                        var_name = self._config.expr_to_name[expr]
                    return ast.Name(var_name, ast.Load())

            return super().visit(node)

    def __init__(self) -> None:
        self._counter = 0
        self._config = self.Config(
            expr_count=collections.defaultdict(lambda: 0), expr_to_name={}
        )

    def _new_var(self, prefix: str = "_var") -> str:
        name = f"{prefix}{self._counter}"
        self._counter += 1
        return name

    def count(self, exprs: List[str]) -> None:
        counter = self.ExprCounter(self._config)
        for e in exprs:
            try:
                counter.visit(ast.parse(e))
            except SyntaxError as ex:
                log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e)
                raise

    def replace(self, expr: str) -> Tuple[List[str], str]:
        replacer = self.Replacer(self._config, self._new_var)
        new_node = replacer.visit(ast.parse(expr))
        return replacer.preface, _ast_unparse(new_node)


def must_add_nn_module_guards(guard):
    # For config.guard_nn_modules=False, we can skip all the guards that
    # originate from inside of nn module except for a few categories.
    return (
        # Guard for defaults
        isinstance(guard.originating_source, DefaultsSource)
        # Guard using dict tags if the config flag is set
        or (
            config.guard_nn_modules_using_dict_tags
            and guard.create_fn is GuardBuilder.NN_MODULE
        )
    )


class DeletedGuardFn:
    pass


# NB: Naively, you'd expect this to only be a function that produces
# the callable that constitutes the guard.  However, there is some
# delicate handling for invalidating this check function when the
# locals/globals get invalidated, so there's some extra state
# we have to hold in this manager class.
class CheckFunctionManager:
    def __init__(

        self,

        output_graph=None,

        guard_fail_fn: Optional[Callable[[GuardFail], None]] = None,

    ):
        guards = output_graph.guards if output_graph else None
        self._weakrefs: Dict[int, ReferenceType[object]] = {}
        self.output_graph = output_graph
        w_builder = None

        def source_ref(source):
            guard_source = source.guard_source()
            if guard_source is GuardSource.CONSTANT:
                # No need to track constants
                return source.name()
            assert w_builder
            r_builder = w_builder()
            assert r_builder is not None
            return r_builder.arg_ref(source.name())

        builder = GuardBuilder(
            self.id_ref,
            source_ref,
            self.lookup_weakrefs,
            output_graph.local_scope,
            output_graph.global_scope,
            self,
        )

        # Break retain cycle. See test_release_scope_memory
        def cleanup_builder(weak_b):
            b = weak_b()
            if b:
                b.scope = None

        # Break retain cycle. See test_release_input_memory
        w_builder = weakref.ref(builder, cleanup_builder)

        for guard in sorted(guards or [], key=Guard.sort_key):
            if (
                not config.guard_nn_modules
                and guard.is_nn_module()
                # Default func args must be guarded on.
                # TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
                and "__defaults__" not in guard.name
                and "__kwdefaults__" not in guard.name
                and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
            ):
                continue

            guard.create(builder)
        self.check_fn = self.compile_check_fn(builder, guards, guard_fail_fn)
        # Keep track of weak references of objects with ID_MATCH guard. This
        # info is stored alongside optimized_code and check_fn and is used to
        # limit the number of cache entries with same ID_MATCH'd object.
        # TODO(janimesh) - Currently this information is stored as an attr on
        # the check_fn itself to avoid changing CacehEntry datastructure in
        # eval_frame.c. In future, we should probably replace check_fn with a
        # queryable data structure such that this information is already present
        # in some form.
        self.check_fn.id_matched_objs = builder.id_matched_objs

        # NB - We have to very careful of cleaning up here. Because of the
        # invalidate function, we can create a weakref finalizer that keeps
        # `self` alive for very long. Sometimes by mistake, we can run
        # invalidate for a type/object (check id_ref method) that Python can
        # leak by design, preventing us from calling the finalizer. In that
        # case, the `self` will be alive even though the cache entry will be
        # deleted (check invalidate method), which can cause a memory leak,
        # e.g., not setting output_graph = None can keep hold of nn_modules.
        self._weakrefs.clear()
        self.output_graph = None

    def compile_check_fn(self, builder, guards_out, guard_fail_fn):
        # see parallel handling of ".0" / "___implicit0" in _eval_frame.c
        largs = builder.argnames
        largs += ["**___kwargs_ignored"]

        guards_log.debug("GUARDS:")

