Spaces:
Running
Running
File size: 95,141 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 |
import collections
import dataclasses
import functools
import itertools
import logging
import math
import operator
import os
import pprint
import textwrap
from typing import (
Any,
Counter,
DefaultDict,
Dict,
Generic,
List,
Optional,
Sequence,
Set,
Tuple,
TypeVar,
Union,
)
import sympy
import torch
from torch._dynamo.utils import dynamo_timed
from torch._inductor.metrics import get_metric_table, is_metric_table_enabled
from torch.utils._triton import has_triton
from . import comms, config, dependencies, ir, metrics
from .codegen.common import get_scheduling_for_device, Kernel
from .comm_analysis import estimate_nccl_collective_runtime
from .dependencies import Dep, MemoryDep, StarDep, WeakDep
from .ir import ComputedBuffer, MultiOutput, MultiOutputLayout
from .sizevars import SimplifyIndexing
from .utils import (
cache_on_self,
cmp,
free_symbol_has,
get_device_tflops,
get_dtype_size,
get_gpu_dram_gbps,
green_text,
is_collective,
is_wait,
red_text,
sympy_product,
)
from .virtualized import V
log = logging.getLogger(__name__)
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")
class WhyNoFuse:
# TODO when we drop support for Python < 3.10, we can use
# @dataclass(slots=True) instead of manually specifying __slots__.
__slots__ = ["node1", "node2", "reason", "args"]
reason: str
args: Tuple[Any, ...]
def __init__(self, node1: "BaseSchedulerNode", node2: "BaseSchedulerNode"):
self.node1 = node1
self.node2 = node2
def __call__(self, reason, *args):
self.reason = reason
self.args = args
fusion_log.debug(self)
def __str__(self):
return f"cannot fuse {self.node1.get_name()} with {self.node2.get_name()}: " + (
self.reason % self.args
)
def pformat(obj):
if isinstance(obj, set):
# pformat has trouble with sets of sympy exprs
obj = sorted(obj, key=str)
result = pprint.pformat(obj, indent=4)
if "\n" in result:
return f"\n{textwrap.indent(result, ' '*4)}"
return result
class OutputNode:
def __init__(self, dep):
self.unmet_dependencies = {dep}
self.inverse_users = []
def is_reduction(self):
return False
def get_alias_names(self):
return ()
def get_name(self):
return "OUTPUT"
__repr__ = get_name
def _prune_redundant_deps(node, name_to_fused_node):
"""
Prunes weakdeps intended for mutation ordering
on an upstream fused node if after fusion there is another dependency
on the fused upstream node, making the weakdep redundant
In essence this enforces an ordering on fusions. As fusions occur, weakdeps will
be incrementally removed, enabling other fusions, ensuring they are fused in order.
"""
name_to_dep_count: Counter[str] = collections.Counter()
for dep in node.unmet_dependencies:
if not isinstance(dep, WeakDep):
name_to_dep_count[name_to_fused_node[dep.name].get_name()] += 1
def should_prune(dep):
if isinstance(dep, WeakDep):
is_redundant = (
name_to_dep_count[name_to_fused_node[dep.name].get_name()] > 0
)
# These can occur because fused nodes always gather deps from their snodes
# If B has a weakdep on A
# B gets fused with C, then any time BC is fused, the weakdep will reappear
is_self_dep = name_to_fused_node[dep.name] == node
return is_redundant or is_self_dep
else:
return False
deps_to_prune = {dep for dep in node.unmet_dependencies if should_prune(dep)}
if deps_to_prune:
node.unmet_dependencies = node.unmet_dependencies - deps_to_prune
node.set_read_writes(node.read_writes.remove_reads(deps_to_prune))
# TODO(xmfan): reuse an existing mapping for this if it exists, or formalize this into ir.py:ExternKernel
kernel_name_to_op = {
"extern_kernels.convolution": torch.ops.aten.convolution,
"extern_kernels.mm": torch.ops.aten.mm,
"extern_kernels.bmm": torch.ops.aten.bmm,
"extern_kernels.addmm": torch.ops.aten.addmm,
}
class BaseSchedulerNode:
def __init__(self, scheduler: "Scheduler", node: ir.Buffer):
self.scheduler: Scheduler = scheduler
self.node: ir.Buffer = node
self.users: List[NodeUser] = []
self.inverse_users: List[BaseSchedulerNode] = []
self.node_users: List[BaseSchedulerNode] = []
self.set_read_writes(node.get_read_writes())
self.ancestors: Set[str] = set()
self.min_order: int
self.max_order: int
self.last_usage: Set[
str
] = set() # buffers that won't be used after this kernel
self.written = False
def __repr__(self):
return f"{type(self).__name__}(name={self.get_name()!r})"
def debug_str(self) -> str:
"""Longer form printout for trace logs"""
name = self.get_name()
lines = [
f"{name}: {type(self).__name__}({type(getattr(self, 'node', None)).__name__})",
f"{name}.writes = {pformat(self.read_writes.writes)}",
f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
f"{name}.users = {self.users}",
]
try:
lines += [
self.debug_str_extra(),
]
except Exception:
log.warning("Ignoring error in debug_str()", exc_info=True)
return "\n".join(lines).rstrip()
def debug_str_extra(self) -> str:
return ""
def log_details(self):
log.info(
"%s: unmet_dependencies = %s, writes = %s",
self,
self.unmet_dependencies,
self.read_writes.writes,
)
def update_mutated_names(self, renames: Dict[str, str]):
self.set_read_writes(self.read_writes.rename(renames))
def add_mutation_dep(self, dep):
self.set_read_writes(self.read_writes.with_read(dep))
def add_fake_dep(self, dep):
self.set_read_writes(self.read_writes.with_read(dep))
def set_users(self, users: List["NodeUser"]):
# deduplicate
result: Dict[int, NodeUser] = {}
for use in users:
if id(use.node) in result:
result[id(use.node)] = use.merge(result[id(use.node)])
else:
result[id(use.node)] = use
self.users = list(result.values())
def set_last_usage(
self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]
):
