File size: 36,044 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
# mypy: ignore-errors

import collections
import functools
import inspect
import itertools
import types
from typing import Dict, List, Optional, TYPE_CHECKING, Union

import torch

from .. import variables
from ..bytecode_transformation import create_call_function, create_rot_n
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, ConstantSource, DefaultsSource, GetItemSource
from ..utils import check_constant_args, get_first_attr, identity, istype, make_cell
from .base import MutableLocal, typestr, VariableTracker
from .constant import ConstantVariable
from .distributed import ProcessGroupVariable

if TYPE_CHECKING:
    from torch._guards import Source


def wrap_bound_arg(tx, val, source=None):
    # Source propagation is best effort since not every object we encounter has a source to begin with.
    if isinstance(val, VariableTracker):
        return val
    elif not source:
        from torch._dynamo.variables.builder import SourcelessBuilder

        return SourcelessBuilder()(tx, val)
    else:
        # Create a lazy variable to avoid guarding on __defaults__ unless really
        # needed.
        return variables.LazyVariableTracker.create(val, source)


def wrap_args_kwargs(tx, result):
    for k, v in list(result.items()):
        if isinstance(v, (tuple, dict)):
            # args/kwargs
            result[k] = wrap_bound_arg(tx, v)


def init_cellvars(parent, result, code):
    closure_cells = dict()
    side_effects = parent.output.side_effects

    # for name in itertools.chain(code.co_cellvars, code.co_freevars):
    for name in code.co_cellvars:
        closure_cells[name] = side_effects.track_cell_new()
        if name in result:
            side_effects.store_cell(closure_cells[name], result.pop(name))

    return closure_cells


def _create_nested_fn(

    code, f_globals, name, defaults, closure, kwdefaults, annotations

):
    from types import FunctionType

    func = FunctionType(code, f_globals, name, defaults, closure)
    func.__kwdefaults__ = kwdefaults

    if isinstance(annotations, tuple):
        from itertools import pairwise

        annotations = dict(pairwise(annotations))

    # TypeError: __annotations__ must be set to a dict object
    assert annotations is None or isinstance(annotations, dict)
    func.__annotations__ = annotations

    return func


class BaseUserFunctionVariable(VariableTracker):
    def get_filename(self):
        return self.get_code().co_filename

    def get_name(self):
        return self.get_code().co_name

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        return tx.inline_user_function_return(
            self, list(self.self_args()) + list(args), kwargs
        )

    def call_hasattr(self, tx, name: str) -> VariableTracker:
        result = False

        try:
            result = hasattr(self.get_function(), name)
        except NotImplementedError:
            if name == "__name__" and isinstance(self, NestedUserFunctionVariable):
                result = True
        return variables.ConstantVariable.create(result)

    def inspect_parameter_names(self):
        return list(inspect.signature(self.get_function()).parameters)

    def closure_vars(self, tx):
        return {}


class UserFunctionVariable(BaseUserFunctionVariable):
    """Some unsupported user-defined global function"""

    @classmethod
    def create_with_source(cls, value, source):
        install_guard(source.make_guard(GuardBuilder.CLOSURE_MATCH))
        return cls(
            value,
            source=source,
        )

    def __init__(self, fn, is_constant=False, **kwargs):
        super().__init__(**kwargs)
        if getattr(fn, "_dynamo_marked_constant", False):
            # This method should be treated as a constant for the purposes of compilation
            self.is_constant = True
        else:
            self.is_constant = False

        assert isinstance(
            fn, (types.FunctionType, torch.jit.ScriptFunction)
        ), f"expected FunctionType found {typestr(fn)} {fn}"
        # unpack @torch._dynamo.optimize()(fn) wrapped function
        fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
        # unpack torch.jit.script_if_tracing
        if inspect.getattr_static(fn, "__script_if_tracing_wrapper", False):
            fn = inspect.getattr_static(fn, "__original_fn", fn)
        self.fn: types.FunctionType = fn

    def as_python_constant(self):
        if istype(self, UserFunctionVariable):
            return self.fn
        # subclasses (such as methods) usually aren't a constant
        return super().as_python_constant()