        # Don't report this guard, it's always the same, useless!
        code_parts = ["___check_global_state()"]
        verbose_code_parts = code_parts[:]
        structured_guard_fns = []

        def add_code_part(code_part, guard, log_only=False):
            verbose_code_part = get_verbose_code_part(code_part, guard)
            guards_log.debug("%s", verbose_code_part)

            structured_guard_fns.append(
                lambda: {
                    "code": code_part,
                    "stack": structured.from_traceback(guard.stack.summary())
                    if guard.stack
                    else None,
                    "user_stack": structured.from_traceback(guard.user_stack)
                    if guard.user_stack
                    else None,
                }
            )

            if verbose_guards_log.isEnabledFor(logging.DEBUG):
                maybe_stack = ""
                maybe_user_stack = ""
                if guard is not None:
                    if guard.stack:
                        maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}"
                    if guard.user_stack:
                        maybe_user_stack = (
                            f"\nUser stack:\n{''.join(guard.user_stack.format())}"
                        )
                verbose_guards_log.debug(
                    "Guard: %s%s%s",
                    code_part,
                    maybe_stack,
                    maybe_user_stack,
                )

            if not log_only:
                code_parts.append(code_part)
                verbose_code_parts.append(verbose_code_part)

        seen = set()
        for gcl in builder.code:
            for code in gcl.code_list:
                if code not in seen:
                    add_code_part(code, gcl.guard)
                    seen.add(code)

        tensor_check_names = builder.tensor_check_names
        check_tensors_fn = None
        check_tensors_verbose_fn = None
        if tensor_check_names:
            assert (
                not self.output_graph.export
            ), "Illegal to set tensor_check_names in export."
            tensor_check_examples = builder.tensor_check_examples

            dynamic_dims_sizes = [
                convert_to_concrete_values(
                    self.output_graph.tensor_weakref_to_sizes_strides[t]["size"]
                )
                for t in tensor_check_examples
            ]

            dynamic_dims_strides = [
                convert_to_concrete_values(
                    self.output_graph.tensor_weakref_to_sizes_strides[t]["stride"]
                )
                for t in tensor_check_examples
            ]

            tensor_guards = TensorGuards(
                *tensor_check_examples,
                dynamic_dims_sizes=dynamic_dims_sizes,
                dynamic_dims_strides=dynamic_dims_strides,
            )
            check_tensors_fn = tensor_guards.check
            check_tensors_verbose_fn = tensor_guards.check_verbose
            tensor_check_args = ", ".join(
                tensor_check_names + ["tensor_check_names=tensor_check_names"]
            )
            # Do this manually, to un-stagger the guards in log message
            code_parts.append(f"___check_tensors({tensor_check_args})")
            verbose_code_parts.append(f"___check_tensors({tensor_check_args})")
            tensor_check_guards = builder.tensor_check_guards

            for i, name in enumerate(tensor_check_names):
                # This is a copy of what guards.cpp checks against
                # Keep this in sync with TensorCheck constructor
                t = tensor_check_examples[i]
                sizes = dynamic_dims_sizes[i]
                strides = dynamic_dims_strides[i]
                code_part = get_tensor_guard_code_part(t, name, sizes, strides)
                add_code_part(code_part, tensor_check_guards[i], log_only=True)

        aotautograd_guards: List[GuardEnvExpr] = (
            self.output_graph.tracing_context.guards_context.aotautograd_guards
            if self.output_graph
            else []
        )
        for guard in aotautograd_guards:
            if isinstance(guard, DuplicateInputs):
                source_a = guard.input_source_a
                source_b = guard.input_source_b
                add_code_part(f"{source_a.name()} is {source_b.name()}", None)
            else:
                raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")

        # TODO: the "guard" here is actually just the top level SHAPE_ENV
        # which is useless.  Get ShapeEnv to pass in more provenance.
        for gcl in builder.shape_env_code:
            for code in gcl.code_list:
                add_code_part(code, gcl.guard)

        # OK, all done generating guards
        torch._logging.trace_structured(
            "dynamo_guards", payload_fn=lambda: [f() for f in structured_guard_fns]
        )

        global_state = convert_frame.initial_global_state
        if global_state is None:
            # we should only hit this case in NopTests()
            global_state = convert_frame.GlobalStateGuard()
        closure_vars = {
            "___check_tensors": check_tensors_fn,
            "___check_tensors_verbose": check_tensors_verbose_fn,
            "___check_global_state": global_state.check,
            "___check_current_backend": torch._dynamo.eval_frame.check_current_backend,
            "tensor_check_names": tensor_check_names,
            **SYMPY_INTERP,
            **CLOSURE_VARS,
        }

        unique_code_parts = list(unique(code_parts))
        make_guard_fn_args = ", ".join(closure_vars.keys())
        guard_body, pycode = build_guard_function(unique_code_parts, make_guard_fn_args)

        if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1":
            print("GUARDS\n", guard_body)

        out: Dict[str, Any] = dict()