used_buffers = self.used_or_aliased_buffer_names()
used_buffers = {mutation_real_name.get(k, k) for k in used_buffers}
self.last_usage = used_buffers - future_used_buffers
def get_aliases(self):
return self.node.get_alias_names()
def get_mutations(self):
return self.node.get_mutation_names()
def has_aliasing_or_mutation(self):
return bool(self.get_aliases() or self.get_mutations())
def set_read_writes(self, rw: dependencies.ReadWrites):
self.read_writes: dependencies.ReadWrites = rw
self.unmet_dependencies = self.read_writes.reads
self.prune_deps()
def op_counts(self):
return self.read_writes.op_counts
def used_buffer_names(self) -> Set[str]:
return {
dep.name
for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes)
}
def used_or_aliased_buffer_names(self) -> Set[str]:
used_names = set()
for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes):
used_names.add(dep.name)
if V.graph.name_to_buffer.get(dep.name):
layout = V.graph.name_to_buffer[dep.name].get_layout()
# needed to avoid deallocating aliased buffer
# if there are still uses of aliases ahead
if isinstance(layout, ir.AliasedLayout):
used_names.add(layout.view.data.get_name())
return used_names
def prune_deps(self):
self.unmet_dependencies = {
dep
for dep in self.unmet_dependencies
if dep.name not in self.scheduler.available_buffer_names
}
def prune_weak_deps(self):
# Prune weak dependencies on buffers that have been removed
def should_prune(dep):
return isinstance(dep, WeakDep) and dep.name in V.graph.removed_buffers
to_remove = {dep for dep in self.read_writes.reads if should_prune(dep)}
self.set_read_writes(self.read_writes.remove_reads(to_remove))
def prune_redundant_deps(self, name_to_fused_node):
_prune_redundant_deps(self, name_to_fused_node)
def get_name(self) -> str:
return self.node.get_name()
def get_first_name(self) -> str:
return self.get_name()
def get_names(self) -> Set[str]:
return {self.get_name()}
def get_nodes(self) -> Sequence["BaseSchedulerNode"]:
return [self]
def get_device(self):
return self.node.get_device()
def is_reduction(self):
return False
def is_split_scan(self):
return False
def is_template(self):
return False
def is_extern(self):
return False
def is_foreach(self):
return False
def can_inplace(self, read_dep: dependencies.MemoryDep):
return False
def has_side_effects(self):
return False
def decide_inplace_update(self):
"""
Decide if there should be inplace updates for the node
and record the decision in the active kernel.
"""
if not self.node.should_allocate():
return
if isinstance(self, (SchedulerNode,)) and (
self.node.get_alias_names() or self.node.get_mutation_names()
):
return
if (
(
isinstance(self, (SchedulerNode,))
# o what have i done. lets make this an api
or (
isinstance(self, ExternKernelSchedulerNode)
and isinstance(self.node, (ir.AllReduce, ir.InPlaceHint))
)
)
and config.inplace_buffers
and (
not isinstance(V.kernel, torch._inductor.codegen.triton.TritonKernel)
or getattr(V.kernel, "mutations", None) is not None
)
):
from .codegen.wrapper import buffer_reuse_key
ordered_reads = sorted(self.read_writes.reads, key=lambda x: x.name)
for read in ordered_reads:
input_node: Optional[
BaseSchedulerNode
] = self.scheduler.name_to_node.get(read.name)
if input_node and V.graph.wrapper_code.can_reuse(input_node, self):
assert input_node.users is not None
remaining_uses = [
x
for x in input_node.users
if x.node.get_name()
not in self.scheduler.available_buffer_names
]
if (
len(remaining_uses) == 1
and remaining_uses[0].can_inplace
and remaining_uses[0].node is self
and not isinstance(
input_node.node.get_layout(),
(
ir.MultiOutputLayout,
ir.MutationLayout,
ir.AliasedLayout,
),
)
and not (
isinstance(
input_node.node, (ir.FallbackKernel, ir.MultiOutput)
)
and len(input_node.node.get_alias_names()) > 0
)
and buffer_reuse_key(input_node.node)
== buffer_reuse_key(self.node)
):
# hacky check for if V.kernel is a real kernel or NullHandler
if hasattr(V.kernel, "args"):
# if there isn't a triton kernel, then we don't need to call triton-specific things.
# but TODO this might be a convenient place to signal to the Collective kernels to inplace
# (and, can we make "kernel" less generic of a name?)
V.kernel.args.make_inplace(
input_node.get_name(), self.get_name()
)
# mutations not tracked in cpp kernels
if isinstance(
V.kernel, torch._inductor.codegen.triton.TritonKernel
):
V.kernel.mutations.add(input_node.get_name())
V.kernel.mutations.add(self.get_name())
# update last usage of reused node
self.last_usage.discard(input_node.get_name())
V.kernel.inplace_update_buffers[
self.get_name()
] = input_node.get_name()
break
def allocate(self):
if not self.node.should_allocate():
return
if isinstance(self, (SchedulerNode,)) and (
self.node.get_alias_names() or self.node.get_mutation_names()
):
V.graph.wrapper_code.codegen_allocation(self.node)
return
# hacky check for if V.kernel is a real kernel or NullHandler
if (
hasattr(V.kernel, "args")
and self.get_name() in V.kernel.inplace_update_buffers
):
V.graph.wrapper_code.codegen_inplace_reuse(
self.scheduler.name_to_node[
V.kernel.inplace_update_buffers[self.get_name()]
].node,
self.node,
)
else:
V.graph.wrapper_code.codegen_allocation(self.node)
def can_free(self):
# There's no real allocated buffer, no need to free it
if isinstance(self.node.layout, ir.NoneLayout):
return False
for use in self.users:
if isinstance(use.node, OutputNode):
return False
return True
def codegen_originating_info(self, buffer, only_once=True):
if not config.comment_origin:
return
if only_once and self.written:
return
origins = self.node.origins
out_lines = []
for o in origins:
if o.op == "output":
# These are boring and samey
continue
out_lines.append("")
