Spaces:
Running
Running
File size: 60,680 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 |
from __future__ import annotations
import ast
import builtins
import collections
import dataclasses
import enum
import functools
import importlib
import inspect
import itertools
import logging
import math
import os
import re
import sys
import textwrap
import types
import weakref
from inspect import currentframe, getframeinfo
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from weakref import ReferenceType
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
import torch
import torch.utils._device
from torch._dynamo.source import (
is_from_local_source,
TensorProperty,
TensorPropertySource,
)
from torch._guards import (
DuplicateInputs,
Guard,
GuardBuilderBase,
GuardEnvExpr,
GuardSource,
Source,
)
from torch._logging import structured
from torch.fx.experimental.symbolic_shapes import (
EqualityConstraint,
is_symbolic,
SYMPY_INTERP,
)
from torch.utils._traceback import format_frame, report_compile_source_on_error
from torch.utils.weak import TensorWeakRef
from . import config, convert_frame, exc, mutation_guard
from .eval_frame import set_guard_error_hook
from .source import AttrSource, DefaultsSource, LocalSource, TypeSource
from .types import CacheEntry, ExtraState, GuardedCode, GuardFail, GuardFn # noqa: F401
from .utils import (
common_constant_types,
dict_keys_repr,
guard_failures,
istype,
key_is_id,
key_to_id,
orig_code_map,
tensor_always_has_static_shape,
tuple_iterator_getitem,
tuple_iterator_len,
)
log = logging.getLogger(__name__)
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
recompiles_verbose_log = torch._logging.getArtifactLogger(
__name__, "recompiles_verbose"
)
verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards")
TensorGuards = torch._C._dynamo.guards.TensorGuards
check_obj_id = torch._C._dynamo.guards.check_obj_id
check_type_id = torch._C._dynamo.guards.check_type_id
dict_version = torch._C._dynamo.guards.dict_version
# For user stack printing
@functools.lru_cache(None)
def uninteresting_files():
import torch._dynamo.external_utils
mods = [
torch._dynamo.external_utils,
]
return {inspect.getfile(m) for m in mods}
CLOSURE_VARS = {
"___check_type_id": check_type_id,
"___check_obj_id": check_obj_id,
"___odict_getitem": collections.OrderedDict.__getitem__,
"___key_to_id": key_to_id,
"___dict_version": dict_version,
"___dict_contains": lambda a, b: a in b,
"___tuple_iterator_len": tuple_iterator_len,
"___tuple_iterator_getitem": tuple_iterator_getitem,
"__math_isnan": math.isnan,
"__numpy_isnan": None if np is None else np.isnan,
"inf": float("inf"),
"__load_module": importlib.import_module,
"utils_device": torch.utils._device,
"device": torch.device,
"___from_numpy":
# If not numpy array, piggy back on e.g. tensor guards to check type
(lambda a: torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a),
"torch": torch,
"inspect": inspect,
}
if sys.version_info[:2] <= (3, 8):
# [Note: Python Version <= 3.8]
# This branch should be dropped when we drop support for Python 3.8.
# Reason: 'ast.unparse' function was introduced in Python 3.9.
try:
import astunparse # type: ignore[import]
def _ast_unparse(node: ast.AST) -> str:
return astunparse.unparse(node).replace("\n", "")
HAS_UNPARSE_FUNCTIONS = True
except ImportError:
HAS_UNPARSE_FUNCTIONS = False
pass
else:
HAS_UNPARSE_FUNCTIONS = True
def _ast_unparse(node: ast.AST) -> str:
return ast.unparse(node).replace("\n", "")
def strip_function_call(name):
"""
"___odict_getitem(a, 1)" => "a"
"a.layers[slice(2)][0]._xyz" ==> "a"
"getattr(a.layers[slice(2)][0]._abc, '0')" ==> "a"
"getattr(getattr(a.x[3], '0'), '3')" ==> "a"
"a.layers[slice(None, -1, None)][0]._xyz" ==> "a"
"""
# recursively find valid object name in function
valid_name = re.compile("[A-Za-z_].*")
curr = ""
for char in name:
if char in " (":
curr = ""
elif char in "),[]":
if curr and curr != "None" and valid_name.match(curr):
return strip_function_call(curr)
else:
curr += char
return strip_getattr_getitem(name)
def strip_getattr_getitem(name):
"""
"a[1]" => "a"
"a.foo" => "a"
"""
return re.split(r"[.\[]", name)[0]
def get_verbose_code_part(code_part, guard):
extra = ""
if guard.user_stack:
for fs in reversed(guard.user_stack):
if fs.filename not in uninteresting_files():
extra = f" # {format_frame(fs, line=True)}"
break
elif guard.stack:
extra = f" # {format_frame(guard.stack.summary()[-1])}"
return f"{code_part:<60}{extra}"
def convert_to_concrete_values(size_or_stride):
converted: List[Optional[int]] = []
for dim in size_or_stride:
if not is_symbolic(dim):
converted.append(dim)
else:
assert isinstance(dim, torch.SymInt)
converted.append(dim.node.maybe_as_int())
return converted
def get_tensor_guard_code_part(value, name, sizes, strides):
pytype = type(value)
dispatch_key = (
torch._C._dispatch_keys(value) | torch._C._dispatch_tls_local_include_set()
) - torch._C._dispatch_tls_local_exclude_set()
dtype = value.dtype
device_index = value.device.index
requires_grad = value.requires_grad
guard_str = (
f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, "
f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})"
)
return guard_str
# The ready to eval generated code (possibly multiple parts) for a guard, plus
# the original guard object that created it for provenance
@dataclasses.dataclass
class GuardCodeList:
code_list: List[str]
guard: Guard
class GuardBuilder(GuardBuilderBase):
def __init__(
self,
id_ref: Callable[[Any], str],
source_ref: Callable[[Source], str],
lookup_weakrefs: Callable[[object], ReferenceType[object]],
local_scope: Dict[str, object],
global_scope: Dict[str, object],
check_fn_manager: CheckFunctionManager,
):
self.id_ref = id_ref
self.source_ref = source_ref
self.lookup_weakrefs = lookup_weakrefs
self.scope: Dict[str, Dict[str, object]] = {"L": local_scope, "G": global_scope}
self.scope["__builtins__"] = builtins.__dict__.copy()
for (
name,
package_module,
) in torch.package.package_importer._package_imported_modules.items():
name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
# Write the package module into the scope so that we can import it
self.scope["__builtins__"][name] = package_module
# Write the demangled name to the scope so that we can use it
self.scope[name] = package_module
self.argnames: List[str] = []
# Code is python expression strings generated for each guard
self.code: List[GuardCodeList] = []
# shape_env_code is only used by builder and is used for
# shape env code. This exists only because we need to make sure
# shape env guards get run after tensor match guards (since the
# tensor match guards make sure we actually have tensors)
self.shape_env_code: List[GuardCodeList] = []