    def self_args(self):
        return []

    def get_function(self):
        return self.fn

    def get_code(self):
        return self.fn.__code__

    def python_type(self):
        return types.FunctionType

    def has_self(self):
        return getattr(self.fn, "__self__", None) is not None

    def get_globals(self):
        return self.fn.__globals__

    def bind_args(self, parent, args, kwargs):
        assert not self.is_constant
        tx = parent.output.root_tx
        wrap = functools.partial(wrap_bound_arg, tx=tx)

        fn: types.FunctionType = self.fn
        defaults = fn.__defaults__ or []
        defaults_sources = [
            None if self.source is None else DefaultsSource(self.source, idx)
            for idx, _ in enumerate(defaults)
        ]
        fake_func = types.FunctionType(
            fn.__code__,
            fn.__globals__,
            fn.__name__,
            tuple(
                [
                    wrap(val=arg, source=source)
                    for arg, source in zip(defaults, defaults_sources)
                ]
            ),
            fn.__closure__,
        )
        if fn.__kwdefaults__:
            kwdefaults_sources = {
                k: None
                if self.source is None
                else DefaultsSource(self.source, k, is_kw=True)
                for k in fn.__kwdefaults__
            }
            fake_func.__kwdefaults__ = {
                k: wrap(val=v, source=kwdefaults_sources[k])
                for k, v in fn.__kwdefaults__.items()
            }

        bound = inspect.signature(fake_func).bind(*args, **kwargs)
        bound.apply_defaults()
        result = dict(bound.arguments.items())

        wrap_args_kwargs(tx, result)
        closure_cells = init_cellvars(parent, result, fn.__code__)
        closure = self.fn.__closure__ or ()
        assert len(closure) == len(self.fn.__code__.co_freevars)
        for idx, name, cell in zip(
            itertools.count(), self.fn.__code__.co_freevars, closure
        ):
            if name == "__class__":
                source = AttrSource(self.source, "__class__") if self.source else None
                result[name] = variables.UserDefinedClassVariable(
                    cell.cell_contents,
                    source=source,
                )
            else:
                var = tx.match_nested_cell(name, cell)
                if var is not None:
                    # optimization for cleaner codegen
                    result[name] = var
                elif self.source:
                    from .builder import VariableBuilder

                    side_effects = parent.output.side_effects
                    if cell in side_effects:
                        out = side_effects[cell]
                    else:
                        closure_cell = GetItemSource(
                            AttrSource(self.source, "__closure__"), idx
                        )
                        closure_cell_contents = AttrSource(
                            closure_cell, "cell_contents"
                        )
                        try:
                            contents_var = VariableBuilder(
                                parent, closure_cell_contents
                            )(cell.cell_contents)
                        except ValueError:
                            # Cell has not yet been assigned
                            contents_var = variables.DeletedVariable()

                        if (
                            closure_cell_contents.name()
                            not in tx.mutated_closure_cell_contents
                        ):
                            # Optimistically don't allocate the cell, to
                            # reduce the number of side effects.  This is
                            # important for cond, as without it, any accesses
                            # to closures create side effects and cond doesn't
                            # support side effects.  If we're wrong and this
                            # closure cell gets written to, we will restart
                            # the analysis with this cell's name in the
                            # mutated list here
                            result[name] = contents_var
                            continue

                        # cells are written to with "cell_contents",
                        # so the source should just be the closure_cell, not its contents
                        out = side_effects.track_cell_existing(closure_cell, cell)
                        side_effects.store_cell(
                            out,
                            contents_var,
                        )

                    result[name] = out

                else:
                    from .builder import SourcelessBuilder

                    result[name] = SourcelessBuilder()(tx, cell.cell_contents)

        return result, closure_cells

    def export_freevars(self, parent, child):
        pass

    def call_hasattr(self, tx, name: str) -> VariableTracker:
        result = hasattr(self.fn, name)
        return variables.ConstantVariable.create(result)