# TODO(voz): Should the pragma be constant somewhere?
out_lines.append("#pragma CMT ORIGIN:")
op_info_str = f"#pragma CMT {o.op} {o.target}"
if "seq_nr" in o.meta:
op_info_str = op_info_str + f" seq_nr:{o.meta['seq_nr']}"
out_lines.append(op_info_str)
if "stack_trace" in o.meta:
stack_trace = f"{o.meta['stack_trace']}"
stack_trace_last_line = stack_trace.split("|")[-1]
out_lines.append(
"#pragma CMT "
+ stack_trace_last_line.replace("{", "{{")
.replace("}", "}}")
.replace("\n", "\\")
)
out_lines.append("#pragma CMT END ORIGIN")
out_lines.append("")
if len(out_lines) == 0:
return
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
buffer.writelines(out_lines)
self.written = True
def get_read_write_buffers_sizes(self) -> int:
"""
Counting the number of bytes accessed for a kernel is
surprisingly tricky. In particular, there is a differentiation
between 'theoretical' memory accesses and practical memory
accesses. For example, a layernorm kernel may actually access an
input 3 times, but in theory, it only needs to access its input
once (and may be optimized to do so through say, persistent
reductions)
Another example is that even though a buffer is passed in, we may
not access the entire buffer. This may occur if we are accessing
a slice of the buffer. Another tricky case is for indirect
indexing, where the amount of bytes accessed depends on the
values of the input.
What this function aims to compute is the memory accesses for
worst-case inputs, best-case optimization. What this means is
that for each buffer we compute the amount of potential accesses in two ways and take the minimum.
1. Numel in ranges multiplied by number of deps the buffer has
2. The buffer size
"""
if isinstance(self, NopKernelSchedulerNode):
return 0
if isinstance(self, ExternKernelSchedulerNode) and isinstance(
self.node, MultiOutput
):
return 0
if isinstance(self, SchedulerNode):
node_numel = V.graph.sizevars.size_hint(
sympy_product(self.get_ranges()[0])
* sympy_product(self.get_ranges()[1])
)
else:
node_numel = int(1e9)
buf_accesses = collections.defaultdict(list)
for dep in self.read_writes.reads | self.read_writes.writes:
buf_accesses[dep.name].append(dep)
reads = {dep.name for dep in self.read_writes.reads}
writes = {dep.name for dep in self.read_writes.writes}
def is_materialized(buf, snodes):
users = self.scheduler.name_to_node[buf].users
buf_uses = {user.node for user in users}
return len(buf_uses - set(snodes)) > 0
if isinstance(self, FusedSchedulerNode):
removed_buffers = {
dep for dep in writes if not is_materialized(dep, self.snodes)
}
writes = writes - removed_buffers
reads = reads - removed_buffers
node_bytes = 0
for buf_name in reads | writes:
buf_accessed_elems = sum([node_numel for dep in buf_accesses[buf_name]])
buf: Union[ir.Buffer, ir.TensorBox]
if buf_name in V.graph.name_to_buffer:
buf = V.graph.name_to_buffer[buf_name]
elif buf_name in V.graph.graph_inputs:
buf = V.graph.graph_inputs[buf_name]
else:
continue
def get_buf_elems(buf):
return V.graph.sizevars.size_hint(sympy_product(buf.get_size()))
# Kind of a lazy way to get the MultiOutput nodes corresponding to
# a MultiOutputLayout
if isinstance(buf.layout, MultiOutputLayout):
users = self.scheduler.name_to_node[buf.get_name()].users
buf_elems = sum(get_buf_elems(user.node.node) for user in users)
else:
buf_elems = get_buf_elems(buf)
node_bytes += min(buf_elems, buf_accessed_elems) * get_dtype_size(
buf.get_dtype()
)
return node_bytes
def get_estimated_runtime(self) -> float:
"""
Returns estimated op runtime in nanoseconds (ns)
"""
layout = None
dtype = None
if not hasattr(self, "node") or not self.node:
assert isinstance(
self, (FusedSchedulerNode, ForeachKernelSchedulerNode)
), f"{type(self)=}"
assert self.snodes
if not self.snodes[0].node:
return 0
layout = self.snodes[0].node.get_layout()
dtype = self.snodes[0].node.get_dtype()
else:
layout = self.node.get_layout()
dtype = self.node.get_dtype()
if "cuda" != layout.device.type:
# default to no reordering based on runtime
return 0
# Collective kernels
if is_collective(self.node):
return estimate_nccl_collective_runtime(self.node)
elif is_wait(self.node):