        # We don't put builder.scope as the globals in exec call because
        # guard_fn.__globals__ becomes equal to builder.scope. This causes
        # guard_fn to hold a referece to f_locals sitting in builder.scope["L"]
        globals_for_guard_fn = {"G": builder.scope["G"]}
        try:
            exec(pycode, globals_for_guard_fn, out)
        except SyntaxError as ex:
            log.exception("Failed to exec guard at line %s.\n%s", ex.lineno, pycode)
            raise
        guard_fn = out["___make_guard_fn"](*closure_vars.values())
        guard_fn.closure_vars = closure_vars
        # TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both
        guard_fn.args = largs
        guard_fn.code_parts = code_parts
        guard_fn.verbose_code_parts = verbose_code_parts
        # Grab only G, but preserve "G" because guards access it as "G"
        guard_fn.global_scope = globals_for_guard_fn
        guard_fn.guard_fail_fn = guard_fail_fn
        # will be populated by a non-owning reference to CacheEntry/ExtraState
        # when the CacheEntry is constructed
        guard_fn.cache_entry = None
        guard_fn.extra_state = None
        return guard_fn

    def invalidate(self):
        # Some tests reveal that CheckFunctionManager has no attribute
        # check_fn, but this case should not be of any concern.
        # This case doesn't seem easy to repro.
        if (
            hasattr(self, "check_fn")
            and self.check_fn is not DeletedGuardFn
            and (cache_entry := self.check_fn.cache_entry) is not None
            and (extra_state := self.check_fn.extra_state) is not None
        ):
            assert isinstance(cache_entry, CacheEntry)
            assert isinstance(extra_state, ExtraState)
            extra_state.invalidate(cache_entry)
            self.check_fn.cache_entry = None
            self.check_fn.extra_state = None
            self.check_fn = DeletedGuardFn

    def id_ref(self, obj):
        """add a weakref, return the id"""
        try:
            if id(obj) not in self._weakrefs:
                # We will clear the _weakrefs dict at the end of __init__
                # function, which will delete the callbacks as well. Therefore,
                # we are using a finalizer which is kept alive.
                self._weakrefs[id(obj)] = weakref.ref(obj)
                weakref.finalize(obj, self.invalidate)
        except TypeError:
            pass  # cannot weakref bool object
        return id(obj)

    def lookup_weakrefs(self, obj):
        """Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects"""
        if id(obj) in self._weakrefs:
            return self._weakrefs[id(obj)]
        return None


def build_guard_function(code_parts, closure_args) -> Tuple[str, str]:
    from torch._inductor.utils import IndentedBuffer

    if HAS_UNPARSE_FUNCTIONS:
        csepass = PyExprCSEPass()
        csepass.count(code_parts)

        def replace(expr: str) -> Tuple[List[str], str]:
            return csepass.replace(expr)

    else:

        def replace(expr: str) -> Tuple[List[str], str]:
            return [], expr

    # Generate the inner body of the guard function.
    # i.e. if-chain of the guard expressions.
    guard_body = IndentedBuffer()
    for expr in code_parts:
        preface, expr = replace(expr)
        guard_body.writelines(preface)
        guard_body.writeline(f"if not ({expr}):")
        with guard_body.indent():
            guard_body.writeline("return False")

    # Wrap the inner body into the actual guard function.
    guard = IndentedBuffer()
    guard.writeline("def guard(L):")
    with guard.indent():
        guard.splice(guard_body)
        guard.writeline("return True")

    # Wrap the whole guard function into another function
    # with the closure variables.
    make_guard_fn = IndentedBuffer()
    make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):")
    with make_guard_fn.indent():
        make_guard_fn.splice(guard)
        make_guard_fn.writeline("return guard")

    return guard_body.getvalue(), make_guard_fn.getvalue()


def is_recompiles_enabled():
    return torch._logging._internal.log_state.is_artifact_enabled("recompiles")


def is_recompiles_verbose_enabled():
    return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose")


def get_guard_fail_reason(

    guard_fn: GuardFn,

    code: types.CodeType,

    f_locals: Dict[str, object],

) -> str:
    """

    Return the reason why `guard_fn` failed.

    Updates `guard_failures` with the generated reason.

    Only the first failed check of guard_fn is reported.

