Spaces:
Running
Running
File size: 36,044 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
# mypy: ignore-errors
import collections
import functools
import inspect
import itertools
import types
from typing import Dict, List, Optional, TYPE_CHECKING, Union
import torch
from .. import variables
from ..bytecode_transformation import create_call_function, create_rot_n
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, ConstantSource, DefaultsSource, GetItemSource
from ..utils import check_constant_args, get_first_attr, identity, istype, make_cell
from .base import MutableLocal, typestr, VariableTracker
from .constant import ConstantVariable
from .distributed import ProcessGroupVariable
if TYPE_CHECKING:
from torch._guards import Source
def wrap_bound_arg(tx, val, source=None):
# Source propagation is best effort since not every object we encounter has a source to begin with.
if isinstance(val, VariableTracker):
return val
elif not source:
from torch._dynamo.variables.builder import SourcelessBuilder
return SourcelessBuilder()(tx, val)
else:
# Create a lazy variable to avoid guarding on __defaults__ unless really
# needed.
return variables.LazyVariableTracker.create(val, source)
def wrap_args_kwargs(tx, result):
for k, v in list(result.items()):
if isinstance(v, (tuple, dict)):
# args/kwargs
result[k] = wrap_bound_arg(tx, v)
def init_cellvars(parent, result, code):
closure_cells = dict()
side_effects = parent.output.side_effects
# for name in itertools.chain(code.co_cellvars, code.co_freevars):
for name in code.co_cellvars:
closure_cells[name] = side_effects.track_cell_new()
if name in result:
side_effects.store_cell(closure_cells[name], result.pop(name))
return closure_cells
def _create_nested_fn(
code, f_globals, name, defaults, closure, kwdefaults, annotations
):
from types import FunctionType
func = FunctionType(code, f_globals, name, defaults, closure)
func.__kwdefaults__ = kwdefaults
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert annotations is None or isinstance(annotations, dict)
func.__annotations__ = annotations
return func
class BaseUserFunctionVariable(VariableTracker):
def get_filename(self):
return self.get_code().co_filename
def get_name(self):
return self.get_code().co_name
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
return tx.inline_user_function_return(
self, list(self.self_args()) + list(args), kwargs
)
def call_hasattr(self, tx, name: str) -> VariableTracker:
result = False
try:
result = hasattr(self.get_function(), name)
except NotImplementedError:
if name == "__name__" and isinstance(self, NestedUserFunctionVariable):
result = True
return variables.ConstantVariable.create(result)
def inspect_parameter_names(self):
return list(inspect.signature(self.get_function()).parameters)
def closure_vars(self, tx):
return {}
class UserFunctionVariable(BaseUserFunctionVariable):
"""Some unsupported user-defined global function"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.CLOSURE_MATCH))
return cls(
value,
source=source,
)
def __init__(self, fn, is_constant=False, **kwargs):
super().__init__(**kwargs)
if getattr(fn, "_dynamo_marked_constant", False):
# This method should be treated as a constant for the purposes of compilation
self.is_constant = True
else:
self.is_constant = False
assert isinstance(
fn, (types.FunctionType, torch.jit.ScriptFunction)
), f"expected FunctionType found {typestr(fn)} {fn}"
# unpack @torch._dynamo.optimize()(fn) wrapped function
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
# unpack torch.jit.script_if_tracing
if inspect.getattr_static(fn, "__script_if_tracing_wrapper", False):
fn = inspect.getattr_static(fn, "__original_fn", fn)
self.fn: types.FunctionType = fn
def as_python_constant(self):
if istype(self, UserFunctionVariable):
return self.fn
# subclasses (such as methods) usually aren't a constant
return super().as_python_constant()
def self_args(self):
return []
def get_function(self):
return self.fn
def get_code(self):
return self.fn.__code__
def python_type(self):
return types.FunctionType
def has_self(self):
return getattr(self.fn, "__self__", None) is not None
def get_globals(self):
return self.fn.__globals__
def bind_args(self, parent, args, kwargs):
assert not self.is_constant
tx = parent.output.root_tx
wrap = functools.partial(wrap_bound_arg, tx=tx)
fn: types.FunctionType = self.fn