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        if self.is_constant:
            return invoke_and_store_as_constant(
                tx, self.fn, self.get_name(), args, kwargs
            )

        return super().call_function(tx, args, kwargs)


class UserMethodVariable(UserFunctionVariable):
    """Some unsupported user-defined method"""

    def __init__(self, fn, obj, **kwargs):
        super().__init__(fn=fn, **kwargs)
        self.obj = obj

    def __str__(self):
        return f"{self.__class__.__name__}({self.fn}, {self.obj})"

    def self_args(self):
        return [self.obj]

    def python_type(self):
        return types.MethodType

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        # For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution
        # rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method
        # since we ensure `forward` of allowed modules can be traced by AOT safely.
        # Note this is not only for allowed modules, as user customized modules can extend from
        # allowed modules but using parent's `forward` method, which is also covered by this branch.

        # If we are tracing the higher order op, we want Dynamo to step inside
        # the module call so that Dynamo can see the underlying parameters and
        # buffers and raise them as inputs to the graph. The is_root_tracer
        # check bypasses the if condition for non-root tracers and directly
        # calls the super().call_function at the end, which is basically
        # equivalent of inlining the method.
        if tx.output.is_root_tracer() and isinstance(
            self.obj, variables.NNModuleVariable
        ):
            module_attr = getattr(self.fn, "__module__", "")
            if (
                module_attr is not None
                and module_attr.startswith("torch.nn.")
                or self.is_constant
            ):
                return self.obj.call_method(
                    tx, self.fn.__name__, args, kwargs, constant=self.is_constant
                )
        return super().call_function(tx, args, kwargs)

    def inspect_parameter_names(self):
        return super().inspect_parameter_names()[1:]


class WrappedUserMethodVariable(UserMethodVariable):
    def __init__(self, wrapped, context, **kwargs):
        kwargs.pop("fn", None)
        kwargs.pop("obj", None)
        super().__init__(wrapped.fn, wrapped.obj, **kwargs)
        self.wrapped = wrapped
        self.context = context

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        self.context.enter(tx)
        result = super().call_function(tx, args, kwargs)
        self.context.exit(tx)
        return result


class WrappedUserFunctionVariable(UserFunctionVariable):
    def __init__(self, wrapped, context, **kwargs):
        kwargs.pop("fn", None)
        kwargs.pop("obj", None)
        super().__init__(wrapped.fn, **kwargs)
        self.wrapped = wrapped
        self.context = context

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        self.context.enter(tx)
        result = super().call_function(tx, args, kwargs)
        self.context.exit(tx)
        return result


def invoke_and_store_as_constant(tx, fn, name, args, kwargs):
    def convert(x):
        if isinstance(x, variables.TensorVariable):
            return x.get_real_value()
        return x.as_python_constant()

    args = [convert(x) for x in args]
    kwargs = {k: convert(v) for k, v in kwargs.items()}
    res = fn(*args, **kwargs)
    return tx.output.register_attr_or_module(
        res,
        name,
        source=ConstantSource(name),
    )


class NestedUserFunctionVariable(BaseUserFunctionVariable):
    _nonvar_fields = {
        "closure_scope",
        "f_globals",
        *BaseUserFunctionVariable._nonvar_fields,
    }

    def __init__(

        self,

        fn_name,

        code,

        f_globals,

        defaults,

        kwdefaults,

        annotations,

        closure,

        closure_scope,

        wrapped_reconstructible=None,

        **kwargs,

    ):
        super().__init__(**kwargs)
        assert isinstance(fn_name.as_python_constant(), str)
        assert isinstance(code.as_python_constant(), types.CodeType)
        assert isinstance(f_globals, dict)
        self.fn_name = fn_name
        self.code = code
        self.f_globals = f_globals
        self.defaults = defaults
        self.kwdefaults = kwdefaults
        self.annotations = annotations
        self.closure = closure
        if closure is None:
            closure_scope = None
        self.closure_scope = closure_scope
        # Either a source or a VT with .can_reconstruct() == True
        self.wrapped_reconstructible: Optional[
            Union[Source, VariableTracker]
        ] = wrapped_reconstructible

