File size: 42,886 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
# mypy: ignore-errors

from torch.fx.experimental.proxy_tensor import is_sym_node, py_sym_types
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
from torch.fx.experimental.symbolic_shapes import (
    hint_int, free_symbols, is_symbol_binding_fx_node, find_symbol_binding_fx_nodes
)
from torch.fx.experimental._backward_state import BackwardState
import torch
import torch.fx as fx
import operator
import math
import torch.utils._pytree as pytree
import copy
import os
import itertools
import sympy
from collections import defaultdict
from torch.fx.passes import graph_drawer
from typing import List, Optional, Set, Tuple, Union
from .compile_utils import fx_graph_cse, get_aten_target
from . import config
import functools


AOT_PARTITIONER_DEBUG = config.debug_partitioner


def must_recompute(node):
    return node.meta.get("recompute", False)

def has_recomputable_ops(fx_g):
    found = False
    for node in fx_g.graph.nodes:
        if must_recompute(node):
            return True
    return False

def has_recomputable_rng_ops(fx_g):
    for node in fx_g.graph.nodes:
        if must_recompute(node) and hasattr(node.target, "tags") and torch.Tag.nondeterministic_seeded in node.target.tags:
            return True
    return False

def sym_node_size(node):
    if isinstance(node.meta["val"], (torch.SymInt, torch.SymBool)):
        return 1
    assert isinstance(node.meta["val"], torch.SymFloat)
    return 4

class InvalidNodeBase:
    def __repr__(self):
        return "Invalid Node"


InvalidNode = InvalidNodeBase()


def _extract_graph_with_inputs_outputs(joint_graph, inputs, outputs):
    """

    Given a graph, extracts out a subgraph that takes the specified nodes as

    inputs and returns the specified outputs.



    This includes specifying non-placeholder nodes as inputs.



    The general strategy is to initialize all inputs with proxies as we

    encounter them, and trace through the graph, only keeping values which take

    in valid proxies. Then, all dead code is eliminated.

    """
    new_graph = fx.Graph()
    env = {}

    # Add new placeholder nodes in the order specified by the inputs
    for node in inputs:
        new_node = new_graph.placeholder(node.name)
        # Can't use node_copy here as we may be turning previous call_function into placeholders
        new_node.meta = node.meta
        env[node] = new_node

    for node in joint_graph.nodes:
        if node in inputs:
            continue
        elif node.op == 'placeholder':
            env[node] = InvalidNode
        elif node.op == 'call_function':
            all_args = pytree.arg_tree_leaves(*node.args, **node.kwargs)
            all_args = [isinstance(env[x], InvalidNodeBase) for x in all_args if isinstance(x, fx.Node)]
            if any(all_args):
                env[node] = InvalidNode
                continue
            env[node] = new_graph.node_copy(node, lambda x: env[x])
        elif node.op == 'get_attr':
            env[node] = new_graph.node_copy(node, lambda x: env[x])
        elif node.op == 'output':
            pass
    output_values = []
    for x in outputs:
        if isinstance(x, fx.Node):
            if x not in env:
                raise RuntimeError(f"Node {x} couldn't be found in env")
            assert not isinstance(env[x], InvalidNodeBase), f"Node {x} was invalid, but is output"
            output_values.append(env[x])
        else:
            output_values.append(x)
    new_graph.output(output_values)

    new_graph.eliminate_dead_code()
    new_graph.lint()
    return new_graph


def _is_primal(node):
    return (
        node.op == "placeholder"
        and "tangents" not in node.target
        and not _is_bwd_seed_offset(node)
        and not _is_fwd_seed_offset(node)
    )

def _is_tangent(node):
    return node.op == "placeholder" and "tangents" in node.target

def _is_bwd_seed_offset(node):
    return node.op == "placeholder" and ("bwd_seed" in node.target or "bwd_base_offset" in node.target)

def _is_fwd_seed_offset(node):
    return node.op == "placeholder" and ("fwd_seed" in node.target or "fwd_base_offset" in node.target)

def _is_backward_state(node):
    return node.op == "placeholder" and isinstance(node.meta.get("val"), BackwardState)


def _extract_fwd_bwd_outputs(joint_module: fx.GraphModule, *, num_fwd_outputs):
    outputs = pytree.arg_tree_leaves(*(node.args for node in joint_module.graph.nodes if node.op == 'output'))
    fwd_outputs = outputs[:num_fwd_outputs]
    bwd_outputs = outputs[num_fwd_outputs:]
    return fwd_outputs, bwd_outputs


def _remove_by_name(saved_values, name):
    for saved_value in saved_values:
        if saved_value.name == name:
            saved_values.remove(saved_value)
            break

def _placeholders(nodes):
    # Avoid making an entire pass over the graph if we only care about the input placeholders
    result = []
    for node in nodes:
        if node.op == 'placeholder':
            result.append(node)
        else:
            break  # placeholders are all at the start of graph
    return result