defaults = fn.__defaults__ or []
defaults_sources = [
None if self.source is None else DefaultsSource(self.source, idx)
for idx, _ in enumerate(defaults)
]
fake_func = types.FunctionType(
fn.__code__,
fn.__globals__,
fn.__name__,
tuple(
[
wrap(val=arg, source=source)
for arg, source in zip(defaults, defaults_sources)
]
),
fn.__closure__,
)
if fn.__kwdefaults__:
kwdefaults_sources = {
k: None
if self.source is None
else DefaultsSource(self.source, k, is_kw=True)
for k in fn.__kwdefaults__
}
fake_func.__kwdefaults__ = {
k: wrap(val=v, source=kwdefaults_sources[k])
for k, v in fn.__kwdefaults__.items()
}
bound = inspect.signature(fake_func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(tx, result)
closure_cells = init_cellvars(parent, result, fn.__code__)
closure = self.fn.__closure__ or ()
assert len(closure) == len(self.fn.__code__.co_freevars)
for idx, name, cell in zip(
itertools.count(), self.fn.__code__.co_freevars, closure
):
if name == "__class__":
source = AttrSource(self.source, "__class__") if self.source else None
result[name] = variables.UserDefinedClassVariable(
cell.cell_contents,
source=source,
)
else:
var = tx.match_nested_cell(name, cell)
if var is not None:
# optimization for cleaner codegen
result[name] = var
elif self.source:
from .builder import VariableBuilder
side_effects = parent.output.side_effects
if cell in side_effects:
out = side_effects[cell]
else:
closure_cell = GetItemSource(
AttrSource(self.source, "__closure__"), idx
)
closure_cell_contents = AttrSource(
closure_cell, "cell_contents"
)
try:
contents_var = VariableBuilder(
parent, closure_cell_contents
)(cell.cell_contents)
except ValueError:
# Cell has not yet been assigned
contents_var = variables.DeletedVariable()
if (
closure_cell_contents.name()
not in tx.mutated_closure_cell_contents
):
# Optimistically don't allocate the cell, to
# reduce the number of side effects. This is
# important for cond, as without it, any accesses
# to closures create side effects and cond doesn't
# support side effects. If we're wrong and this
# closure cell gets written to, we will restart
# the analysis with this cell's name in the
# mutated list here
result[name] = contents_var
continue
# cells are written to with "cell_contents",
# so the source should just be the closure_cell, not its contents
out = side_effects.track_cell_existing(closure_cell, cell)
side_effects.store_cell(
out,
contents_var,
)
result[name] = out
else:
from .builder import SourcelessBuilder
result[name] = SourcelessBuilder()(tx, cell.cell_contents)
return result, closure_cells
def export_freevars(self, parent, child):
pass
def call_hasattr(self, tx, name: str) -> VariableTracker:
result = hasattr(self.fn, name)
return variables.ConstantVariable.create(result)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
if self.is_constant:
return invoke_and_store_as_constant(
tx, self.fn, self.get_name(), args, kwargs
)
return super().call_function(tx, args, kwargs)
class UserMethodVariable(UserFunctionVariable):
"""Some unsupported user-defined method"""
def __init__(self, fn, obj, **kwargs):
super().__init__(fn=fn, **kwargs)
self.obj = obj
def __str__(self):
return f"{self.__class__.__name__}({self.fn}, {self.obj})"
def self_args(self):
return [self.obj]
def python_type(self):
return types.MethodType
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
# For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution
# rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method
# since we ensure `forward` of allowed modules can be traced by AOT safely.
# Note this is not only for allowed modules, as user customized modules can extend from
# allowed modules but using parent's `forward` method, which is also covered by this branch.
# If we are tracing the higher order op, we want Dynamo to step inside
# the module call so that Dynamo can see the underlying parameters and
# buffers and raise them as inputs to the graph. The is_root_tracer
# check bypasses the if condition for non-root tracers and directly
# calls the super().call_function at the end, which is basically
# equivalent of inlining the method.
if tx.output.is_root_tracer() and isinstance(
self.obj, variables.NNModuleVariable
):
module_attr = getattr(self.fn, "__module__", "")
if (
module_attr is not None
and module_attr.startswith("torch.nn.")