    def self_args(self):
        return []

    def get_code(self):
        return self.code.as_python_constant()

    def get_function(self):
        if self.closure:
            raise NotImplementedError()
        func = types.FunctionType(
            self.code.as_python_constant(),
            self.f_globals,
            self.fn_name.as_python_constant(),
        )
        if self.defaults:
            func.__defaults__ = self.defaults.as_python_constant()
        if self.kwdefaults:
            func.__kwdefaults__ = self.kwdefaults.as_python_constant()
        if self.annotations:
            annotations = self.annotations.as_python_constant()
            if isinstance(annotations, tuple):
                from itertools import pairwise

                annotations = dict(pairwise(annotations))

            # TypeError: __annotations__ must be set to a dict object
            assert isinstance(annotations, dict)
            func.__annotations__ = annotations
        return func

    def has_closure(self):
        return self.closure is not None

    def has_self(self):
        return False

    def get_globals(self):
        return self.f_globals

    def bind_args(self, parent, args, kwargs):
        from .misc import InlinedClosureVariable

        code = self.get_code()
        func = types.FunctionType(
            code,
            self.f_globals,
            self.fn_name.as_python_constant(),
            tuple(self.defaults.items) if self.defaults else None,
            tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))),
        )
        if self.kwdefaults:
            func.__kwdefaults__ = self.kwdefaults.keys_as_python_constant()
        bound = inspect.signature(func).bind(*args, **kwargs)
        bound.apply_defaults()
        result = dict(bound.arguments.items())
        wrap_args_kwargs(parent.output.root_tx, result)
        closure_cells = init_cellvars(parent, result, code)

        for idx, name in enumerate(code.co_freevars):
            cell = self.closure.items[idx]
            assert getattr(cell, name, name) == name
            assert name not in result
            if isinstance(cell, InlinedClosureVariable):
                # InlinedClosureVariable's are created from LOAD_CLOSURE's from
                # InliningInstructionTranslators when the variable name is not found in closure_cells.
                # They should remain outside of closure_cells, so that our callee (the
                # InliningInstructionTranslator that traces `func`) handles
                # the cell correctly - that is, the cell's contents are treated as if they
                # are local variables, like in UserFunctionVariable's bind_args for freevars.
                cand = parent
                while cand and name not in cand.symbolic_locals:
                    cand = cand.parent
                if cand is None:
                    raise RuntimeError(
                        f"Couldn't find {name} in the symbolic_locals of the inline interpreter stack"
                    )
                result[name] = cand.symbolic_locals[name]
            else:
                closure_cells[name] = self.closure.items[idx]

        return result, closure_cells

    def export_freevars(self, parent, child):
        code = self.get_code()
        for var in code.co_freevars:
            if var in child.symbolic_locals:
                parent.symbolic_locals[var] = child.symbolic_locals[var]

    def reconstruct(self, codegen):
        codegen.load_import_from(__name__, "_create_nested_fn")
        codegen(self.code)
        codegen.extend_output([codegen._create_load_const(self.f_globals)])
        codegen(ConstantVariable.create(self.code.value.co_name))

        if self.defaults:
            codegen(self.defaults)
        else:
            codegen.extend_output([codegen.create_load_const(None)])

        if self.closure:
            codegen(self.closure)
        else:
            codegen.extend_output([codegen.create_load_const(None)])

        if self.kwdefaults:
            codegen(self.kwdefaults)
        else:
            codegen.extend_output([codegen.create_load_const(None)])

        if self.annotations:
            try:
                annotations = self.annotations.as_python_constant()
                codegen.extend_output([codegen._create_load_const(annotations)])
            except NotImplementedError:
                codegen(self.annotations)
        else:
            codegen.extend_output([codegen.create_load_const(None)])

        codegen.extend_output(create_call_function(7, push_null=True))

        if self.wrapped_reconstructible:
            codegen.load_import_from("functools", "wraps")
            codegen(self.wrapped_reconstructible)
            codegen.extend_output(create_call_function(1, True))
            codegen.extend_output(create_rot_n(2))
            codegen.extend_output(create_call_function(1, True))


class SkipFunctionVariable(VariableTracker):
    def __init__(self, value, reason=None, **kwargs):
        super().__init__(**kwargs)
        self.value = value
        self.reason = reason

    def python_type(self):
        return type(self.value)

    def as_python_constant(self):
        return self.value

    @classmethod
    def create_with_source(cls, value, source):
        install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
        return cls(
            value,
            source=source,
        )