def _extract_fwd_bwd_modules(joint_module: fx.GraphModule, saved_values, saved_sym_nodes, *, num_fwd_outputs):
    fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(joint_module, num_fwd_outputs=num_fwd_outputs)
    placeholders = _placeholders(joint_module.graph.nodes)
    primal_inputs = [*filter(_is_primal, placeholders)]
    tangent_inputs = [*filter(_is_tangent, placeholders)]
    fwd_seed_offset_inputs = [*filter(_is_fwd_seed_offset, placeholders)]
    bwd_seed_offset_inputs = [*filter(_is_bwd_seed_offset, placeholders)]
    backward_state_inputs = [*filter(_is_backward_state, placeholders)]

    bwd_graph = _extract_graph_with_inputs_outputs(
        joint_module.graph,
        saved_sym_nodes + saved_values + tangent_inputs + bwd_seed_offset_inputs,
        bwd_outputs
    )

    for node in _placeholders(bwd_graph.nodes):
        assert node.op == 'placeholder'
        # This is to filter out saved values that don't actually end up being used by the backwards pass
        if not node.users:
            _remove_by_name(saved_values, node.name)
            _remove_by_name(saved_sym_nodes, node.name)
        elif _is_backward_state(node):
            # BackwardState is saved directly
            _remove_by_name(saved_values, node.name)
            assert backward_state_inputs


    # Now that we have the finalized list of saved values, we need to ensure
    # we propagate all symbols which are referenced by backwards inputs.
    # These are not directly used in the graph but are required for downstream
    # sizevar assignment
    saved_symbols: Set[sympy.Symbol] = set()
    saved_sym_nodes_binding = []
    saved_sym_nodes_derived = []

    # Some symbols may already be bound in the directly saved_sym_nodes,
    # keep track of them so we don't re-bind them
    for node in saved_sym_nodes:
        symbol = is_symbol_binding_fx_node(node)
        if symbol:
            saved_symbols.add(symbol)
            saved_sym_nodes_binding.append(node)
        else:
            saved_sym_nodes_derived.append(node)

    # Now go through all of the prospective backward inputs and track any
    # other symbols we need to bind
    symbol_bindings = find_symbol_binding_fx_nodes(joint_module.graph)
    for node in itertools.chain(saved_sym_nodes_derived, saved_values, tangent_inputs):
        if "val" not in node.meta:
            continue
        new_symbols = free_symbols(node.meta["val"]) - saved_symbols
        # NB: Deterministic order please!
        for s in sorted(new_symbols, key=lambda s: s.name):
            # NB: For well formed graphs, the symbol should always be present,
            # but we also have ways to produce ill-formed graphs, e.g., direct
            # make_fx usages, so don't choke in this case
            if s not in symbol_bindings:
                continue
            saved_sym_nodes_binding.append(symbol_bindings[s])
        saved_symbols |= new_symbols


    # Update saved_sym_nodes that are now reordered to have all bindings at
    # front. This can also be used later on to figure out the position of saved
    # sym nodes in the output of fwd graph.
    saved_sym_nodes.clear()
    saved_sym_nodes.extend(saved_sym_nodes_binding + saved_sym_nodes_derived)

    # Now, we re-generate the fwd/bwd graphs.
    # NB: This might increase compilation time, but I doubt it matters
    fwd_graph = _extract_graph_with_inputs_outputs(
        joint_module.graph,
        primal_inputs + fwd_seed_offset_inputs,
        fwd_outputs + saved_values + saved_sym_nodes
    )
    bwd_graph = _extract_graph_with_inputs_outputs(
        joint_module.graph,
        saved_sym_nodes + saved_values + tangent_inputs + bwd_seed_offset_inputs + backward_state_inputs,
        bwd_outputs
    )

    fwd_module = fx._lazy_graph_module._make_graph_module(joint_module, fwd_graph)
    bwd_module = fx._lazy_graph_module._make_graph_module(joint_module, bwd_graph)
    return fwd_module, bwd_module


def default_partition(

    joint_module: fx.GraphModule, _joint_inputs, *, num_fwd_outputs

) -> Tuple[fx.GraphModule, fx.GraphModule]:
    """

    Partitions the :attr:`joint_module` in a manner that closely resembles the

    behavior observed in the original ``.forward()`` and ``.backward()`` of the

    callable, i.e., the resulting forward graph contains those operators that

    are executed in the original ``.forward()`` callable passed to

    :func:`aot_function`.



    The default partitioner collects the operators that are between the forward

    inputs and the forward outputs. This helps in finding the tensors which have

    to be stashed for the backward pass. These stashed tensors become the output

    of the generated forward graph. The remaining operators are then placed in

    the backward graph.



    .. warning::

        This API is experimental and likely to change.



    Args:

        joint_module(fx.GraphModule): The joint forward and backward graph. This

            is the result of AOT Autograd tracing.



    Returns:

        Returns the generated forward and backward Fx graph modules.