# [Note - On Eager Tensor Guards]
# Most of the time, we generate Python code in a guard to directly
# check various properties. However, tensors are a bit special;
# it is too slow to check their properties one-by-one in Python.
# Instead, there is a C++ function TensorGuards.check which takes
# all of the tensor arguments and checks them all against compile-time
# examples entirely in C++. Thus, every time we process a
# TENSOR_MATCH guard, we just add another entry to
# tensor_check_names/tensor_check_examples, saying "for this local,
# check it against this example", and it all ends up getting
# swept up into a single call to ___check_tensors. Invariant:
# len(tensor_check_names) == len(tensor_check_examples).
# TODO: something here
self.tensor_check_names: List[str] = []
self.tensor_check_examples: List[torch.Tensor] = []
self.tensor_check_guards: List[Guard] = []
self.check_fn_manager: CheckFunctionManager = check_fn_manager
# Keep track of weak references of objects with ID_MATCH guard. This
# info is stored alongside optimized_code and check_fn and is used to
# limit the number of cache entries with same ID_MATCH'd object.
self.id_matched_objs: Dict[str, ReferenceType[object]] = {}
# Warning: use this with care! This lets you access what the current
# value of the value you are guarding on is. You probably don't want
# to actually durably save this value though (because it's specific
# to this frame!) Instead, you should be reading out some property
# (like its type) which is what you permanently install into the
# guard code.
def get(self, name: str) -> Any:
return eval(name, self.scope, CLOSURE_VARS)
# Registers the usage of the source name referenced by the
# string (or stored in the Guard) as being guarded upon. It's important
# to call this before generating some code that makes use of 'guard',
# because without this call, we won't actually bind the variable
# you reference in the actual guard closure (oops!)
def arg_ref(self, guard: Union[str, Guard]) -> str:
name: str
if isinstance(guard, str):
name = guard
else:
name = guard.name
base = strip_getattr_getitem(strip_function_call(name))
if base not in self.argnames:
if re.match(r"[a-zA-Z0-9_]+", base):
if re.match(r"^\d+$", base):
log.warning("invalid var name: %s", guard)
self.argnames.append(base)
return name
def _guard_on_attribute(self, guard: Guard, attr_name: str, guard_fn):
attr_source = AttrSource(guard.originating_source, attr_name)
# Copy the stack info
new_guard = Guard(
attr_source, guard_fn, stack=guard.stack, user_stack=guard.user_stack
)
new_guard.create(self)
def TYPE_MATCH(self, guard: Guard) -> None:
# ___check_type_id is same as `id(type(x)) == y`
t = type(self.get(guard.name))
obj_id = self.id_ref(t)
code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
self._produce_guard_code(guard, [code])
def DICT_VERSION(self, guard: Guard):
# ___check_dict_version is same as `dict_version(x) == y`
ref = self.arg_ref(guard)
version = dict_version(self.get(guard.name))
code = f"___dict_version({ref}) == {version}"
self._produce_guard_code(guard, [code])
def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool):
dict_ref = self.arg_ref(guard)
maybe_not = "not " if invert else ""
code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})"
return self._produce_guard_code(guard, [code])
def BOOL_FALSE(self, guard: Guard):
# Guard on the runtime value being 'False',
# can be faster than seemingly equivalent checks like DICT_KEYS for empty dict
#
# WARNING: this guard is not safe to use generally. It only works if the runtime
# value is of a type that supports bool(), and some types e.g. Tensor do not.
# Only use this guard in cases you can guarantee the runtime type will be friendly.
# (e.g. Specialized NNModule with mutation protection via setattr)
#
# Why not simply check the runtime type inside this guard? It's slow enough to defeat
# the purpose of using this guard, which itself is supposed to be a faster alternative
# to DICT_KEYS.
ref = self.arg_ref(guard)
code = f"not {ref}"
self._produce_guard_code(guard, [code])
def ID_MATCH(self, guard: Guard):
# ___check_obj_id is same as `id(x) == y`
if isinstance(guard.originating_source, TypeSource):
# optional optimization to produce cleaner/faster guard code
return self.TYPE_MATCH(
Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH) # type: ignore[arg-type]
)
ref = self.arg_ref(guard)
val = self.get(guard.name)
code = f"___check_obj_id({ref}, {self.id_ref(val)})"
self._produce_guard_code(guard, [code])
# Keep track of ID_MATCH'd objects. This will be used to modify the
# cache size logic
if isinstance(guard.originating_source, LocalSource):