    @staticmethod
    @functools.lru_cache(None)
    def fold_through_function_to_wrapper():
        return {
            collections.namedtuple: variables.UserDefinedClassVariable,
        }

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
            unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}")
        # Fold through the functions(e.g, collections.namedtuple)
        # that inputs & outputs are all python constants
        elif (
            self.value in self.fold_through_function_to_wrapper().keys()
            and check_constant_args(args, kwargs)
        ):
            value = self.value(
                *[x.as_python_constant() for x in args],
                **{k: v.as_python_constant() for k, v in kwargs.items()},
            )
            return self.fold_through_function_to_wrapper().get(self.value)(
                value, mutable_local=MutableLocal()
            )
        elif (
            self.value is functools.wraps
            and not kwargs
            and len(args) == 1
            and (
                args[0].source is not None or args[0].can_reconstruct(tx.output.root_tx)
            )
        ):

            def wraps(fn):
                if isinstance(fn, variables.NestedUserFunctionVariable):
                    if args[0].source:
                        reconstructible = args[0].source
                    else:
                        reconstructible = args[0]
                    return fn.clone(wrapped_reconstructible=reconstructible)
                unimplemented(f"functools.wraps({fn})")

            return variables.LambdaVariable(wraps)
        else:
            try:
                path = inspect.getfile(self.value)
            except TypeError:
                path = f"Builtin {self.value.__name__}"
            msg = f"'skip function {self.value.__qualname__} in file {path}'"
            msg += f"', {self.reason}'" if self.reason else ""
            unimplemented(msg)


def _traceable_collective_remaps():
    # We can't rely on importing from distributed, since it's not always built
    if torch.distributed.is_available():
        from torch.distributed._functional_collectives import (
            traceable_collective_remaps,
        )

        return traceable_collective_remaps
    return {}


def _traceable_collectives_source(tx, fn):
    assert torch.distributed.is_available(), "Illegal invocation."
    assert fn in _traceable_collective_remaps().values()

    inner_name = fn.__name__
    path_source = tx.import_source("torch.distributed._functional_collectives")
    return AttrSource(path_source, inner_name)


class CollectiveFunctionRewriteVariable(UserFunctionVariable):
    """

    Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives.



    This class provides both a way to check if a function is remappable, and perform the remapping.



    In the case that a function is 'remappable' but only for some combinations of call-time arguments,

    we check the args at `call_function` time and fall back to graph-breaking if needed.  This is no worse

    than status-quo as we currently graph-break on all distributed.* collectives.

    """

    def __init__(self, fn, *, replacement_var, **kwargs):
        super().__init__(fn, **kwargs)
        assert isinstance(replacement_var, UserFunctionVariable)
        self.replacement_var = replacement_var

    @staticmethod
    def create(tx, old_fn, source, **options):
        new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(tx, old_fn)
        return CollectiveFunctionRewriteVariable(
            old_fn,
            replacement_var=UserFunctionVariable(new_fn, source=new_source, **options),
            source=source,
            **options,
        )

    @staticmethod
    def can_rewrite(variable):
        return (
            inspect.isfunction(variable) and variable in _traceable_collective_remaps()
        )

    @staticmethod
    def rewrite(tx, fn):
        new_fn = _traceable_collective_remaps()[fn]
        return new_fn, _traceable_collectives_source(tx, new_fn)

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        # call_function must check any unsupported arguments and graph-break.
        # It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn,
        # since that's the contract for putting a mapping in `traceable_collective_remaps`
        import torch.distributed as dist
        from torch.distributed._functional_collectives import REDUCE_OP_TO_STR