    """
    if has_recomputable_ops(joint_module):
        return min_cut_rematerialization_partition(joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs)
    primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
    fwd_seed_offset_inputs = list(filter(_is_fwd_seed_offset, joint_module.graph.nodes))
    inputs = primal_inputs + fwd_seed_offset_inputs
    fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(joint_module, num_fwd_outputs=num_fwd_outputs)
    forward_only_graph = _extract_graph_with_inputs_outputs(joint_module.graph, inputs, fwd_outputs)
    forward_node_names = {node.name for node in forward_only_graph.nodes if node.op != 'output'}
    saved_values = []
    saved_sym_nodes = []

    for node in joint_module.graph.nodes:
        if node.name not in forward_node_names:
            continue
        if is_sym_node(node):
            # Symints must be kept separate from tensors so that PythonFunction only calls
            # save_for_backward on tensors and stashes symints in autograd .ctx
            saved_sym_nodes.append(node)
        elif (
            'tensor_meta' not in node.meta
            and node.op == 'call_function'
        ):
            # Since we can't save tuple of tensor values, we need to flatten out what we're saving
            users = node.users
            assert all(user.target == operator.getitem for user in users)
            saved_values.extend(users)
        else:
            backward_usages = [n for n in node.users if n.name not in forward_node_names]
            if 'tensor_meta' in node.meta and all(is_sym_node(n) for n in backward_usages):
                # If we have a tensor in the forward, where only its sizes/strides are needed in the backward,
                # and not the actual tensor data,
                # then it will be a lot cheaper to save only the sizes/strides, and not the actual tensor.
                #
                # Note that saving the tensor could also cause compilation problems:
                # If the user mutated an input in the forward and uses its sizes/strides in the backward,
                # then we would be obligated to clone the input before saving it to appease autograd.
                # (This is how we originally found this bug).
                saved_sym_nodes.extend(backward_usages)
            else:
                saved_values.append(node)
    saved_values = list(dict.fromkeys(saved_values).keys())
    saved_sym_nodes = list(dict.fromkeys(saved_sym_nodes).keys())

    return _extract_fwd_bwd_modules(joint_module, saved_values, saved_sym_nodes=saved_sym_nodes, num_fwd_outputs=num_fwd_outputs)


def _prod(x):
    s = 1
    for i in x:
        s *= i
    return s

def _tensor_nbytes(numel, dtype):
    return numel * dtype.itemsize

def _size_of(node: fx.Node) -> int:
    if 'val' in node.meta:
        val = node.meta['val']
        if isinstance(val, py_sym_types):
            if isinstance(val, torch.SymInt):
                return 1
            else:
                return 999999
        # NB: The fallback values here are meaningless, maybe we should respect
        # torch._inductor.config.unbacked_symint_fallback (but this is a
        # layering violation)
        elif isinstance(val, (list, tuple)):
            return sum(_tensor_nbytes(hint_int(n.numel(), fallback=4098), n.dtype) for n in val if isinstance(n, torch.Tensor))
        elif isinstance(val, torch.Tensor):
            return _tensor_nbytes(hint_int(val.numel(), fallback=4098), val.dtype)

        raise RuntimeError(f"Unknown metadata type {type(val)}")

    # Only needed since we don't always trace with fake tensors.
    if 'tensor_meta' in node.meta:
        metadata = node.meta['tensor_meta']
        # TODO: What is to_size_hint suppose to be?
        numel = _prod(map(to_size_hint, metadata.shape))  # noqa: F821
        dtype = metadata.dtype
    else:
        return 0

    return _tensor_nbytes(numel, dtype)


# Used for some investigative purposes
def _count_ops(graph):
    from collections import defaultdict
    cnt = defaultdict(int)
    for node in graph.nodes:
        if node.op == 'call_function':
            cnt[node.target.__name__] += 1
    print(sorted(cnt.items(), key=lambda x: x[1], reverse=True))


@functools.lru_cache(None)
def pointwise_ops():
    ops = []
    for attr_name in dir(torch.ops.aten):
        opoverloadpacket = getattr(torch.ops.aten, attr_name)
        if not isinstance(opoverloadpacket, torch._ops.OpOverloadPacket):
            continue

        for overload in opoverloadpacket.overloads():
            op_overload = getattr(opoverloadpacket, overload)
            if torch.Tag.pointwise in op_overload.tags:
                # currently aot autograd uses packet not overload
                ops.append(opoverloadpacket)
                break

    return ops

def get_depth(node, depth_map):
    if node in depth_map:
        return depth_map[node]

    # Base case
    if node.op == "placeholder":
        depth_map[node] = 0
        return depth_map[node]

    # Handle output node
    if node.op == "output":
        args = node.args[0]
        for arg in args:
            if isinstance(arg, torch.fx.node.Node):
                get_depth(arg, depth_map)
        return

    # Get the depth of args and set the depth of this node
    arg_depths = [get_depth(arg, depth_map) for arg in node.all_input_nodes if isinstance(arg, torch.fx.node.Node)]
    # factory ops like full, rand might not have any input args
    if len(arg_depths) == 0:
        arg_depths = [0]
    depth_map[node] = max(arg_depths) + 1
    return depth_map[node]


def sort_depths(args, depth_map):
    arg_depths = {arg: depth_map[arg] for arg in args if isinstance(arg, torch.fx.node.Node)}
    return sorted(arg_depths.items(), key=lambda x: x[1], reverse=True)


def reordering_to_mimic_autograd_engine(gm):
    """

    This pass finds the first bwd node in the graph (by looking at users of

    tangents) and then reorders the graph by walking from this node to all the

    way to the end of the graph. At each op in this traveral, we insert this op

    in a new graph and try to bring only the relevant subgraph from the other

    non-bwd edges relevant for this op. This closely mimics the behavior of

    autograd engine.