    """
    scope = {"L": f_locals, "G": guard_fn.global_scope["G"]}
    scope.update(guard_fn.closure_vars)
    scope["___check_tensors"] = scope["___check_tensors_verbose"]
    reasons: List[str] = []
    for part in guard_fn.verbose_code_parts:
        global_scope = dict(guard_fn.global_scope)
        global_scope["__compile_source__"] = part
        with report_compile_source_on_error():
            try:
                fail_reason = eval(part, global_scope, scope)
            except Exception as e:
                if is_recompiles_verbose_enabled():
                    continue
                else:
                    raise
        # Only ___check_tensors knows how to return a fancy fail reason;
        # for everything else we just report the code that failed

        if isinstance(fail_reason, bool) and not fail_reason:
            fail_reason = part
        if isinstance(fail_reason, str):
            reasons.append(fail_reason)
            if not is_recompiles_verbose_enabled():
                break

    reason_str = "\n".join(reasons)
    guard_failures[orig_code_map[code]].append(reason_str)

    try:
        if guard_fn.guard_fail_fn is not None:
            guard_fn.guard_fail_fn(
                GuardFail(reason_str or "unknown reason", orig_code_map[code])
            )
    except Exception as e:
        log.exception(
            "Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
        )

    return reason_str


def get_and_maybe_log_recompilation_reason(

    cache_entry, frame: types.FrameType

) -> List[str]:
    """

    Return the list of guard failure reasons using cache_entry.

    Logs the recompilation reason if `recompiles` logging is enabled.

    Raises a RecompileError if `config.error_on_recompile` is enabled.

    """
    reasons = []
    while cache_entry is not None:
        reason = get_guard_fail_reason(
            cache_entry.check_fn, cache_entry.code, frame.f_locals
        )
        if reason:
            reasons.append(reason)
        cache_entry = cache_entry.next

    code = frame.f_code

    # at least one of "recompiles" or "recompiles_verbose" is enabled
    do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled()

    if do_recompiles_log or config.error_on_recompile:
        if is_recompiles_verbose_enabled():
            failures = "\n\n".join(
                f"guard {i} failures:\n" + textwrap.indent(reason, "- ")
                for i, reason in enumerate(reasons)
            )
        else:
            failures = textwrap.indent("\n".join(reasons), "- ")
        guard_failure_details = (
            f"triggered by the following guard failure(s):\n{failures}"
        )
        message = (
            f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n"
            f"{textwrap.indent(guard_failure_details, '    ')}"
        )
        if do_recompiles_log:
            if is_recompiles_verbose_enabled():
                recompiles_verbose_log.debug(message)
            else:
                recompiles_log.debug(message)
        if config.error_on_recompile:
            raise exc.RecompileError(message)

    return reasons


def guard_error_hook(

    guard_fn: GuardFn,

    code: types.CodeType,

    f_locals: Dict[str, object],

    index: int,

    last: bool,

):
    print(
        f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
    )
    print("lambda " + ", ".join(guard_fn.args) + ":")
    print(" ", " and\n  ".join(guard_fn.code_parts))
    local_scope = {"L": f_locals, **guard_fn.closure_vars}
    for guard in guard_fn.code_parts:
        try:
            eval(guard, guard_fn.global_scope, local_scope)
        except:  # noqa: B001,E722
            print(f"Malformed guard:\n{guard}")


set_guard_error_hook(guard_error_hook)


def unique(seq):
    seen = set()
    for x in seq:
        if x not in seen:
            yield x
            seen.add(x)


def make_dupe_guard(obj_source, dupe_source):
    # Note - we may end up in a situation where we invoke something like
    # def fn(x, y)
    # with fn(x, x)
    # Prior to the addition of tracking to all relevant objects, we would handle this just fine by
    # eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However,
    # with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here -
    # In the fn(x, x) example call above look like a graph with a single input.
    # In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard.

    # Note - we may not have a source, that is fine, it just means we had an object that is safe to have
    # leave unsourced - like a local list created and discharged entirely within a local scope.
    if dupe_source and dupe_source != obj_source:
        ser_source_is_local = is_from_local_source(dupe_source)
        source_is_local = is_from_local_source(obj_source)
        # Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently
        # reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here,
        # so maybe we should do this refactor before we land this...
        # TODO(voz): Combine local and global guard builders.
        if ser_source_is_local == source_is_local:
            # Note - this is a little aggressive - these being duplicate input does not always matter.
            # However, this should always be a sound guard to add here.
            return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source)
    return None


def install_guard(*guards, skip=0):
    """

    Add dynamo guards to the current tracing context.



    Args:

        guards: guard(s) to add

        skip: number of stack frames to ignore for debug stack trace

    """
    from torch._guards import TracingContext

    collect_debug_stack = guards_log.isEnabledFor(
        logging.DEBUG
    ) or verbose_guards_log.isEnabledFor(logging.DEBUG)
    add = TracingContext.get().guards_context.dynamo_guards.add
    for guard in guards:
        assert isinstance(guard, Guard)
        add(guard, collect_debug_stack=collect_debug_stack, skip=skip + 1)