# ir.Wait is only used for collective ops.
# The time needed for the collective op is already estimated and considered
# when we are processing the collective op IR node, so ir.Wait takes 0 time
# since it doesn't take extra time to get the result after the collective is completed.
return 0
try:
gpu_memory_bandwidth = get_gpu_dram_gbps()
gpu_flops = get_device_tflops(dtype) * 10**12
except Exception:
return 0
if isinstance(self, ExternKernelSchedulerNode):
assert isinstance(self.node, ir.ExternKernel), f"{type(self.node)=}"
op = kernel_name_to_op.get(
getattr(self.node, "python_kernel_name", ""), None
)
# if there is a resolved op, dry-run using fake mode and record flop count
if op is not None:
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.utils.flop_counter import FlopCounterMode
with FakeTensorMode(), FlopCounterMode(
display=False
) as flop_counter_mode:
from .ir import ir_node_to_tensor
fake_inputs = [
ir_node_to_tensor(input, guard_shape=False)
for input in self.node.inputs
]
cls = self.node.__class__
cls.process_kernel(op, *fake_inputs, **self.node.kwargs)
# TODO(xmfan): find a better heuristic to model FLOPS/latency relationship
factor = 1.0
counted_flops = flop_counter_mode.get_total_flops()
counted_bytes = self.get_read_write_buffers_sizes()
compute_time = (factor * counted_flops / gpu_flops) * 1e9
transfer_time = counted_bytes / gpu_memory_bandwidth
# Return estimated runtime in nanoseconds
return max(compute_time, transfer_time)
elif isinstance(self, FusedSchedulerNode) or isinstance(
self.node, ComputedBuffer
):
# Return estimated runtime in nanoseconds (bytes / gbps)
return self.get_read_write_buffers_sizes() / gpu_memory_bandwidth
return 0
class ExternKernelSchedulerNode(BaseSchedulerNode):
def debug_str_extra(self) -> str:
return f"{self.get_name()}.node.kernel = {getattr(self.node, 'python_kernel_name', None)}"
def is_extern(self):
return True
def has_side_effects(self):
return hasattr(self.node, "has_side_effects") and self.node.has_side_effects()
def can_inplace(self, read_dep: dependencies.MemoryDep):
if self.get_aliases() or self.is_template():
return False
if read_dep.name not in self.scheduler.name_to_node:
# don't allow reuse of an 'input' buffer, we don't own it
# (would this have been fixed if I tracked mutations properly above?)
return False
if not isinstance(
self.node, (torch._inductor.ir.AllReduce, torch._inductor.ir.InPlaceHint)
):
# TODO make this a property of the IR
return False
if len(self.read_writes.writes) == 1:
write_dep = next(iter(self.read_writes.writes))
numel_diff = read_dep.get_numel() - write_dep.get_numel()
return V.graph.sizevars.simplify(numel_diff) == 0
return False
class NopKernelSchedulerNode(BaseSchedulerNode):
pass
class SchedulerNode(BaseSchedulerNode):
def __init__(
self,
scheduler: "Scheduler",
node: Union[ir.ComputedBuffer, ir.TemplateBuffer],
):
super().__init__(scheduler, node)
self._compute_attrs()
def _compute_attrs(
self,
extra_indexing_constraints: Optional[Tuple[Dict[Any, Any], List[Any]]] = None,
):
assert isinstance(self.node, (ir.ComputedBuffer, ir.TemplateBuffer))
self._sizes, self._body = self.node.simplify_and_reorder(
extra_indexing_constraints=extra_indexing_constraints
)
group_fn = self.scheduler.get_backend(self.node.get_device()).group_fn
self.group = (self.node.get_device(), group_fn(self._sizes))
if isinstance(self.node, ir.TemplateBuffer):
self.set_read_writes(self.node.normalized_read_writes())
else:
self.set_read_writes(
dependencies.extract_read_writes(
self._body, *self._sizes, normalize=True
)
)
def recompute_size_and_body(
self, extra_indexing_constraints: Tuple[Dict[Any, Any], List[Any]]
):
self._compute_attrs(extra_indexing_constraints=extra_indexing_constraints)
def debug_str_extra(self) -> str:
name = self.get_name()
lines = [
f"{name}.group.device = {self.group[0]}",
f"{name}.group.iteration = {self.group[1]}",
f"{name}.sizes = {self._sizes}",
]
if self.get_aliases():
lines.append(f"{name}.aliases = {pformat(self.get_aliases())}")
if self.get_mutations():
lines.append(f"{name}.mutations = {pformat(self.get_mutations())}")
if isinstance(self._body, ir.LoopBody):
lines.append(f"class {name}_loop_body:")
lines.append(textwrap.indent(self._body.debug_str(), " "))
return "\n".join(lines)
def get_ranges(self):
return self._sizes
def is_reduction(self):
assert isinstance(
self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
), f"{type(self.node)=}"
return bool(self.node.get_reduction_type())
def is_split_scan(self):
assert isinstance(
self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
), f"{type(self.node)=}"
return isinstance(self.node, ir.ComputedBuffer) and isinstance(
self.node.data, ir.SplitScan
)
def is_template(self):
return isinstance(self.node, ir.TemplateBuffer)
def get_template_node(self):
return self.node if self.is_template() else None
def run(self, *index_vars):
self.decide_inplace_update()
self.mark_run()
self.codegen(index_vars)
def mark_run(self):
self.allocate()
def ranges_from_index_vars(self, index_vars):
sizes = self._sizes
assert sum(map(len, sizes)) == sum(map(len, index_vars))
var_ranges = dict(
zip(
itertools.chain.from_iterable(index_vars),
itertools.chain.from_iterable(sizes),
)
)
return var_ranges
def codegen(self, index_vars):
var_ranges = self.ranges_from_index_vars(index_vars)
try:
with V.set_ops_handler(
SimplifyIndexing(V.get_ops_handler(), var_ranges)
), V.kernel.set_current_node(self):
self._body(*index_vars)
except Exception:
log.fatal("Error in codegen for %s", self.node)
raise
def pointwise_read_writes(self):
"""
Get the memory dependencies in the non-reduction axis.
"""
sizes, reduction_sizes = self._sizes
def fn(index):
return self._body(index, [sympy.Integer(0) for _ in reduction_sizes])
return dependencies.extract_read_writes(fn, sizes)
def can_inplace(self, read_dep: dependencies.MemoryDep):
if self.get_aliases() or self.is_template():
return False
if len(self.read_writes.writes) == 1 and isinstance(
read_dep, dependencies.MemoryDep
):
write_dep = next(iter(self.read_writes.writes))
assert isinstance(write_dep, dependencies.MemoryDep), f"{type(write_dep)=}"
return read_dep.index == write_dep.index and read_dep.size == write_dep.size
return False
@cache_on_self
def _get_atomic_add_buffers(self) -> Set[str]:
buffers_store_as_atomic_add = set()
if isinstance(self._body, ir.LoopBody):
for node in self._body.get_nodes():
if (
node.op == "call_method"
and node.target == "store"
and (
("mode" in node.kwargs and node.kwargs["mode"] == "atomic_add")
or (len(node.args) == 5 and node.args[4] == "atomic_add")
)
):
buffers_store_as_atomic_add.add(
node.kwargs["name"]
if "name" in node.kwargs
else (node.args[1] if len(node.args) >= 2 else "")
)
return buffers_store_as_atomic_add
def has_atomic_add(self, check_buf):
return check_buf in self._get_atomic_add_buffers()
class FusedSchedulerNode(BaseSchedulerNode):
"""
This is a "fake" scheduler node that represents a group of scheduler nodes
that are meant to be fused together. The way it does this is by maintaining
its unmet dependencies as the union of its constituent nodes.