    Why is this pass required in the first place?



    This is an artifact of how partitioners work today. The starting point of

    partitioner is a joint graph, which is fwd and then bwd graph. In the case

    of checkpointing, we keep portions of fwd graph in their original place in

    the joint graph, while obtaining a bwd graph. As a result, the resulting bwd

    graph has copies of recomputed fwd subgraphs followed by the original bwd

    graph. If we run this naively, this leads to bad memory footprint, because

    the fwd subgraphs are live for way longer duration than necessary. This pass

    reorders the operations such that we prioritize the ops for the original bwd

    graph while only realizing those ops from the fwd graph that are necessary

    at any given point in the graph.

    """

    new_graph = fx.Graph()
    env = {}

    # Add new placeholder nodes in the order specified by the inputs
    for node in gm.graph.nodes:
        if node.op == "placeholder":
            new_node = new_graph.placeholder(node.name)
            # Can't use node_copy here as we may be turning previous call_function into placeholders
            new_node.meta = node.meta
            env[node] = new_node


    order = {}
    for idx, node in enumerate(gm.graph.nodes):
        order[node] = idx

    # Populate depth for the nodes. Depth is the distance from the inputs.
    depths = {}
    output_node = next(node for node in gm.graph.nodes if node.op == "output")
    get_depth(output_node, depths)

    def insert_node_in_graph(node):
        if node in env:
            return env[node]

        # Bias traversal towards the nodes that have higher depth - prioritizes
        # critical path first.
        for arg, _ in sort_depths(node.all_input_nodes, depths):
            env[arg] = insert_node_in_graph(arg)
        env[node] = new_graph.node_copy(node, lambda x: env[x])
        return env[node]

    # Find first bwd node in the graph
    tangent_inputs = list(filter(_is_tangent, gm.graph.nodes))
    first_node_in_bwd = None
    minimum_order = math.inf
    for tangent in tangent_inputs:
        for user in tangent.users:
            if order[user] < minimum_order:
                minimum_order = order[user]
                first_node_in_bwd = user
    assert first_node_in_bwd is not None

    # Build the graph op-by-op by starting from the node all the way to the end
    for node in list(gm.graph.nodes)[order[first_node_in_bwd]:]:
        insert_node_in_graph(node)

    # The output node is already built by the traversal.
    new_gm = torch.fx.GraphModule(gm, new_graph)
    return new_gm


def functionalize_rng_ops(joint_module, fw_module, bw_module, num_sym_nodes):
    # During user-driven activation checkpointing, we have to ensure that a rng
    # op in fwd yields the same output as the recomputed rng op in the bwd.  To
    # do this, we use functionalize wrappers to wrap the random ops and share
    # rng state between the fwd and bwd graphs.

    # There are 3 main steps to do this
    # Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
    # Step 2 - Modify the fwd pass such that
    #   1) Replace rand with run_and_save_rng_state wrapper
    #   2) Replace the users of the original op with the output[1] of this op.
    #   3) Collect all the rng_state - output[0] of each op, and make them
    #   output nodes. Special care needs to be taken here because fwd outputs
    #   has symints at the very end.
    # Step 3 - Modify the bwd pass such that
    #   1) Add the input nodes just before the tangents for the stashed rng states
    #   2) Replace rand with run_with_save_rng_state wrappers
    #   3) Use the stashed states as inputs to these ops

    # Unique id to generate name
    uid = itertools.count()

    def get_rng_ops(gmod):
        random_nodes = {}
        for node in gmod.graph.nodes:
            if (
                node.op == "call_function"
                and hasattr(node.target, "tags")
                and torch.Tag.nondeterministic_seeded in node.target.tags
            ):
                random_nodes[node.name] = node
        return random_nodes

    def get_device(node):
        """

        Check the example value of the node outputs to find the device type.