# TODO(janimesh) - This is currently restricted to nn.Module objects
# because many other ID_MATCH'd objects fail - like DeviceMesh.
# Increase the scope of ID_MATCH'd objects.
if isinstance(val, torch.nn.Module):
local_name = guard.originating_source.local_name
weak_id = self.lookup_weakrefs(val)
if weak_id is not None:
self.id_matched_objs[local_name] = weak_id
def NAME_MATCH(self, guard: Guard):
obj = self.get(guard.name)
self._guard_on_attribute(guard, "__name__", GuardBuilder.EQUALS_MATCH)
def DATA_PTR_MATCH(self, guard: Guard):
obj = self.get(guard.name)
code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}"
self._produce_guard_code(guard, [code])
def HASATTR(self, guard: Guard):
assert isinstance(
guard.originating_source, AttrSource
), f"invalid source {guard.name}"
base_source = guard.originating_source.base
base = base_source.name()
attr = guard.originating_source.member
ref = self.arg_ref(base)
val = hasattr(self.get(base), attr)
code = None
if val:
code = f"hasattr({ref}, {attr!r})"
else:
code = f"not hasattr({ref}, {attr!r})"
self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base))
def FUNCTORCH_STACK_MATCH(self, guard: Guard):
# Invalidate functorch code if current level is different than
# the one when FX graph was generated
# if torch._C._functorch.peek_interpreter_stack() is not None:
cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters()
states = [ci.get_state() for ci in cis]
code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"]
self._produce_guard_code(guard, code)
def EQUALS_MATCH(self, guard: Guard):
ref = self.arg_ref(guard)
val = self.get(guard.name)
t = type(val)
if np:
np_types: Tuple[Type[Any], ...] = (
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
np.float16,
np.float32,
np.float64,
)
else:
np_types = ()
ok_types = tuple(
common_constant_types
| {
type,
list,
tuple,
set,
frozenset,
slice,
range,
torch.Size,
*np_types,
}
)
if istype(val, dict):
assert all(
istype(x, ok_types) for x in itertools.chain(val.keys(), val.values())
)
else:
assert istype(
val,
ok_types,
), f"Unexpected type {type(val)}, not in {ok_types}"
# Special case for nan because float("nan") == float("nan") evaluates to False
if istype(val, float) and math.isnan(val):
self.TYPE_MATCH(guard)
code = list()
code.append(f"__math_isnan({ref})")
self._produce_guard_code(guard, code)
return
# Python math library doesn't support complex nan, so we need to use numpy
elif istype(val, complex) and np.isnan(val):
self.TYPE_MATCH(guard)
code = list()
code.append(f"__numpy_isnan({ref})")
self._produce_guard_code(guard, code)
return
code = list()
# If matching equality against list/tuple, we must also check that
# the internal types match. (TODO: what about nested lists?)
if istype(val, (list, tuple)):
# NB: SEQUENCE_LENGTH takes care of the outer __check_type_id test
self.SEQUENCE_LENGTH(guard)
for idx, elem in enumerate(val):
code.append(
f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})"
)
else:
# Add type check to prevent equality check between tensor and non-tensor.
self.TYPE_MATCH(guard)
if istype(val, torch.Size):
val = tuple(val)
# Code object can not be compared against their string representation
# I.e `eval(f"{compile('2+2','','exec')!r}")` raises SyntaxError
assert not istype(val, types.CodeType)
# TODO: It feels like it would be better to just implement our own
# equality test in C that handles all of the necessary type checking
# and NaN tests
code.append(f"{ref} == {val!r}")
self._produce_guard_code(guard, code)
def CONSTANT_MATCH(self, guard: Guard):
val = self.get(guard.name)
if istype(val, (bool, type(None), types.CodeType)):
self.ID_MATCH(guard)
else:
self.EQUALS_MATCH(guard)
def NN_MODULE(self, guard: Guard):
self.ID_MATCH(guard)
ref = self.arg_ref(guard)
val = self.get(guard.name)
def setup_guard():
assert istype(val.training, bool)
self._guard_on_attribute(guard, "training", GuardBuilder.CONSTANT_MATCH)
if hasattr(val, "training"):
# There are cases where a monkeypatched object has a guard made between __new__ and __init__
setup_guard()
else:
exc.unimplemented(f"Guard setup for uninitialized class {type(val)}")
def FUNCTION_MATCH(self, guard: Guard):
"""things like torch.add and user defined functions"""
if guard.is_local():
return self.ID_MATCH(guard)
def CLOSURE_MATCH(self, guard: Guard):
"""matches a closure by __code__ id."""