or self.is_constant
):
return self.obj.call_method(
tx, self.fn.__name__, args, kwargs, constant=self.is_constant
)
return super().call_function(tx, args, kwargs)
def inspect_parameter_names(self):
return super().inspect_parameter_names()[1:]
class WrappedUserMethodVariable(UserMethodVariable):
def __init__(self, wrapped, context, **kwargs):
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, wrapped.obj, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
class WrappedUserFunctionVariable(UserFunctionVariable):
def __init__(self, wrapped, context, **kwargs):
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
def invoke_and_store_as_constant(tx, fn, name, args, kwargs):
def convert(x):
if isinstance(x, variables.TensorVariable):
return x.get_real_value()
return x.as_python_constant()
args = [convert(x) for x in args]
kwargs = {k: convert(v) for k, v in kwargs.items()}
res = fn(*args, **kwargs)
return tx.output.register_attr_or_module(
res,
name,
source=ConstantSource(name),
)
class NestedUserFunctionVariable(BaseUserFunctionVariable):
_nonvar_fields = {
"closure_scope",
"f_globals",
*BaseUserFunctionVariable._nonvar_fields,
}
def __init__(
self,
fn_name,
code,
f_globals,
defaults,
kwdefaults,
annotations,
closure,
closure_scope,
wrapped_reconstructible=None,
**kwargs,
):
super().__init__(**kwargs)
assert isinstance(fn_name.as_python_constant(), str)
assert isinstance(code.as_python_constant(), types.CodeType)
assert isinstance(f_globals, dict)
self.fn_name = fn_name
self.code = code
self.f_globals = f_globals
self.defaults = defaults
self.kwdefaults = kwdefaults
self.annotations = annotations
self.closure = closure
if closure is None:
closure_scope = None
self.closure_scope = closure_scope
# Either a source or a VT with .can_reconstruct() == True
self.wrapped_reconstructible: Optional[
Union[Source, VariableTracker]
] = wrapped_reconstructible
def self_args(self):
return []
def get_code(self):
return self.code.as_python_constant()
def get_function(self):
if self.closure:
raise NotImplementedError()
func = types.FunctionType(
self.code.as_python_constant(),
self.f_globals,
self.fn_name.as_python_constant(),
)
if self.defaults:
func.__defaults__ = self.defaults.as_python_constant()
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.as_python_constant()
if self.annotations:
annotations = self.annotations.as_python_constant()
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert isinstance(annotations, dict)
func.__annotations__ = annotations
return func
def has_closure(self):
return self.closure is not None
def has_self(self):
return False
def get_globals(self):
return self.f_globals
def bind_args(self, parent, args, kwargs):
from .misc import InlinedClosureVariable
code = self.get_code()
func = types.FunctionType(
code,
self.f_globals,
self.fn_name.as_python_constant(),
tuple(self.defaults.items) if self.defaults else None,
tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))),
)
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.keys_as_python_constant()
bound = inspect.signature(func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(parent.output.root_tx, result)
closure_cells = init_cellvars(parent, result, code)
for idx, name in enumerate(code.co_freevars):
cell = self.closure.items[idx]
assert getattr(cell, name, name) == name
assert name not in result
if isinstance(cell, InlinedClosureVariable):