        """
        if "val" not in node.meta:
            return None

        candidates = node.meta["val"]
        if not isinstance(candidates, tuple):
            candidates = (candidates,)

        for candidate in candidates:
            if isinstance(candidate, torch.Tensor):
                if candidate.device.type == "cuda":
                    return "cuda"

        return "cpu"

    def get_sample_rng_state(device):
        if device == "cuda":
            return torch.cuda.get_rng_state()
        return torch.get_rng_state()

    # Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
    joint_graph_rng_ops = get_rng_ops(joint_module)
    fw_graph_rng_ops = get_rng_ops(fw_module)
    bw_graph_rng_ops = get_rng_ops(bw_module)
    recomputable_rng_ops_map = dict()
    for node in joint_module.graph.nodes:
        if (
            must_recompute(node)
            and hasattr(node.target, "tags")
            and torch.Tag.nondeterministic_seeded in node.target.tags
        ):
            base_node = joint_graph_rng_ops[node.name]
            fw_node = fw_graph_rng_ops[node.name]
            bw_node = bw_graph_rng_ops[node.name]
            recomputable_rng_ops_map[base_node] = {"fwd": fw_node, "bwd": bw_node}

    run_and_save_rng = torch._prims.rng_prims.run_and_save_rng_state
    run_with_rng_state = torch._prims.rng_prims.run_with_rng_state

    for node in bw_module.graph.nodes:
        if node.op == "placeholder" and "tangent" in node.name:
            bw_tangent_start_node = node
            break


    fw_rng_state_outputs = []
    for base_node, node_pair in recomputable_rng_ops_map.items():
        # Step 2 - Modify the fwd pass such that
        fw_node = node_pair["fwd"]
        bw_node = node_pair["bwd"]
        fw_graph = fw_module.graph
        with fw_graph.inserting_before(fw_node):
            functional_fw_node = fw_graph.create_node(
                "call_function",
                run_and_save_rng,
                args=(fw_node.target, *fw_node.args),
                kwargs=fw_node.kwargs
            )
            state = fw_graph.create_node("call_function", operator.getitem, args=(functional_fw_node, 0), kwargs={})
            rng_output = fw_graph.create_node("call_function", operator.getitem, args=(functional_fw_node, 1,), kwargs={})
            fw_node.replace_all_uses_with(rng_output)
            fw_graph.erase_node(fw_node)
            fw_rng_state_outputs.append(state)


        # Step 3 - Modify the bwd pass such that
        bw_graph = bw_module.graph
        with bw_graph.inserting_before(bw_tangent_start_node):
            state_name = f"rng_state_output_{next(uid)}"
            bw_rng_state_node = bw_graph.placeholder(state_name)
            bw_rng_state_node.meta["val"] = get_sample_rng_state(get_device(fw_node))

        with bw_graph.inserting_before(bw_node):
            rng_output = bw_graph.create_node(
                "call_function",
                run_with_rng_state,
                args=(bw_rng_state_node, bw_node.target, *bw_node.args),
                kwargs=bw_node.kwargs
            )

            bw_node.replace_all_uses_with(rng_output)
            bw_graph.erase_node(bw_node)


    # Add the rng states in the output of the fwd graph. AOT Autograd assumes
    # that symints are at the end of forward graph outputs. So, insert the new
    # rng states accordingly.
    fw_output_node = next(node for node in fw_module.graph.nodes if node.op == "output")
    fw_outputs = fw_output_node.args[0]
    sym_node_start_idx = len(fw_outputs) - num_sym_nodes
    outputs = fw_outputs[:sym_node_start_idx] + fw_rng_state_outputs + fw_outputs[sym_node_start_idx:]
    fw_module.graph.output(outputs)
    fw_module.graph.erase_node(fw_output_node)
    fw_module.recompile()
    bw_module.recompile()
    return fw_module, bw_module


def cleanup_recompute_tags(joint_module):
    """

    If there are two consecutive checkpointed blocks with no operator in

    between, we would still want to stash the tensor at the boundary of

    checkpointed blocks. The following pass makes the last output node

    non-recomputable to allow for that.

    """
    for node in joint_module.graph.nodes:
        if must_recompute(node):
            for user in node.users:
                if must_recompute(user) and user.meta["recompute"] > node.meta["recompute"]:
                    node.meta["recompute"] = 0
    return joint_module


def min_cut_rematerialization_partition(

    joint_module: fx.GraphModule, _joint_inputs, compiler="inductor", recomputable_ops=None,

    *, num_fwd_outputs

) -> Tuple[fx.GraphModule, fx.GraphModule]:
    """

    Partitions the joint graph such that the backward recomputes the forward.

    Recomputing helps in trading off memory bandwidth with computation.



    To create the fwd and bwd graph, we copy the joint graph, manually set the

    outputs to just original forward or backward outputs. And then we run the

    resulting graphs through dead code elimination.



    .. warning::

        This API is experimental and likely to change.



    Args:

        joint_module(fx.GraphModule): The joint forward and backward graph. This

            is the result of AOT Autograd tracing.

        _joint_inputs: The inputs to the joint graph. This is unused.

        compiler: This option determines the default set of recomputable ops.

            Currently, there are two options: ``nvfuser`` and ``inductor``.

        recomputable_ops: This is an optional set of recomputable ops. If this

            is not None, then this set of ops will be used instead of the

            default set of ops.

        num_fwd_outputs: The number of outputs from the forward graph.



    Returns:

        Returns the generated forward and backward Fx graph modules.