if guard.is_local():
val = self.get(guard.name)
# Strictly only want user-defined functions
if type(val) == types.FunctionType and hasattr(val, "__code__"):
self._guard_on_attribute(guard, "__code__", GuardBuilder.HASATTR)
self._guard_on_attribute(guard, "__code__", GuardBuilder.FUNCTION_MATCH)
else:
self.FUNCTION_MATCH(guard)
def BUILTIN_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def PYMODULE_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def SEQUENCE_LENGTH(self, guard):
# This guard is used to check lenght of PySequence objects like list,
# tuple, collections.deque etc
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
self.TYPE_MATCH(guard)
code = list()
if len(value) == 0:
code.append(f"not {ref}")
else:
code.append(f"len({ref}) == {len(value)}")
self._produce_guard_code(guard, code)
def DICT_LENGTH(self, guard):
self.SEQUENCE_LENGTH(guard)
def TUPLE_ITERATOR_LEN(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
self.TYPE_MATCH(guard)
code = list()
code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
self._produce_guard_code(guard, code)
# TODO(voz): Deduplicate w/ AOTAutograd dupe input guards
def DUPLICATE_INPUT(self, guard, source_b):
ref_a = self.arg_ref(guard)
ref_b = self.arg_ref(source_b.name())
code = [f"{ref_b} is {ref_a}"]
self._produce_guard_code(guard, code)
def DICT_KEYS(self, guard):
# Guard on the keys and their order
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
self.TYPE_MATCH(guard)
code = list()
any_key_is_id = any(key_is_id(k) for k in value.keys())
const_keys_repr = dict_keys_repr(
key_to_id(value),
local=is_from_local_source(guard.originating_source),
)
if any_key_is_id:
code.append(f"___key_to_id({ref}) == {const_keys_repr}")
else:
code.append(f"list({ref}.keys()) == {const_keys_repr}")
self._produce_guard_code(guard, code)
def WEAKREF_ALIVE(self, guard):
self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"])
def NN_MODULE_PARAM_NAMES(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
keys = {k for k, v in value.named_parameters()}
self.TYPE_MATCH(guard)
code = list()
code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}")
self._produce_guard_code(guard, code)
def DICT_CONST_KEYS(self, guard):
"""Constant keys match"""
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
self.TYPE_MATCH(guard)
code = list()
code.append(f"list({ref}.keys()) == {list(value.keys())!r}")
self._produce_guard_code(guard, code)
def OBJECT_MUTATION(self, guard: Guard):
mutation_guard.watch(self.get(guard.name), self.check_fn_manager)
def GRAD_MODE(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def TORCH_FUNCTION_STATE(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def DEFAULT_DEVICE(self, guard: Guard):
"""Guard on CURRENT_DEVICE per torch.utils._device"""
assert guard.source is GuardSource.GLOBAL
import torch.utils._device as m
self._produce_guard_code(
guard, [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
)
def BACKEND_MATCH(self, guard: Guard):
"""Guard on backend matching based on id of current_backend"""
assert guard.source is GuardSource.GLOBAL
backend_id = (
f"{id(torch._dynamo.eval_frame.guarded_backend_cache.current_backend)}"
)
code = [f"___check_current_backend({backend_id})"]
self._produce_guard_code(guard, code)
def SHAPE_ENV(self, guard: Guard):
# Let's handle ShapeEnv guards. To do this, we will resolve
# shape variables to sources from tracked_fakes. This must happen after
# tensor checks.
assert guard.name == ""
output_graph = self.check_fn_manager.output_graph
# NB: self.output_graph can be None in the debug_nops tests
fs = output_graph.tracked_fakes
input_contexts = [a.symbolic_context for a in fs]
def get_sources(t_id, dim):
# Looks up base sources mapped to a tensor id and uses them to create
# sources for the corresponding tensor dimension.
return [
TensorPropertySource(source, TensorProperty.SIZE, dim)
for source in output_graph.tracked_fakes_id_to_source[t_id]
]
if output_graph.export_constraints:
from sympy import Symbol
source_pairs: List[Tuple[Source, Source]] = []
derived_equalities: List[ # type: ignore[type-arg]
Tuple[Source, Union[Source, Symbol], Callable]
] = []
phantom_symbols: Dict[str, Symbol] = {}
for constraint in output_graph.export_constraints:
if constraint.t_id in output_graph.tracked_fakes_id_to_source:
torch.export.dynamic_shapes._process_equalities(
constraint,
get_sources,
output_graph.shape_env,
source_pairs,
derived_equalities,
phantom_symbols,
)
else:
log.warning("Untracked tensor used in export constraints")
equalities_inputs = EqualityConstraint(
source_pairs=source_pairs,
derived_equalities=derived_equalities,
phantom_symbols=list(phantom_symbols.values()),
warn_only=False,
)
else:
equalities_inputs = None
guards = output_graph.shape_env.produce_guards(
[a.fake for a in fs],
[a.source for a in fs],
input_contexts=input_contexts,
equalities_inputs=equalities_inputs,
source_ref=self.source_ref,
# Export keeps static.
ignore_static=(not self.check_fn_manager.output_graph.export),
)
# When exporting, we may work with the shape constraints some more in
# postprocessing, so don't freeze yet
if not self.check_fn_manager.output_graph.export:
output_graph.shape_env.freeze()
for shape_guard in guards:
self._produce_guard_code(guard, [shape_guard], shape_env=True)
def TENSOR_MATCH(self, guard: Guard, value=None):
if guard.is_nn_module() or guard.originating_source.is_dict_key():
self.ID_MATCH(guard)
else:
if isinstance(value, TensorWeakRef):
value = value()
value = value if value is not None else self.get(guard.name)
assert isinstance(value, torch.Tensor)
tensor_name = self.arg_ref(guard)
# [Note - On Export Tensor Guards]
#
# In eager mode, tensor guards are evaluated through C++, in guards.cpp
# see [Note - On Eager Tensor Guards] for more info.
#
# In export mode, we instead maintain parallel logic between C++ and python
# here, with an exception of checking the dispatch key - with the idea that a dispatch key
# is an entirely runtime notion that would make no sense to keep in an exported graph.
#
# Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
# not entirely true.
# For example, suppose one of the input tensors had the negative dispatch key.
# You should end up with a graph that is specialized for tensors that have a negative dispatch key.
# If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
# Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
# support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
# TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
# subset of keys during export.
#
# The list of tensor fields and calls we care about can be found in `terms` below.
# TODO(voz): We are missing storage offset in all our tensor guards?
code: List[str] = list()
if self.check_fn_manager.output_graph.export:
self.TYPE_MATCH(guard)
terms = [
"dtype",
"device",
"requires_grad",
"ndimension()",
]
for term in terms:
real_value = self.get(tensor_name + "." + term)
if istype(real_value, (torch.device, torch.dtype)):
# copy pasted from EQUALS_MATCH
code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}")
else:
code.append(f"{tensor_name}.{term} == {real_value}")
else:
self.tensor_check_names.append(tensor_name)
self.tensor_check_examples.append(value)
self.tensor_check_guards.append(guard)