# InlinedClosureVariable's are created from LOAD_CLOSURE's from
# InliningInstructionTranslators when the variable name is not found in closure_cells.
# They should remain outside of closure_cells, so that our callee (the
# InliningInstructionTranslator that traces `func`) handles
# the cell correctly - that is, the cell's contents are treated as if they
# are local variables, like in UserFunctionVariable's bind_args for freevars.
cand = parent
while cand and name not in cand.symbolic_locals:
cand = cand.parent
if cand is None:
raise RuntimeError(
f"Couldn't find {name} in the symbolic_locals of the inline interpreter stack"
)
result[name] = cand.symbolic_locals[name]
else:
closure_cells[name] = self.closure.items[idx]
return result, closure_cells
def export_freevars(self, parent, child):
code = self.get_code()
for var in code.co_freevars:
if var in child.symbolic_locals:
parent.symbolic_locals[var] = child.symbolic_locals[var]
def reconstruct(self, codegen):
codegen.load_import_from(__name__, "_create_nested_fn")
codegen(self.code)
codegen.extend_output([codegen._create_load_const(self.f_globals)])
codegen(ConstantVariable.create(self.code.value.co_name))
if self.defaults:
codegen(self.defaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.closure:
codegen(self.closure)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.kwdefaults:
codegen(self.kwdefaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.annotations:
try:
annotations = self.annotations.as_python_constant()
codegen.extend_output([codegen._create_load_const(annotations)])
except NotImplementedError:
codegen(self.annotations)
else:
codegen.extend_output([codegen.create_load_const(None)])
codegen.extend_output(create_call_function(7, push_null=True))
if self.wrapped_reconstructible:
codegen.load_import_from("functools", "wraps")
codegen(self.wrapped_reconstructible)
codegen.extend_output(create_call_function(1, True))
codegen.extend_output(create_rot_n(2))
codegen.extend_output(create_call_function(1, True))
class SkipFunctionVariable(VariableTracker):
def __init__(self, value, reason=None, **kwargs):
super().__init__(**kwargs)
self.value = value
self.reason = reason
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(
value,
source=source,
)
@staticmethod
@functools.lru_cache(None)
def fold_through_function_to_wrapper():
return {
collections.namedtuple: variables.UserDefinedClassVariable,
}
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}")
# Fold through the functions(e.g, collections.namedtuple)
# that inputs & outputs are all python constants
elif (
self.value in self.fold_through_function_to_wrapper().keys()
and check_constant_args(args, kwargs)
):
value = self.value(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
return self.fold_through_function_to_wrapper().get(self.value)(
value, mutable_local=MutableLocal()
)
elif (
self.value is functools.wraps
and not kwargs
and len(args) == 1
and (
args[0].source is not None or args[0].can_reconstruct(tx.output.root_tx)
)
):
def wraps(fn):
if isinstance(fn, variables.NestedUserFunctionVariable):
if args[0].source:
reconstructible = args[0].source
else:
reconstructible = args[0]
return fn.clone(wrapped_reconstructible=reconstructible)
unimplemented(f"functools.wraps({fn})")
return variables.LambdaVariable(wraps)
else:
try:
path = inspect.getfile(self.value)
except TypeError:
path = f"Builtin {self.value.__name__}"
msg = f"'skip function {self.value.__qualname__} in file {path}'"
msg += f"', {self.reason}'" if self.reason else ""
unimplemented(msg)
def _traceable_collective_remaps():
# We can't rely on importing from distributed, since it's not always built
if torch.distributed.is_available():
from torch.distributed._functional_collectives import (
traceable_collective_remaps,
)
return traceable_collective_remaps
return {}
def _traceable_collectives_source(tx, fn):
assert torch.distributed.is_available(), "Illegal invocation."
assert fn in _traceable_collective_remaps().values()
inner_name = fn.__name__
path_source = tx.import_source("torch.distributed._functional_collectives")
return AttrSource(path_source, inner_name)
class CollectiveFunctionRewriteVariable(UserFunctionVariable):
"""
Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives.
This class provides both a way to check if a function is remappable, and perform the remapping.
In the case that a function is 'remappable' but only for some combinations of call-time arguments,
we check the args at `call_function` time and fall back to graph-breaking if needed. This is no worse
than status-quo as we currently graph-break on all distributed.* collectives.