"""
@classmethod
def fuse(cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
assert node1.scheduler is node2.scheduler
assert isinstance(node1, (SchedulerNode, FusedSchedulerNode)) and isinstance(
node2, (SchedulerNode, FusedSchedulerNode)
)
return cls(node1.scheduler, list(node1.get_nodes()) + list(node2.get_nodes())) # type: ignore[arg-type]
def __init__(self, scheduler: "Scheduler", snodes: List[SchedulerNode]):
# NB: No need to call super().__init__() because we don't need to re-use any of its logic.
self.snodes = snodes
self.scheduler = scheduler
self.node: ir.Buffer = None # type: ignore[assignment]
self.users: List[NodeUser] = []
self.inverse_users = []
self.node_users = []
self.group = max(snodes, key=lambda x: int(x.is_reduction())).group
self.ancestors = set.union(
*[x.ancestors for x in snodes if x.ancestors is not None]
)
self.set_read_writes(
dependencies.ReadWrites.merge_list([x.read_writes for x in snodes])
)
self.unmet_dependencies = {
dep
for dep in set.union(*[x.unmet_dependencies for x in snodes])
if dep.name not in self.get_names()
} - self.read_writes.writes
self.min_order = min([x.min_order for x in self.snodes])
self.max_order = max([x.max_order for x in self.snodes])
@cache_on_self
def get_name(self) -> str:
return "_".join([x.get_name() for x in self.snodes])
def get_first_name(self) -> str:
return self.snodes[0].get_name()
@cache_on_self
def get_names(self) -> Set[str]:
return set.union(*[x.get_names() for x in self.snodes])
def debug_str_extra(self) -> str:
lines = [
f"{self.get_name()}.snodes[{i}] =\n{node.debug_str()}"
for i, node in enumerate(self.snodes)
]
return textwrap.indent("\n".join(lines).rstrip(), " ")
def set_last_usage(
self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]
):
# Set self.last_usage using the global information
# This will be used for inter-kernel optimisations
super().set_last_usage(future_used_buffers, mutation_real_name)
# Set self.last_usage on the snodes
# This will be used for optimisations within the kernel
future_used_buffers: Set[str] = set()
for node in reversed(self.snodes):
node.set_last_usage(future_used_buffers, mutation_real_name)
future_used_buffers.update(node.last_usage) # type: ignore[arg-type]
@cache_on_self
def used_buffer_names(self) -> Set[str]:
return set.union(*[x.used_buffer_names() for x in self.snodes])
@cache_on_self
def used_or_aliased_buffer_names(self) -> Set[str]:
return set.union(*[x.used_or_aliased_buffer_names() for x in self.snodes])
def get_nodes(self) -> List[SchedulerNode]:
return self.snodes
def __repr__(self):
return f"{type(self).__name__}(nodes={self.get_name()})"
@cache_on_self
def is_reduction(self):
return any(x.is_reduction() for x in self.snodes)
@cache_on_self
def is_split_scan(self):
return any(x.is_split_scan() for x in self.snodes)
@cache_on_self
def is_template(self):
return any(x.is_template() for x in self.snodes)
@cache_on_self
def get_template_node(self):
for node in self.snodes:
if node.is_template():
return node
return None
def get_device(self):
return self.group[0]
@cache_on_self
def has_aliasing_or_mutation(self):
return any(x.has_aliasing_or_mutation() for x in self.snodes)
@cache_on_self
def op_counts(self):
op_counts: Counter[str] = collections.Counter()
for node in self.snodes:
op_counts.update(node.op_counts())
return op_counts
def has_atomic_add(self, check_buf):
return any(
(
isinstance(sub_schedule_node1, SchedulerNode)
and sub_schedule_node1.has_atomic_add(check_buf)
)
for sub_schedule_node1 in self.get_nodes()
)
# None of these need to be implemented, as a FusedSchedulerNode is just an
# abstraction for scheduling purposes
def update_mutated_names(self, renames: Dict[str, str]):
raise NotImplementedError
def add_mutation_dep(self, name):
raise NotImplementedError
def set_users(self, users: List["NodeUser"]):
raise NotImplementedError
def get_aliases(self):
raise NotImplementedError
def get_mutations(self):
raise NotImplementedError
def can_inplace(self, read_dep: dependencies.MemoryDep):
raise NotImplementedError
def allocate(self):
raise NotImplementedError
def can_free(self):
raise NotImplementedError
def debug_str(self) -> str:
"""Longer form printout for trace logs"""
name = self.get_name()
node_typestr = ",".join(type(n).__name__ for n in self.snodes)
lines = [
f"{name}: {type(self).__name__}({node_typestr})",
f"{name}.writes = {pformat(self.read_writes.writes)}",
f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
f"{name}.users = {self.users}",
]
try:
lines += [
self.debug_str_extra(),
]
except Exception:
log.warning("Ignoring error in debug_str()", exc_info=True)
return "\n".join(lines).rstrip()
class ForeachKernelSchedulerNode(FusedSchedulerNode):
"""Scheduler node which consists of a list of scheduler nodes that each operate on a
distinct tensor in a list of tensors."""