# A frame is valid for reuse with dynamic dimensions if the new
# (user-requested) dynamic dimensions are a subset of the old
# (already compiled) dynamic dimensions.
#
# It's a little non-obvious why you'd want this: in particular,
# if an already compiled frame matches all of the guards, why
# not just use it, why force a recompile?
#
# We force it for two reasons:
#
# - The user *required* us to compile with a new dynamic dimension,
# we should not ignore that and serve up the old, specialized
# frame. Listen to the user!
#
# - In fact, we are obligated to *raise an error* if we fail to
# make the requested dimension dynamic. If we don't
# recompile, we can't tell if that dimension can actually be
# made dynamic.
#
# If the new dynamic dims are a subset of the old, we already know
# we can make them dynamic (since we made them dynamic in old).
# This is slightly unsound, because maybe your input size is
# [s0, s0, s1] and so you can do it dynamic if you say dynamic
# dims {0, 1, 2} but you can't if you only do {0, 2} (because now
# the second s0 is specialized). But we're not entirely sure if
# this is a good idea anyway lol... (if you want to try removing
# this logic, be my guest! -- ezyang 2024)
#
assert guard.source is not None
static, reason = tensor_always_has_static_shape(
value, is_tensor=True, guard_source=guard.source
)
if not static:
if hasattr(value, "_dynamo_dynamic_indices"):
code.append(
f"(({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)" # noqa: B950
)
# In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
# raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
else:
code.append(
f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
)
if len(code) > 0:
self._produce_guard_code(guard, code)
# A util that appends guarded code, or, in the case of export, adds data onto guards
def _produce_guard_code(
self, guard, code_list, provided_guarded_object=None, shape_env=False
):
# WARNING: It is important that cur_frame/caller do NOT stay in
# the current frame, because they will keep things live longer
# than they should. See TestMisc.test_release_module_memory
cur_frame = currentframe()
assert cur_frame is not None
caller = cur_frame.f_back
del cur_frame
assert caller is not None
func_name = getframeinfo(caller)[2]
del caller
# We use func_name for export, so might as well get a nice defensive check out of it
assert func_name in dir(
self.__class__
), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
if shape_env:
self.shape_env_code.append(GuardCodeList(code_list, guard))
else:
self.code.append(GuardCodeList(code_list, guard))
# Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
if provided_guarded_object is None:
name_valid = guard.name is not None and guard.name != ""
guarded_object = self.get(guard.name) if name_valid else None
else:
guarded_object = provided_guarded_object
guarded_object_type = (
weakref.ref(type(guarded_object)) if guarded_object is not None else None
)
obj_ref = None
# Not necessary to have weakref for Enum type, but there is a bug that
# makes hasattr(guarded_object.__class__, "__weakref__") return True.
if hasattr(guarded_object.__class__, "__weakref__") and not isinstance(
guarded_object, enum.Enum
):
obj_ref = weakref.ref(guarded_object)
guard.set_export_info(
func_name,
guarded_object_type,
code_list,
obj_ref,
)
# Common Sub-Expression Elimination for Python expressions.
#
# There are 2 steps to this pass:
# 1. Count the frequency of each sub-expression (i.e. inner
# node in the AST tree)
#
# 2. Replace those that occur more than once by a fresh variable 'v'.
# 'v' will be defined in the 'preface' list (output argument to
# 'NodeTransformer')
#
# NB: the use of 'ast.unparse' while visiting the nodes makes this pass
# quadratic on the depth of the tree.
#
# NB: this pass creates a new variable for each AST node that is repeated
# more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c'
# and 'a.b' are also used 10 times. So, there will be a new variable for
# each of them.
class PyExprCSEPass:
# Maximum number of times a given expression can be used without being
# replaced by a fresh variable.
USE_THRESHOLD = 1
# Ad-Hoc: AST nodes this pass focuses on.
ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript)
@dataclasses.dataclass
class Config:
expr_count: Dict[str, int]
expr_to_name: Dict[str, str]
class ExprCounter(ast.NodeVisitor):
def __init__(self, config: PyExprCSEPass.Config) -> None:
self._config = config
def visit(self, node: ast.AST) -> Any:
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
self._config.expr_count[_ast_unparse(node)] += 1
super().visit(node)
class Replacer(ast.NodeTransformer):
def __init__(
self,
config: PyExprCSEPass.Config,
gen_name: Callable[[], str],
) -> None:
super().__init__()
self._config = config
self._gen_name = gen_name
self.preface: List[str] = []
def visit(self, node: ast.AST) -> Any:
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
expr = _ast_unparse(node)
# Replacement only occurs if a given expression is used more
# than once.
if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD:
if expr not in self._config.expr_to_name:
# Parent 'visit' is called so that we CSE the inner expressions first.
#
# The resulting expression is used as right-hand-side of the variable
# assignment. i.e. we are CSE-ing the children before the parents.
#
# Indexing still uses the old 'node', since that's what was counted
# by the 'NodeVisitor'.
node_ = super().visit(node)
expr_ = _ast_unparse(node_)
var_name = self._gen_name()
self.preface.append(f"{var_name} = {expr_}")
self._config.expr_to_name[expr] = var_name
else:
var_name = self._config.expr_to_name[expr]
return ast.Name(var_name, ast.Load())
return super().visit(node)
def __init__(self) -> None:
self._counter = 0
self._config = self.Config(
expr_count=collections.defaultdict(lambda: 0), expr_to_name={}
)
def _new_var(self, prefix: str = "_var") -> str:
name = f"{prefix}{self._counter}"
self._counter += 1
return name
def count(self, exprs: List[str]) -> None:
counter = self.ExprCounter(self._config)
for e in exprs:
try:
counter.visit(ast.parse(e))
except SyntaxError as ex:
log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e)
raise
def replace(self, expr: str) -> Tuple[List[str], str]:
replacer = self.Replacer(self._config, self._new_var)
new_node = replacer.visit(ast.parse(expr))
return replacer.preface, _ast_unparse(new_node)
def must_add_nn_module_guards(guard):
# For config.guard_nn_modules=False, we can skip all the guards that
# originate from inside of nn module except for a few categories.
return (
# Guard for defaults
isinstance(guard.originating_source, DefaultsSource)
# Guard using dict tags if the config flag is set
or (
config.guard_nn_modules_using_dict_tags
and guard.create_fn is GuardBuilder.NN_MODULE
)
)
class DeletedGuardFn:
pass
# NB: Naively, you'd expect this to only be a function that produces
# the callable that constitutes the guard. However, there is some
# delicate handling for invalidating this check function when the
# locals/globals get invalidated, so there's some extra state
# we have to hold in this manager class.
class CheckFunctionManager:
def __init__(
self,
output_graph=None,
guard_fail_fn: Optional[Callable[[GuardFail], None]] = None,
):
guards = output_graph.guards if output_graph else None
self._weakrefs: Dict[int, ReferenceType[object]] = {}
self.output_graph = output_graph
w_builder = None
def source_ref(source):
guard_source = source.guard_source()
if guard_source is GuardSource.CONSTANT:
# No need to track constants
return source.name()
assert w_builder
r_builder = w_builder()
assert r_builder is not None
return r_builder.arg_ref(source.name())
builder = GuardBuilder(
self.id_ref,
source_ref,
self.lookup_weakrefs,
output_graph.local_scope,
output_graph.global_scope,
self,
)
# Break retain cycle. See test_release_scope_memory
def cleanup_builder(weak_b):
b = weak_b()
if b:
b.scope = None
# Break retain cycle. See test_release_input_memory
w_builder = weakref.ref(builder, cleanup_builder)
for guard in sorted(guards or [], key=Guard.sort_key):
if (
not config.guard_nn_modules
and guard.is_nn_module()
# Default func args must be guarded on.
# TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
and "__defaults__" not in guard.name
and "__kwdefaults__" not in guard.name
and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
):
continue
guard.create(builder)
self.check_fn = self.compile_check_fn(builder, guards, guard_fail_fn)
# Keep track of weak references of objects with ID_MATCH guard. This
# info is stored alongside optimized_code and check_fn and is used to
# limit the number of cache entries with same ID_MATCH'd object.
# TODO(janimesh) - Currently this information is stored as an attr on
# the check_fn itself to avoid changing CacehEntry datastructure in
# eval_frame.c. In future, we should probably replace check_fn with a
# queryable data structure such that this information is already present
# in some form.
self.check_fn.id_matched_objs = builder.id_matched_objs
# NB - We have to very careful of cleaning up here. Because of the
# invalidate function, we can create a weakref finalizer that keeps
# `self` alive for very long. Sometimes by mistake, we can run
# invalidate for a type/object (check id_ref method) that Python can
# leak by design, preventing us from calling the finalizer. In that
# case, the `self` will be alive even though the cache entry will be
# deleted (check invalidate method), which can cause a memory leak,
# e.g., not setting output_graph = None can keep hold of nn_modules.
self._weakrefs.clear()
self.output_graph = None
def compile_check_fn(self, builder, guards_out, guard_fail_fn):
# see parallel handling of ".0" / "___implicit0" in _eval_frame.c
largs = builder.argnames
largs += ["**___kwargs_ignored"]
guards_log.debug("GUARDS:")
# Don't report this guard, it's always the same, useless!
code_parts = ["___check_global_state()"]
verbose_code_parts = code_parts[:]
structured_guard_fns = []
def add_code_part(code_part, guard, log_only=False):
verbose_code_part = get_verbose_code_part(code_part, guard)
guards_log.debug("%s", verbose_code_part)
structured_guard_fns.append(
lambda: {
"code": code_part,
"stack": structured.from_traceback(guard.stack.summary())
if guard.stack
else None,
"user_stack": structured.from_traceback(guard.user_stack)
if guard.user_stack
else None,
}
)
if verbose_guards_log.isEnabledFor(logging.DEBUG):
maybe_stack = ""
maybe_user_stack = ""
if guard is not None:
if guard.stack:
maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}"
if guard.user_stack:
maybe_user_stack = (
f"\nUser stack:\n{''.join(guard.user_stack.format())}"
)
verbose_guards_log.debug(
"Guard: %s%s%s",
code_part,
maybe_stack,
maybe_user_stack,
)
if not log_only:
code_parts.append(code_part)
verbose_code_parts.append(verbose_code_part)
seen = set()
for gcl in builder.code:
for code in gcl.code_list:
if code not in seen:
add_code_part(code, gcl.guard)
seen.add(code)
tensor_check_names = builder.tensor_check_names
check_tensors_fn = None
check_tensors_verbose_fn = None
if tensor_check_names:
assert (
not self.output_graph.export
), "Illegal to set tensor_check_names in export."