"""
def __init__(self, fn, *, replacement_var, **kwargs):
super().__init__(fn, **kwargs)
assert isinstance(replacement_var, UserFunctionVariable)
self.replacement_var = replacement_var
@staticmethod
def create(tx, old_fn, source, **options):
new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(tx, old_fn)
return CollectiveFunctionRewriteVariable(
old_fn,
replacement_var=UserFunctionVariable(new_fn, source=new_source, **options),
source=source,
**options,
)
@staticmethod
def can_rewrite(variable):
return (
inspect.isfunction(variable) and variable in _traceable_collective_remaps()
)
@staticmethod
def rewrite(tx, fn):
new_fn = _traceable_collective_remaps()[fn]
return new_fn, _traceable_collectives_source(tx, new_fn)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
# call_function must check any unsupported arguments and graph-break.
# It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn,
# since that's the contract for putting a mapping in `traceable_collective_remaps`
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
# Merge args into kwargs so positional and keyword args
# can be processed the same way.
signature = inspect.signature(self.fn)
kwargs = dict(signature.bind(*args, **kwargs).arguments)
args = ()
if "async_op" in kwargs and kwargs["async_op"].as_python_constant():
unimplemented(
f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.fn}"
)
if kwargs.get("group") is None or kwargs["group"].value is None:
kwargs["group"] = ProcessGroupVariable.get_global_pg_variable()
if self.fn == dist.all_reduce:
reduce_op_var = kwargs.get("op")
reduce_op = (
reduce_op_var.value
if reduce_op_var is not None
else signature.parameters["op"].default
)
if reduce_op not in REDUCE_OP_TO_STR:
raise ValueError(f"Unsupported all_reduce op: {reduce_op}")
kwargs["op"] = variables.ConstantVariable.create(
REDUCE_OP_TO_STR[reduce_op]
)
return self.replacement_var.call_function(tx, args, kwargs)
class FunctoolsPartialVariable(VariableTracker):
def __init__(self, func: VariableTracker, args, keywords, **kwargs):
super().__init__(**kwargs)
self.func = func
assert isinstance(args, list)
self.args = args
assert isinstance(keywords, dict)
self.keywords = keywords
def reconstruct(self, codegen):
codegen.load_import_from("functools", "partial")
codegen(self.func)
if self.args:
codegen.foreach(self.args)
if not self.keywords:
codegen.extend_output(create_call_function(len(self.args) + 1, True))
return
codegen.foreach(self.keywords.values())
keys = tuple(self.keywords.keys())
codegen.extend_output(
codegen.create_call_function_kw(len(keys) + len(self.args) + 1, keys, True)
)
def get_function(self):
return self.as_python_constant()
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
merged_args = self.args + args
merged_kwargs = {**self.keywords, **kwargs}
return self.func.call_function(tx, merged_args, merged_kwargs)
def call_hasattr(self, tx, name: str) -> VariableTracker:
# functools.partial uses slots, so attributes are constant
return variables.ConstantVariable.create(
hasattr(functools.partial(identity), name)
)
def as_python_constant(self):
return functools.partial(
self.func.as_python_constant(),
*[arg.as_python_constant() for arg in self.args],
**{k: v.as_python_constant() for k, v in self.keywords.items()},
)
def guard_as_python_constant(self):
"""Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants"""
return functools.partial(
self.func.guard_as_python_constant(),
*[v.guard_as_python_constant() for v in self.args],
**{k: v.guard_as_python_constant() for k, v in self.keywords.items()},
)
class TritonKernelVariable(VariableTracker):
def __init__(self, kernel, kernel_idx, grid, **kwargs):
from triton.runtime.autotuner import Autotuner
from torch._higher_order_ops.triton_kernel_wrap import kernel_side_table
super().__init__(**kwargs)
assert kernel is not None
self.kernel = kernel
self.kernel_idx = kernel_side_table.add_kernel(kernel)
assert kernel_idx is None or self.kernel_idx == kernel_idx
self.grid = grid
if isinstance(kernel, Autotuner):