        # Merge args into kwargs so positional and keyword args
        # can be processed the same way.
        signature = inspect.signature(self.fn)
        kwargs = dict(signature.bind(*args, **kwargs).arguments)
        args = ()

        if "async_op" in kwargs and kwargs["async_op"].as_python_constant():
            unimplemented(
                f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.fn}"
            )

        if kwargs.get("group") is None or kwargs["group"].value is None:
            kwargs["group"] = ProcessGroupVariable.get_global_pg_variable()

        if self.fn == dist.all_reduce:
            reduce_op_var = kwargs.get("op")
            reduce_op = (
                reduce_op_var.value
                if reduce_op_var is not None
                else signature.parameters["op"].default
            )
            if reduce_op not in REDUCE_OP_TO_STR:
                raise ValueError(f"Unsupported all_reduce op: {reduce_op}")
            kwargs["op"] = variables.ConstantVariable.create(
                REDUCE_OP_TO_STR[reduce_op]
            )
        return self.replacement_var.call_function(tx, args, kwargs)


class FunctoolsPartialVariable(VariableTracker):
    def __init__(self, func: VariableTracker, args, keywords, **kwargs):
        super().__init__(**kwargs)
        self.func = func
        assert isinstance(args, list)
        self.args = args
        assert isinstance(keywords, dict)
        self.keywords = keywords

    def reconstruct(self, codegen):
        codegen.load_import_from("functools", "partial")
        codegen(self.func)
        if self.args:
            codegen.foreach(self.args)
        if not self.keywords:
            codegen.extend_output(create_call_function(len(self.args) + 1, True))
            return

        codegen.foreach(self.keywords.values())
        keys = tuple(self.keywords.keys())
        codegen.extend_output(
            codegen.create_call_function_kw(len(keys) + len(self.args) + 1, keys, True)
        )

    def get_function(self):
        return self.as_python_constant()

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        merged_args = self.args + args
        merged_kwargs = {**self.keywords, **kwargs}
        return self.func.call_function(tx, merged_args, merged_kwargs)

    def call_hasattr(self, tx, name: str) -> VariableTracker:
        # functools.partial uses slots, so attributes are constant
        return variables.ConstantVariable.create(
            hasattr(functools.partial(identity), name)
        )

    def as_python_constant(self):
        return functools.partial(
            self.func.as_python_constant(),
            *[arg.as_python_constant() for arg in self.args],
            **{k: v.as_python_constant() for k, v in self.keywords.items()},
        )

    def guard_as_python_constant(self):
        """Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants"""
        return functools.partial(
            self.func.guard_as_python_constant(),
            *[v.guard_as_python_constant() for v in self.args],
            **{k: v.guard_as_python_constant() for k, v in self.keywords.items()},
        )


class TritonKernelVariable(VariableTracker):
    def __init__(self, kernel, kernel_idx, grid, **kwargs):
        from triton.runtime.autotuner import Autotuner

        from torch._higher_order_ops.triton_kernel_wrap import kernel_side_table

        super().__init__(**kwargs)

        assert kernel is not None

        self.kernel = kernel
        self.kernel_idx = kernel_side_table.add_kernel(kernel)

        assert kernel_idx is None or self.kernel_idx == kernel_idx

        self.grid = grid

        if isinstance(kernel, Autotuner):
            # We only support configs and keys arguments of triton.autotune
            # Make sure other arguments are defaulted
            defaults = inspect.signature(Autotuner.__init__).parameters

            # Newer version of triton change attribute name from warmup to num_warmup and rep to num_rep.
            # The call to get_first_attr is to maintain backward-compatibility.
            if (
                (
                    "warmup" in defaults
                    and defaults["warmup"].default
                    != get_first_attr(kernel, "num_warmups", "warmup")
                )
                or (
                    "rep" in defaults
                    and defaults["rep"].default
                    != get_first_attr(kernel, "num_reps", "rep")
                )
                or (
                    "prune_configs_by" in defaults
                    and defaults["prune_configs_by"].default
                    != kernel.early_config_prune
                )
                # Set via reset_to_zero argument
                or len(kernel.reset_idx) != 0
                or len(kernel.restore_idx) != 0
            ):
                raise Unsupported(
                    "Only configs and keys are supported for triton.autotune"
                )