def get_consumer_subnode_for(self, producer):
if producer.get_name() in self.read_to_node:
return self.read_to_node[producer.get_name()]
return None
def get_producer_subnode_for(self, consumer):
for rd in consumer.read_writes.reads:
if rd.name in self.name_to_node:
return self.name_to_node[rd.name]
return None
@classmethod
def can_fuse(cls, producer, consumer):
why = WhyNoFuse(producer, consumer)
if producer.is_foreach() and consumer.is_foreach():
foreach_match = len(producer.snodes) == len(consumer.snodes)
if not foreach_match:
why("foreach do not have same length")
return foreach_match and all(
producer.scheduler.can_fuse(l, r)
for l, r in zip(producer.snodes, consumer.snodes)
)
elif consumer.is_foreach():
consumer_subnode = consumer.get_consumer_subnode_for(producer)
if consumer_subnode is not None:
return consumer.scheduler.can_fuse(producer, consumer_subnode)
why("candidate producer is not dep of any foreach consumer")
return False
elif producer.is_foreach():
producer_subnode = producer.get_producer_subnode_for(consumer)
if producer_subnode is not None:
return producer.scheduler.can_fuse(producer_subnode, consumer)
why("candidate consumer has no dep in any foreach producer")
return False
raise AssertionError(
"At least one node passed to ForeachKernelSchedulerNode.can_fuse should be a foreach node"
)
@classmethod
def fuse(cls, producer, consumer):
assert producer.is_foreach() or consumer.is_foreach()
prev_node_1 = None
prev_node_2 = None
if producer.is_foreach() and consumer.is_foreach():
fused_nodes = [
FusedSchedulerNode.fuse(l, r)
for l, r in zip(producer.snodes, consumer.snodes)
]
elif producer.is_foreach():
producer_subnode = producer.get_producer_subnode_for(consumer)
fused_nodes = []
prev_node_1 = producer
prev_node_2 = None
for node in producer.snodes:
if node is producer_subnode:
new_node = FusedSchedulerNode.fuse(node, consumer)
prev_node_2 = new_node
fused_nodes.append(new_node)
else:
fused_nodes.append(node)
elif consumer.is_foreach():
consumer_subnode = consumer.get_consumer_subnode_for(producer)
fused_nodes = []
prev_node_1 = consumer
prev_node_2 = None
for node in consumer.snodes:
if node is consumer_subnode:
new_node = FusedSchedulerNode.fuse(producer, node)
prev_node_2 = new_node
fused_nodes.append(new_node)
else:
fused_nodes.append(node)
return cls(producer.scheduler, fused_nodes, prev_node_1, prev_node_2) # type: ignore[possibly-undefined]
def __init__(
self,
scheduler: "Scheduler",
nodes: List[SchedulerNode],
prev_node_1=None,
prev_node_2=None,
):
self.read_to_node = {}
self.name_to_node = {}
if prev_node_1 is None or prev_node_2 is None:
super().__init__(scheduler, nodes)
for node in nodes:
for read in node.read_writes.reads:
self.read_to_node[read.name] = node
for name in node.get_names():
self.name_to_node[name] = node
else:
self.scheduler = scheduler
self.snodes = nodes
self.node: ir.Buffer = None # type: ignore[assignment]
self.users: List[NodeUser] = []
self.set_read_writes(
dependencies.ReadWrites.merge_list(
[prev_node_1.read_writes, prev_node_2.read_writes]
)
)
self.unmet_dependencies = {
dep
for dep in set.union(
prev_node_1.unmet_dependencies, prev_node_2.unmet_dependencies
)
if dep.name not in self.get_names()
} - self.read_writes.writes
self.min_order = min([prev_node_1.min_order, prev_node_2.min_order])
self.max_order = max([prev_node_1.max_order, prev_node_2.max_order])
foreach_node = prev_node_1 if prev_node_1.is_foreach() else prev_node_2
other_node = prev_node_2 if prev_node_1.is_foreach() else prev_node_1
self.ancestors = foreach_node.ancestors
self.ancestors.update(other_node.ancestors)
self.name_to_node = foreach_node.name_to_node
for name in other_node.get_names():
self.name_to_node[name] = other_node
self.group = (nodes[0].get_device(), "foreach")
self.origins: Set[torch.fx.Node] = set()
def mark_run(self):
raise NotImplementedError
def codegen(self):
assert isinstance(self.node, ir.ComputedBuffer), f"{type(self.node)=}"
self.node.get_store_function()(self.node.make_loader()())
def can_free(self):
return NotImplementedError
def is_foreach(self):
return True
def get_subkernel_nodes(self):
"""Returns a list of nodes which comprise the foreach kernel, operating on corresponding elements of our input lists.
These nodes may be vertically fused."""
return list(self.snodes)
def get_nodes(self):
"""Returns all nodes contained in this kernel, unpacking fused nodes into their constituent scheduler nodes."""
return list(itertools.chain.from_iterable(x.get_nodes() for x in self.snodes))
def get_first_name(self):
return self.snodes[0].get_first_name()
def prune_redundant_deps(self, name_to_fused_node):
_prune_redundant_deps(self, name_to_fused_node)
for node in self.snodes:
node.prune_redundant_deps(name_to_fused_node)
def pick_loop_order(stride_lengths, sizes, priority_idx=()):
"""
A heuristic to decide loop iteration orders. This has not been well
tuned and may be something we should autotune.