    """
    try:
        import networkx as nx
    except ImportError as e:
        raise RuntimeError("Need networkx installed to perform smart recomputation "
                           "heuristics") from e

    joint_module.graph.eliminate_dead_code()
    joint_module.recompile()

    fx_g = joint_module.graph

    #  add the CSE pass
    if config.cse:
        cse_graph = fx_graph_cse(fx_g)
        joint_module.graph = cse_graph
    full_bw_graph = joint_module.graph

    graph_has_recomputable_ops = has_recomputable_ops(joint_module)
    graph_has_recomputable_rng_ops = has_recomputable_rng_ops(joint_module)
    if graph_has_recomputable_ops:
        joint_module = cleanup_recompute_tags(joint_module)

    name_to_node = {}
    for node in joint_module.graph.nodes:
        name_to_node[node.name] = node

    def classify_nodes(joint_module):
        required_bw_nodes = set()
        for node in joint_module.graph.nodes:
            if node.op == 'placeholder' and "tangents" in node.target:
                required_bw_nodes.add(node)
            if node in required_bw_nodes:
                for user in node.users:
                    required_bw_nodes.add(user)

        primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
        fwd_seed_offset_inputs = list(filter(_is_fwd_seed_offset, joint_module.graph.nodes))
        inputs = primal_inputs + fwd_seed_offset_inputs
        fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(joint_module, num_fwd_outputs=num_fwd_outputs)
        required_bw_nodes.update(o for o in bwd_outputs if o is not None)
        forward_only_graph = _extract_graph_with_inputs_outputs(joint_module.graph, inputs, fwd_outputs)
        required_fw_nodes = {name_to_node[node.name] for node in forward_only_graph.nodes
                             if node.op != 'output'}
        unclaimed_nodes = {node for node in joint_module.graph.nodes
                           if node not in required_fw_nodes and node not in required_bw_nodes}
        return fwd_outputs, required_fw_nodes, required_bw_nodes, unclaimed_nodes, inputs

    orig_fw_outputs, required_fw_nodes, required_bw_nodes, unclaimed_nodes, inputs = classify_nodes(joint_module)

    # networkx blows up on graphs with no required backward nodes
    # Since there's nothing to partition anyway, and the default partitioner can "handle"
    # this case, send our graph over to the default partitioner.
    if len(required_bw_nodes) == 0:
        return default_partition(joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs)

    for node in reversed(joint_module.graph.nodes):
        if node not in required_fw_nodes:
            node.dist_from_bw = 0
        else:
            node.dist_from_bw = int(1e9)
            for user in node.users:
                node.dist_from_bw = min(node.dist_from_bw, user.dist_from_bw + 1)

    aten = torch.ops.aten
    prims = torch.ops.prims

    # compiler == "nvfuser" is the default set of recomputable ops
    default_recomputable_ops = [aten.add, aten.sub, aten.div, aten.atan2, aten.mul, aten.max, aten.min, aten.pow, aten.remainder, aten.fmod, aten.__and__, aten.__or__, aten.__xor__, aten.__lshift__, aten.__rshift__, aten.eq, aten.ne, aten.ge, aten.gt, aten.le, aten.lt, aten.abs, aten.bitwise_not, aten.ceil, aten.floor, aten.frac, aten.neg, aten.relu, aten.round, aten.silu, aten.trunc, aten.log, aten.log10, aten.log1p, aten.log2, aten.lgamma, aten.exp, aten.expm1, aten.erf, aten.erfc, aten.cos, aten.acos, aten.cosh, aten.sin, aten.asin, aten.sinh, aten.tan, aten.atan, aten.tanh, aten.atanh, aten.sqrt, aten.rsqrt, aten.reciprocal, aten.sigmoid, aten.softplus, aten.threshold, aten.threshold_backward, aten.clamp, aten.where, aten.lerp, aten.addcmul, aten.gelu, aten.gelu_backward, aten.sum, aten.mean, aten._grad_sum_to_size, aten.sum_to_size, aten.amax, aten.to, aten.type_as, operator.getitem, aten.squeeze, aten.unsqueeze, aten.rsub, aten._to_copy]  # noqa: E501,B950
    view_ops = [aten.squeeze, aten.unsqueeze, aten.alias]
    if compiler == "inductor":
        default_recomputable_ops += [prims.div, prims.convert_element_type, aten.clone, aten._to_copy, aten.full_like, prims.var, prims.sum, aten.var, aten.std, prims.broadcast_in_dim, aten.select, aten.permute, aten._unsafe_view, aten.view, aten.expand, aten.slice, aten.reshape, aten.broadcast_tensors, aten.scalar_tensor, aten.ones, aten.new_zeros, aten.lift_fresh_copy, aten.arange, aten.triu, aten.var_mean, aten.isinf, aten.any, aten.full, aten.as_strided, aten.zeros, aten.argmax, aten.maximum]  # noqa: E501,B950
        view_ops += [aten.view, aten.slice, aten.permute, aten.t, prims.broadcast_in_dim, aten.expand, aten.as_strided]
        # Natalia said that we should allow recomputing indexing :)
        default_recomputable_ops += [aten.index]
    default_recomputable_ops += view_ops