tensor_check_examples = builder.tensor_check_examples
dynamic_dims_sizes = [
convert_to_concrete_values(
self.output_graph.tensor_weakref_to_sizes_strides[t]["size"]
)
for t in tensor_check_examples
]
dynamic_dims_strides = [
convert_to_concrete_values(
self.output_graph.tensor_weakref_to_sizes_strides[t]["stride"]
)
for t in tensor_check_examples
]
tensor_guards = TensorGuards(
*tensor_check_examples,
dynamic_dims_sizes=dynamic_dims_sizes,
dynamic_dims_strides=dynamic_dims_strides,
)
check_tensors_fn = tensor_guards.check
check_tensors_verbose_fn = tensor_guards.check_verbose
tensor_check_args = ", ".join(
tensor_check_names + ["tensor_check_names=tensor_check_names"]
)
# Do this manually, to un-stagger the guards in log message
code_parts.append(f"___check_tensors({tensor_check_args})")
verbose_code_parts.append(f"___check_tensors({tensor_check_args})")
tensor_check_guards = builder.tensor_check_guards
for i, name in enumerate(tensor_check_names):
# This is a copy of what guards.cpp checks against
# Keep this in sync with TensorCheck constructor
t = tensor_check_examples[i]
sizes = dynamic_dims_sizes[i]
strides = dynamic_dims_strides[i]
code_part = get_tensor_guard_code_part(t, name, sizes, strides)
add_code_part(code_part, tensor_check_guards[i], log_only=True)
aotautograd_guards: List[GuardEnvExpr] = (
self.output_graph.tracing_context.guards_context.aotautograd_guards
if self.output_graph
else []
)
for guard in aotautograd_guards:
if isinstance(guard, DuplicateInputs):
source_a = guard.input_source_a
source_b = guard.input_source_b
add_code_part(f"{source_a.name()} is {source_b.name()}", None)
else:
raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")
# TODO: the "guard" here is actually just the top level SHAPE_ENV
# which is useless. Get ShapeEnv to pass in more provenance.
for gcl in builder.shape_env_code:
for code in gcl.code_list:
add_code_part(code, gcl.guard)
# OK, all done generating guards
torch._logging.trace_structured(
"dynamo_guards", payload_fn=lambda: [f() for f in structured_guard_fns]
)
global_state = convert_frame.initial_global_state
if global_state is None:
# we should only hit this case in NopTests()
global_state = convert_frame.GlobalStateGuard()
closure_vars = {
"___check_tensors": check_tensors_fn,
"___check_tensors_verbose": check_tensors_verbose_fn,
"___check_global_state": global_state.check,
"___check_current_backend": torch._dynamo.eval_frame.check_current_backend,
"tensor_check_names": tensor_check_names,
**SYMPY_INTERP,
**CLOSURE_VARS,
}
unique_code_parts = list(unique(code_parts))
make_guard_fn_args = ", ".join(closure_vars.keys())
guard_body, pycode = build_guard_function(unique_code_parts, make_guard_fn_args)
if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1":
print("GUARDS\n", guard_body)
out: Dict[str, Any] = dict()
# We don't put builder.scope as the globals in exec call because
# guard_fn.__globals__ becomes equal to builder.scope. This causes
# guard_fn to hold a referece to f_locals sitting in builder.scope["L"]
globals_for_guard_fn = {"G": builder.scope["G"]}
try:
exec(pycode, globals_for_guard_fn, out)
except SyntaxError as ex:
log.exception("Failed to exec guard at line %s.\n%s", ex.lineno, pycode)
raise
guard_fn = out["___make_guard_fn"](*closure_vars.values())
guard_fn.closure_vars = closure_vars
# TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both
guard_fn.args = largs
guard_fn.code_parts = code_parts
guard_fn.verbose_code_parts = verbose_code_parts
# Grab only G, but preserve "G" because guards access it as "G"
guard_fn.global_scope = globals_for_guard_fn
guard_fn.guard_fail_fn = guard_fail_fn
# will be populated by a non-owning reference to CacheEntry/ExtraState
# when the CacheEntry is constructed
guard_fn.cache_entry = None
guard_fn.extra_state = None
return guard_fn
def invalidate(self):
# Some tests reveal that CheckFunctionManager has no attribute
# check_fn, but this case should not be of any concern.
# This case doesn't seem easy to repro.
if (
hasattr(self, "check_fn")
and self.check_fn is not DeletedGuardFn
and (cache_entry := self.check_fn.cache_entry) is not None
and (extra_state := self.check_fn.extra_state) is not None
):
assert isinstance(cache_entry, CacheEntry)
assert isinstance(extra_state, ExtraState)
extra_state.invalidate(cache_entry)
self.check_fn.cache_entry = None
self.check_fn.extra_state = None
self.check_fn = DeletedGuardFn
def id_ref(self, obj):
"""add a weakref, return the id"""
try:
if id(obj) not in self._weakrefs:
# We will clear the _weakrefs dict at the end of __init__
# function, which will delete the callbacks as well. Therefore,
# we are using a finalizer which is kept alive.
self._weakrefs[id(obj)] = weakref.ref(obj)
weakref.finalize(obj, self.invalidate)
except TypeError:
pass # cannot weakref bool object
return id(obj)
def lookup_weakrefs(self, obj):
"""Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects"""
if id(obj) in self._weakrefs:
return self._weakrefs[id(obj)]
return None
def build_guard_function(code_parts, closure_args) -> Tuple[str, str]:
from torch._inductor.utils import IndentedBuffer
if HAS_UNPARSE_FUNCTIONS:
csepass = PyExprCSEPass()
csepass.count(code_parts)
def replace(expr: str) -> Tuple[List[str], str]:
return csepass.replace(expr)
else:
def replace(expr: str) -> Tuple[List[str], str]:
return [], expr
# Generate the inner body of the guard function.
# i.e. if-chain of the guard expressions.
guard_body = IndentedBuffer()
for expr in code_parts:
preface, expr = replace(expr)
guard_body.writelines(preface)
guard_body.writeline(f"if not ({expr}):")
with guard_body.indent():
guard_body.writeline("return False")
# Wrap the inner body into the actual guard function.
guard = IndentedBuffer()
guard.writeline("def guard(L):")
with guard.indent():
guard.splice(guard_body)
guard.writeline("return True")
# Wrap the whole guard function into another function
# with the closure variables.
make_guard_fn = IndentedBuffer()
make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):")
with make_guard_fn.indent():
make_guard_fn.splice(guard)
make_guard_fn.writeline("return guard")
return guard_body.getvalue(), make_guard_fn.getvalue()
def is_recompiles_enabled():
return torch._logging._internal.log_state.is_artifact_enabled("recompiles")
def is_recompiles_verbose_enabled():
return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose")
def get_guard_fail_reason(
guard_fn: GuardFn,
code: types.CodeType,
f_locals: Dict[str, object],
) -> str:
"""
Return the reason why `guard_fn` failed.
Updates `guard_failures` with the generated reason.
Only the first failed check of guard_fn is reported.
"""
scope = {"L": f_locals, "G": guard_fn.global_scope["G"]}
scope.update(guard_fn.closure_vars)
scope["___check_tensors"] = scope["___check_tensors_verbose"]
reasons: List[str] = []
for part in guard_fn.verbose_code_parts:
global_scope = dict(guard_fn.global_scope)
global_scope["__compile_source__"] = part
with report_compile_source_on_error():
try:
fail_reason = eval(part, global_scope, scope)
except Exception as e:
if is_recompiles_verbose_enabled():
continue
else:
raise
# Only ___check_tensors knows how to return a fancy fail reason;
# for everything else we just report the code that failed
if isinstance(fail_reason, bool) and not fail_reason:
fail_reason = part
if isinstance(fail_reason, str):
reasons.append(fail_reason)
if not is_recompiles_verbose_enabled():
break
reason_str = "\n".join(reasons)
guard_failures[orig_code_map[code]].append(reason_str)
try:
if guard_fn.guard_fail_fn is not None:
guard_fn.guard_fail_fn(
GuardFail(reason_str or "unknown reason", orig_code_map[code])
)
except Exception as e:
log.exception(
"Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
)
return reason_str
def get_and_maybe_log_recompilation_reason(
cache_entry, frame: types.FrameType
) -> List[str]:
"""
Return the list of guard failure reasons using cache_entry.
Logs the recompilation reason if `recompiles` logging is enabled.
Raises a RecompileError if `config.error_on_recompile` is enabled.
"""
reasons = []
while cache_entry is not None:
reason = get_guard_fail_reason(
cache_entry.check_fn, cache_entry.code, frame.f_locals
)
if reason:
reasons.append(reason)
cache_entry = cache_entry.next
code = frame.f_code
# at least one of "recompiles" or "recompiles_verbose" is enabled
do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled()
if do_recompiles_log or config.error_on_recompile:
if is_recompiles_verbose_enabled():
failures = "\n\n".join(
f"guard {i} failures:\n" + textwrap.indent(reason, "- ")
for i, reason in enumerate(reasons)
)
else:
failures = textwrap.indent("\n".join(reasons), "- ")
guard_failure_details = (
f"triggered by the following guard failure(s):\n{failures}"
)
message = (
f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n"
f"{textwrap.indent(guard_failure_details, ' ')}"
)
if do_recompiles_log:
if is_recompiles_verbose_enabled():
recompiles_verbose_log.debug(message)
else:
recompiles_log.debug(message)
if config.error_on_recompile:
raise exc.RecompileError(message)
return reasons
def guard_error_hook(
guard_fn: GuardFn,
code: types.CodeType,
f_locals: Dict[str, object],
index: int,
last: bool,
):
print(
f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
)
print("lambda " + ", ".join(guard_fn.args) + ":")
print(" ", " and\n ".join(guard_fn.code_parts))
local_scope = {"L": f_locals, **guard_fn.closure_vars}
for guard in guard_fn.code_parts:
try:
eval(guard, guard_fn.global_scope, local_scope)
except: # noqa: B001,E722
print(f"Malformed guard:\n{guard}")
set_guard_error_hook(guard_error_hook)
def unique(seq):
seen = set()
for x in seq:
if x not in seen:
yield x
seen.add(x)
def make_dupe_guard(obj_source, dupe_source):
# Note - we may end up in a situation where we invoke something like
# def fn(x, y)
# with fn(x, x)
# Prior to the addition of tracking to all relevant objects, we would handle this just fine by
# eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However,
# with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here -
# In the fn(x, x) example call above look like a graph with a single input.
# In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard.
# Note - we may not have a source, that is fine, it just means we had an object that is safe to have
# leave unsourced - like a local list created and discharged entirely within a local scope.
if dupe_source and dupe_source != obj_source:
ser_source_is_local = is_from_local_source(dupe_source)
source_is_local = is_from_local_source(obj_source)
# Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently
# reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here,
# so maybe we should do this refactor before we land this...
# TODO(voz): Combine local and global guard builders.
if ser_source_is_local == source_is_local:
# Note - this is a little aggressive - these being duplicate input does not always matter.
# However, this should always be a sound guard to add here.
return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source)
return None
def install_guard(*guards, skip=0):
"""
Add dynamo guards to the current tracing context.
Args:
guards: guard(s) to add
skip: number of stack frames to ignore for debug stack trace
"""
from torch._guards import TracingContext
collect_debug_stack = guards_log.isEnabledFor(
logging.DEBUG
) or verbose_guards_log.isEnabledFor(logging.DEBUG)
add = TracingContext.get().guards_context.dynamo_guards.add
for guard in guards:
assert isinstance(guard, Guard)
add(guard, collect_debug_stack=collect_debug_stack, skip=skip + 1)
|