"""
@functools.cmp_to_key
def index_cmp(a, b):
if sizes[a] == 1 or sizes[b] == 1:
# 1-sizes don't matter, just move them to the end
return cmp(sizes[a] == 1, sizes[b] == 1)
stride_len_a = [sl[a] for sl in stride_lengths]
stride_len_b = [sl[b] for sl in stride_lengths]
# equivalent to
# np.logical_or(stride_lengths[:, b] == 0, stride_lengths[:, a] < stride_lengths[:, b]).all()
a_first = sum(
sl_b == 0 or sl_a < sl_b for sl_a, sl_b in zip(stride_len_a, stride_len_b)
)
b_first = sum(
sl_a == 0 or sl_b < sl_a for sl_a, sl_b in zip(stride_len_a, stride_len_b)
)
if a_first > b_first:
return -1
if b_first > a_first:
return 1
# otherwise contiguous
return cmp(b, a)
order = list(reversed(range(len(stride_lengths[0]))))
if len(priority_idx) > 0:
# if we have priority node, only use that node's order
stride_lengths = [stride_lengths[pi] for pi in priority_idx]
if config.pick_loop_orders:
order.sort(key=index_cmp)
return order
@dataclasses.dataclass
class NodeUser:
node: BaseSchedulerNode
can_inplace: bool = False
# A weak user must be scheduled after a given node, but doesn't actually
# use the result
is_weak: bool = False
def __hash__(self):
return hash((self.node.get_name(), self.can_inplace, self.is_weak))
def __eq__(self, other):
return (
self.get_name() == other.get_name()
and self.can_inplace == other.can_inplace
and self.is_weak == other.is_weak
)
def get_name(self):
return self.node.get_name()
def merge(self, other: "NodeUser") -> "NodeUser":
assert self.node is other.node
return NodeUser(
self.node,
self.can_inplace and other.can_inplace,
self.is_weak and other.is_weak,
)
_post_grad_graph_counter = itertools.count()
class Scheduler:
@dynamo_timed
def __init__(self, nodes):
super().__init__()
self.backends = {}
self.fuse_cache = {}
self.post_grad_graph_id = next(_post_grad_graph_counter)
self.nodes = []
self.available_buffer_names = {
*V.graph.graph_inputs.keys(),
*V.graph.constants.keys(),
}
self.nodes = [self.create_scheduler_node(n) for n in nodes]
# some new constants could have been created above
self.available_buffer_names.update(V.graph.constants.keys())
for node in self.nodes:
node.prune_deps()
self.name_to_node: Dict[str, BaseSchedulerNode] = {
n.get_name(): n for n in self.nodes
}
self.name_to_fused_node: Dict[
str, BaseSchedulerNode
] = dict() # set in fuse_nodes()
# mutation_real_name: Maps back to the original name for codegen
# Example:
# If you mutate buf0 inside of buf1's kernel, then:
# mutation_real_name = {"buf0" : "buf1"}
# all subsequent uses of buf0 become buf1's usage in dependency graph
self.mutation_real_name = {}
# We handle mutation by renaming modified versions of the same
# buffer in the dependency graph to prevent cycles.
# mutation_renames: tracks the current name for a given buffer
# (changed once per mutation)
# Example:
# If you mutate buf0 inside of buf1's kernel, then:
# mutation_renames = {"buf1" : "buf0"}
# in codegen we only use buf0, never buf1
self.mutation_renames = {}
self.compute_dependencies()
self.topological_sort_schedule()
self.dead_node_elimination()
if config.reorder_for_compute_comm_overlap:
comms.decide_global_ordering_of_comms(self.nodes)
self.compute_ancestors()
metrics.ir_nodes_pre_fusion += len(self.nodes)
V.debug.ir_pre_fusion(self.nodes)
self.num_orig_nodes = len(self.nodes)
self.name_to_fused_node = {n.get_name(): n for n in self.nodes}
self.create_foreach_nodes()
self.topological_sort_schedule()
self.logged_slow_fusion = set()
self.fuse_nodes()
if config.reorder_for_compute_comm_overlap:
# Refresh node_users and inverse_users to reflect fused nodes
self.compute_node_users()
self.nodes = comms.reorder_compute_and_comm_for_overlap(self.nodes)
self.compute_last_usage()
V.debug.ir_post_fusion(self.nodes)
V.debug.graph_diagram(self.nodes)
self.debug_draw_graph()
# used during codegen:
self.current_device: torch.device = None # type: ignore[assignment]
self.buffer_names_to_free = set()
# fx graph node to the position it appears in the graph
# for debug attribution
self.origin_to_index = {}
get_metric_table("graph_stats").add_row(
lambda: {
"graph_id": self.post_grad_graph_id,
"num_nodes_before_fusion": self.num_orig_nodes,
"num_nodes_after_fusion": len(self.nodes),
}
)
def debug_draw_graph(self):
"""Generate an image of the graph for debugging"""
if os.environ.get("INDUCTOR_WRITE_SCHEDULER_GRAPH", None) == "1":
from .debug import draw_buffers
draw_buffers(self.nodes, print_graph=True)
def debug_print_nodes(self, label):
if log.isEnabledFor(logging.INFO):
log.info("%s:", label)
for node in self.nodes:
node.log_details()
def create_scheduler_node(self, node):
assert (
node.origins is not None
), "All nodes passed to scheduling must have an origin"
if node.is_no_op():
return NopKernelSchedulerNode(self, node)
elif isinstance(node, (ir.ComputedBuffer, ir.TemplateBuffer)):
return SchedulerNode(self, node)
elif isinstance(node, ir.ExternKernel):
return ExternKernelSchedulerNode(self, node)
else:
raise NotImplementedError(node)
def create_foreach_nodes(self):
removed_node_names = set()
fe_nodes = []
kept_node_names = self.name_to_fused_node.keys()
for names in V.graph.lists.values():
names = [
name
for name in names
if name in kept_node_names
and not isinstance(self.name_to_node[name], NopKernelSchedulerNode)
]
if not names:
# All nodes eliminated
continue
removed_node_names.update(names)
snodes = [self.name_to_node[name] for name in names]
fe_node = ForeachKernelSchedulerNode(self, snodes) # type: ignore[arg-type]
fe_nodes.append(fe_node)
for name in names:
self.name_to_fused_node[name] = fe_node
self.nodes = [
node for node in self.nodes if node.get_name() not in removed_node_names
] + fe_nodes
def compute_dependencies(self):
"""
Create dependency edges between nodes, handling aliasing and
mutation properly.
"""
T = TypeVar("T")
class DedupList(Generic[T]):
"""
This data structure behaves like a list except it makes sure the
elements remain unique.
Normally one could use a set/dict for this purpose however
the list in question gets elements appended as it is being
iterated over which means that we need to keep the list
semantics.