    default_recomputable_ops += pointwise_ops()

    default_recomputable_ops += [
        aten.zeros_like,
    ]

    default_recomputable_ops += [
        method_to_operator(m)
        for m in magic_methods
    ]

    recomputable_ops = set(recomputable_ops) if recomputable_ops is not None else set(default_recomputable_ops)

    random_ops = [aten.native_dropout, aten.rand_like, aten.randn_like]
    compute_intensive_ops = [aten.mm, aten.convolution, aten.convolution_backward, aten.bmm, aten.addmm, aten.upsample_bilinear2d, aten._softmax, aten._softmax_backward_data, aten.native_layer_norm, aten.native_layer_norm_backward, aten.native_batch_norm, aten.native_batch_norm_backward, aten._native_batch_norm_legit]  # noqa: E501,B950

    fusible_ops = recomputable_ops | set(random_ops)
    if AOT_PARTITIONER_DEBUG:
        joint_module_ops = {
            str(node.target._overloadpacket)
            for node in joint_module.graph.nodes
            if node.op == "call_function" and hasattr(node.target, "_overloadpacket")
        }
        ops_ignored = joint_module_ops - {str(i) for i in recomputable_ops}
        print("Ops banned from rematerialization: ", ops_ignored)
        print()

    def is_materialized_backwards(node):
        cur_nodes = {node}
        while len(cur_nodes) > 0:
            cur = cur_nodes.pop()
            for user in cur.users:
                if user not in required_fw_nodes and not is_fusible(cur, user):
                    return True
                if user not in required_fw_nodes and get_aten_target(user) in view_ops:
                    cur_nodes.add(user)

        return False

    def ban_recomputation(node):
        if "recompute" in node.meta:
            return node.meta["recompute"] == 0
        elif config.aggressive_recomputation:
            ignored_ops = random_ops + compute_intensive_ops
            return (node.op == 'call_function' and get_aten_target(node) in ignored_ops)
        else:
            if node.op != 'call_function':
                return False
            if get_aten_target(node) not in recomputable_ops:
                return True
            if node.target == operator.getitem:
                return False
            if node.target in [aten.lift_fresh_copy.default, aten.lift_fresh.default]:
                return False

            # If a node *must* be materialized in the backwards pass, then we
            # should never recompute it. This is a pretty subtle point.  In
            # general, the assumption we make is that recomputing a node in the
            # backwards pass is "free". However, if a node must be materialized
            # in the backwards pass, then recomputing it is never free.
            if is_materialized_backwards(node):
                return True

            # Arbitrary hack that sometimes seems to help things. The above
            # modification appears to have made this heuristic a lot less critical
            # for performance.
            # TODO: Investigate why this hack helps.
            # TODO: Investigate the interaction with compiler assisted
            # activation checkpointing. Removing the heuristic improves both
            # memory footprint and speedup.
            if not graph_has_recomputable_ops:
                if compiler == "inductor" and node.dist_from_bw > config.max_dist_from_bw:
                    return True
            # If the output of an op is 4x smaller (arbitrary choice),
            # then we don't allow recomputation.
            input_tensors_size = sum(_size_of(i) for i in node.args if isinstance(i, fx.Node))
            output_size = _size_of(node)
            return (output_size * 4 < input_tensors_size)

    def is_fusible(a, b):
        # We can perform "memory fusion" into a cat, but cat cannot be a
        # producer to a fusion
        if get_aten_target(b) == aten.cat:
            return True
        return get_aten_target(a) in fusible_ops and get_aten_target(b) in fusible_ops

    def is_materialized(node):
        if node.op == 'placeholder':
            return True

        return not all(is_fusible(node, user) for user in node.users)

    def get_node_weight(node) -> int:
        mem_sz = _size_of(node)

        # Heuristic to bias towards nodes closer to the backwards pass
        # Complete guess about current value
        mem_sz = int(mem_sz * (1.1 ** max(min(node.dist_from_bw, 100), 1)))
        # mem_sz = int(mem_sz + node.dist_from_bw)

        if is_materialized(node):
            return mem_sz
        else:
            return mem_sz * 2

    nx_graph = nx.DiGraph()
    for node in full_bw_graph.nodes:
        if node.op == 'output':
            continue

        if node in required_bw_nodes:
            if node not in inputs:
                nx_graph.add_edge(node.name + "_in", "sink", capacity=math.inf)
                continue
            # If someone saves a input for backward as-is and backward
            # returns that tensor as-is as a grad input, then the node x would
            # be both a required_bw_node and an input. In this case we
            # (1) connect x_in to to the source, (2) x_out to the sink, and
            # (3) assign the proper weight to the x_in-x_out edge, so that
            # x would be part of cut nodes. A case where this happens is if
            # NestedTensor saves a offset tensor as part of the singleton int
            # in sizes.
            nx_graph.add_edge(node.name + "_out", "sink", capacity=math.inf)

        if _is_primal(node) or _is_fwd_seed_offset(node):
            nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)