# We only support configs and keys arguments of triton.autotune
# Make sure other arguments are defaulted
defaults = inspect.signature(Autotuner.__init__).parameters
# Newer version of triton change attribute name from warmup to num_warmup and rep to num_rep.
# The call to get_first_attr is to maintain backward-compatibility.
if (
(
"warmup" in defaults
and defaults["warmup"].default
!= get_first_attr(kernel, "num_warmups", "warmup")
)
or (
"rep" in defaults
and defaults["rep"].default
!= get_first_attr(kernel, "num_reps", "rep")
)
or (
"prune_configs_by" in defaults
and defaults["prune_configs_by"].default
!= kernel.early_config_prune
)
# Set via reset_to_zero argument
or len(kernel.reset_idx) != 0
or len(kernel.restore_idx) != 0
):
raise Unsupported(
"Only configs and keys are supported for triton.autotune"
)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from triton.runtime.autotuner import Autotuner
from .constant import ConstantVariable
from .dicts import ConstDictVariable
from .lists import BaseListVariable
if self.grid is None:
raise Unsupported("Triton kernels should always be called with a grid")
# Both for grid's meta as well as for the kernel, we need combined
# args and kwargs normalized
names = (
variables.ConstantVariable.create(name) for name in self.kernel.arg_names
)
kwargs = {variables.ConstantVariable.create(k): v for k, v in kwargs.items()}
normalized_args = {**dict(zip(names, args)), **kwargs}
configs = (
[config.kwargs for config in self.kernel.configs]
if isinstance(self.kernel, Autotuner)
else [{}]
)
grids = []
for config_args in configs:
# If the grid is a function, then lets execute it and convert it to
# a list
grid = self.grid
if isinstance(grid, (NestedUserFunctionVariable, UserFunctionVariable)):
# Populate the special "meta" argument to call the grid function
config_args = {
ConstantVariable.create(k): ConstantVariable.create(v)
for k, v in config_args.items()
}
meta = ConstDictVariable({**normalized_args, **config_args}, dict)
grid = grid.call_function(tx, [meta], {})
# Now, the grid must be a list either originally or through above
# modification
if isinstance(grid, BaseListVariable):
grids.append(grid.as_proxy())
else:
unimplemented(f"grid for the triton kernel is {type(grid)}")
for i in range(len(grids)):
if not isinstance(grids[i], tuple):
raise Unsupported("Only tuple grids are supported")
# inductor expects all grids to be 3-tuple so lets make it
if len(grids[i]) == 1:
grids[i] = (grids[i][0], 1, 1)
elif len(grids[i]) == 2:
grids[i] = (grids[i][0], grids[i][1], 1)
elif len(grids[i]) > 3:
raise Unsupported("Grid can have at most rank 3")
assert len(grids) != 0
if len(set(grids)) == 1:
# If there's only one unique grid, lets simplify
grids = [grids[0]]
from torch._higher_order_ops.triton_kernel_wrap import (
triton_kernel_wrapper_mutation,
)
# Combine args and kwargs and pass as a dict so that if user defined triton
# kernel uses variables as 'grid' or 'kernel', it does not conflict with
# parameters of the wrapper function
meta = ConstDictVariable(normalized_args, dict)
tx.output.create_proxy(
"call_function",
triton_kernel_wrapper_mutation,
(),
{
"kernel_idx": self.kernel_idx,
"grid": grids,
"kwargs": meta.as_proxy(),
},
)
return variables.ConstantVariable(
None,
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
# __getitem__ should only be called if we don't already have a grid
# Only grid needs to be passed
if self.grid is not None or len(args) != 1:
raise Unsupported(
"Triton kernels should be called with only a single grid"
)
return TritonKernelVariable(
kernel=self.kernel,
kernel_idx=self.kernel_idx,
grid=args[0],
)
elif name == "run":
if "grid" not in kwargs:
raise Unsupported("Triton kernel requires to be called with a grid")
grid = kwargs.pop("grid")
kwargs.pop("warmup", None)
# rewrite kernel.run(*args, grid=grid) to kernel[grid](*args)
return TritonKernelVariable(
kernel=self.kernel, kernel_idx=self.kernel_idx, grid=grid
).call_function(tx, args, kwargs)
# Bail out to parent's implementation
return super().call_method(tx, name, args, kwargs)
|