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        from triton.runtime.autotuner import Autotuner

        from .constant import ConstantVariable
        from .dicts import ConstDictVariable
        from .lists import BaseListVariable

        if self.grid is None:
            raise Unsupported("Triton kernels should always be called with a grid")

        # Both for grid's meta as well as for the kernel, we need combined
        # args and kwargs normalized
        names = (
            variables.ConstantVariable.create(name) for name in self.kernel.arg_names
        )
        kwargs = {variables.ConstantVariable.create(k): v for k, v in kwargs.items()}
        normalized_args = {**dict(zip(names, args)), **kwargs}

        configs = (
            [config.kwargs for config in self.kernel.configs]
            if isinstance(self.kernel, Autotuner)
            else [{}]
        )
        grids = []
        for config_args in configs:
            # If the grid is a function, then lets execute it and convert it to
            # a list
            grid = self.grid
            if isinstance(grid, (NestedUserFunctionVariable, UserFunctionVariable)):
                # Populate the special "meta" argument to call the grid function
                config_args = {
                    ConstantVariable.create(k): ConstantVariable.create(v)
                    for k, v in config_args.items()
                }
                meta = ConstDictVariable({**normalized_args, **config_args}, dict)
                grid = grid.call_function(tx, [meta], {})

            # Now, the grid must be a list either originally or through above
            # modification
            if isinstance(grid, BaseListVariable):
                grids.append(grid.as_proxy())
            else:
                unimplemented(f"grid for the triton kernel is {type(grid)}")

        for i in range(len(grids)):
            if not isinstance(grids[i], tuple):
                raise Unsupported("Only tuple grids are supported")
            # inductor expects all grids to be 3-tuple so lets make it
            if len(grids[i]) == 1:
                grids[i] = (grids[i][0], 1, 1)
            elif len(grids[i]) == 2:
                grids[i] = (grids[i][0], grids[i][1], 1)
            elif len(grids[i]) > 3:
                raise Unsupported("Grid can have at most rank 3")

        assert len(grids) != 0
        if len(set(grids)) == 1:
            # If there's only one unique grid, lets simplify
            grids = [grids[0]]

        from torch._higher_order_ops.triton_kernel_wrap import (
            triton_kernel_wrapper_mutation,
        )

        # Combine args and kwargs and pass as a dict so that if user defined triton
        # kernel uses variables as 'grid' or 'kernel', it does not conflict with
        # parameters of the wrapper function
        meta = ConstDictVariable(normalized_args, dict)
        tx.output.create_proxy(
            "call_function",
            triton_kernel_wrapper_mutation,
            (),
            {
                "kernel_idx": self.kernel_idx,
                "grid": grids,
                "kwargs": meta.as_proxy(),
            },
        )

        return variables.ConstantVariable(
            None,
        )

    def call_method(

        self,

        tx,

        name,

        args: "List[VariableTracker]",

        kwargs: "Dict[str, VariableTracker]",

    ) -> "VariableTracker":
        if name == "__getitem__":
            # __getitem__ should only be called if we don't already have a grid
            # Only grid needs to be passed
            if self.grid is not None or len(args) != 1:
                raise Unsupported(
                    "Triton kernels should be called with only a single grid"
                )

            return TritonKernelVariable(
                kernel=self.kernel,
                kernel_idx=self.kernel_idx,
                grid=args[0],
            )
        elif name == "run":
            if "grid" not in kwargs:
                raise Unsupported("Triton kernel requires to be called with a grid")
            grid = kwargs.pop("grid")
            kwargs.pop("warmup", None)
            # rewrite kernel.run(*args, grid=grid) to kernel[grid](*args)
            return TritonKernelVariable(
                kernel=self.kernel, kernel_idx=self.kernel_idx, grid=grid
            ).call_function(tx, args, kwargs)

        # Bail out to parent's implementation
        return super().call_method(tx, name, args, kwargs)