        # If a node can't be recomputed (too expensive or involves randomness),
        # we prevent it from being recomputed by adding an inf edge to the source
        # We only need to ban nodes in the fw pass, as those are the only ones that would be recomputed.
        if ban_recomputation(node) and node in required_fw_nodes:
            nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)

        # Checks if a node is actually a tuple. Can be simplified to just an isinstance check if we always use faketensors.
        is_non_tensor_node = (('val' not in node.meta and 'tensor_meta' not in node.meta) or
                              ('val' in node.meta and not isinstance(node.meta['val'], torch.Tensor)))

        if is_sym_node(node):
            weight = sym_node_size(node)
        elif is_non_tensor_node:
            weight = 0 if isinstance(node.meta.get("val"), BackwardState) else math.inf
        else:
            weight = get_node_weight(node)

        # Creates the weights on the "node" edge
        nx_graph.add_edge(node.name + "_in", node.name + "_out", capacity=weight)
        for user in node.users:
            nx_graph.add_edge(node.name + "_out", user.name + "_in", capacity=math.inf)

    try:
        cut_value, partition = nx.minimum_cut(nx_graph, "source", "sink")
    except Exception:
        print('Failed to compute min-cut on following graph:')
        print('\n'.join(nx.readwrite.edgelist.generate_edgelist(nx_graph)))
        raise

    reachable, non_reachable = partition
    cutset = set()
    for u, nbrs in ((n, nx_graph[n]) for n in reachable):
        cutset.update((u, v) for v in nbrs if v in non_reachable)

    cut_nodes = set()
    for node_in, node_out in cutset:
        assert node_in[:-3] == node_out[:-4]
        node_name = node_in[:-3]
        cut_nodes.add(node_name)

    # To make this stuff deterministic
    node_idx = {node: idx for idx, node in enumerate(joint_module.graph.nodes)}
    saved_values = sorted((name_to_node[node] for node in cut_nodes), key=lambda x: node_idx[x])
    # save_for_backward on tensors and stashes symints in autograd .ctx
    saved_sym_nodes = list(filter(is_sym_node, saved_values))
    saved_values = list(filter(lambda n: not is_sym_node(n), saved_values))
    # NB: saved_sym_nodes will be mutated to reflect the actual saved symbols
    fw_module, bw_module = _extract_fwd_bwd_modules(
        joint_module, saved_values, saved_sym_nodes=saved_sym_nodes, num_fwd_outputs=num_fwd_outputs)

    if graph_has_recomputable_ops:
        if graph_has_recomputable_rng_ops:
            fw_module, bw_module = functionalize_rng_ops(
                joint_module, fw_module, bw_module, len(saved_sym_nodes)
            )
        bw_module = reordering_to_mimic_autograd_engine(bw_module)

    if AOT_PARTITIONER_DEBUG:
        print("Theoretical Activations Stored: ", sum([_size_of(i) for i in saved_values]) / 1e9)
        fw_module_nodes = {node.name for node in fw_module.graph.nodes if node.op == 'call_function'}
        bw_module_nodes = {node.name for node in bw_module.graph.nodes if node.op == 'call_function'}
        remat_nodes = fw_module_nodes & bw_module_nodes

        counts = defaultdict(int)
        for node in fw_module.graph.nodes:
            if node.name in remat_nodes and hasattr(node.target, '_overloadpacket'):
                counts[str(node.target._overloadpacket)] += 1
        print(f"# remat/fw/bw: {len(remat_nodes)}/{len(fw_module_nodes)}/{len(bw_module_nodes)}")
        print("Count of Ops Rematerialized: ", sorted(counts.items(), key=lambda x: x[1], reverse=True))
    return fw_module, bw_module


def draw_graph(

    traced: torch.fx.GraphModule,

    fname: str,

    figname: str = "fx_graph",

    clear_meta: bool = True,

    prog: Union[str, List[str]] = None,

    parse_stack_trace: bool = False,

    dot_graph_shape: Optional[str] = None,

) -> None:
    if clear_meta:
        new_graph = copy.deepcopy(traced.graph)
        traced = fx.GraphModule(traced, new_graph)
        for node in traced.graph.nodes:
            node.meta = {}
    base, ext = os.path.splitext(fname)
    if not ext:
        ext = ".svg"
    print(f"Writing FX graph to file: {base}{ext}")
    g = graph_drawer.FxGraphDrawer(
        traced,
        figname,
        parse_stack_trace=parse_stack_trace,
        dot_graph_shape=dot_graph_shape,
    )
    x = g.get_main_dot_graph()
    write_method = getattr(x, "write_" + ext.lstrip("."))
    fname = f"{base}{ext}"
    if prog is None:
        write_method(fname)
    else:
        write_method(fname, prog=prog)


def draw_joint_graph(

    graph: torch.fx.GraphModule,

    joint_inputs,

    file_name: str = "full_graph.png",

    dot_graph_shape: Optional[str] = None,

):
    draw_graph(graph, file_name, dot_graph_shape=dot_graph_shape)
    return default_partition(graph, joint_inputs)