"""
def __init__(self, items=None, membership=None):
self.items = items or list()
self.membership = membership or set()
def append(self, node_user: T) -> None:
if node_user in self.membership:
return
self.items.append(node_user)
self.membership.add(node_user)
def __add__(self, other: "DedupList[T]") -> "DedupList[T]":
new_membership = set.union(self.membership, other.membership)
new_items = self.items + [
x for x in other.items if x not in self.membership
]
return DedupList(new_items, new_membership)
name_to_users: DefaultDict[str, DedupList[NodeUser]] = collections.defaultdict(
DedupList
)
# handle aliasing by using python aliasing in name_to_users
# if foo aliases bar then we will make name_to_users["foo"] point
# to the same python list as name_to_users["bar"]
for node1 in self.nodes:
node1_name = node1.get_name()
for node2_name in node1.get_aliases():
if node1_name in name_to_users and node2_name in name_to_users:
# merge the two
list1 = name_to_users[node1_name]
list2 = name_to_users[node2_name]
combined = list1 + list2
for key in name_to_users.keys():
if name_to_users[key] is list1 or name_to_users[key] is list2:
name_to_users[key] = combined
elif node1_name in name_to_users:
name_to_users[node2_name] = name_to_users[node1_name]
else:
name_to_users[node1_name] = name_to_users[node2_name]
def rename(n):
if n in self.mutation_renames:
return rename(self.mutation_renames[n])
return n
def dep_closure(node_name):
reachable_names = {node_name}
node = self.name_to_node[node_name]
write_dep = next(iter(node.read_writes.writes))
for read_dep in node.read_writes.reads:
if (
read_dep.name in self.name_to_node
and isinstance(read_dep, dependencies.MemoryDep)
and isinstance(write_dep, dependencies.MemoryDep)
and read_dep.index == write_dep.index
and read_dep.size == write_dep.size
):
reachable_names.update(dep_closure(read_dep.name))
return reachable_names
def add_user(used_by_name, user_node, can_inplace=False, is_weak=False):
name_to_users[rename(used_by_name)].append(
NodeUser(user_node, can_inplace, is_weak)
)
unbacked_symbol_to_origin_node = {}
for node in self.nodes:
log.debug("scheduling %s", node.node)
# unbacked symbols don't follow ordinary buffer dependencies, so
# we track their def/uses separately
unbacked_symbol_defs = sorted(
node.node.get_unbacked_symbol_defs(), key=lambda x: x.name
)
for s in unbacked_symbol_defs:
assert isinstance(s, sympy.Symbol)
# Pick the first definer as canonical. There may be multiple
# because if a MultiOutputLayout buffer propagates an unbacked
# symint to multiple outputs, they will all claim to def it.
if s not in unbacked_symbol_to_origin_node:
unbacked_symbol_to_origin_node[s] = node
unbacked_symbol_uses = sorted(
node.node.get_unbacked_symbol_uses(), key=lambda x: x.name
)
# if a kernel takes unbacked symints, register dependencies
for s in unbacked_symbol_uses:
assert (
s in unbacked_symbol_to_origin_node
), f"{s} not in {unbacked_symbol_to_origin_node}"
node.add_fake_dep(StarDep(unbacked_symbol_to_origin_node[s].get_name()))
# a node will mutate either 0 or 1 buffers
assert len(node.get_mutations()) <= 1
for alt_name in node.get_mutations():
alt_name = rename(alt_name)
# this node must run after the prior writer
add_user(alt_name, node)
node.add_mutation_dep(StarDep(alt_name))
for other_node in name_to_users[alt_name].items:
# this node must run after all prior readers
other_name = rename(other_node.get_name())
known_dep_node_names = dep_closure(node.get_name())
if other_name not in known_dep_node_names:
# If this node already directly or indirectly depends on other_node,
# we don't need to insert an extra dep.
node.add_mutation_dep(WeakDep(other_name))
add_user(other_name, node, is_weak=True)
# add normal non-mutation dependencies
for read in node.read_writes.reads:
is_weak = isinstance(read, WeakDep)
add_user(read.name, node, node.can_inplace(read), is_weak)
node.update_mutated_names(self.mutation_renames)
# update our renaming scheme for the next iteration
for alt_name in node.get_mutations():
self.mutation_renames[rename(alt_name)] = node.get_name()
self.mutation_renames[alt_name] = node.get_name()
self.mutation_real_name[node.get_name()] = self.mutation_real_name.get(
alt_name, alt_name
)
# make sure outputs aren't dead-code-eliminated
for node_name in V.graph.get_output_names():
log.debug("scheduling output %s", node_name)
add_user(node_name, OutputNode(StarDep(node_name)))
# make sure unbacked symints aren't dead-code-eliminated
for node in V.graph.graph_outputs:
for s in node.get_unbacked_symbol_uses():
assert (
s in unbacked_symbol_to_origin_node
), f"{s} not in {unbacked_symbol_to_origin_node.keys()}"
node_name = unbacked_symbol_to_origin_node[s].node.name
log.debug("scheduling output %s for unbacked symint %s", node_name, s)
add_user(node_name, OutputNode(StarDep(node_name)))
# make sure input mutation isn't dead-code-eliminated
for name in self.mutation_renames:
if name in V.graph.graph_inputs:
add_user(name, OutputNode(StarDep(name)))
V.graph.mutated_inputs.add(name)
inp_names = {
name: index for index, name in enumerate(V.graph.graph_inputs.keys())
}
V.graph.mutated_input_idxs = [
inp_names[name] for name in V.graph.mutated_inputs
]
# copy users information onto the nodes
for node in self.nodes:
node.set_users(name_to_users[node.get_name()].items)
# populate inverse_users
for node in self.nodes:
for user in node.users:
user.node.inverse_users.append(node)
def compute_node_users(self):
# set up buffer name to (fused)snode mapping
buf_to_snode = {}
for node in self.nodes:
if isinstance(node, FusedSchedulerNode):
for x in node.snodes:
buf_to_snode[x.get_name()] = node
buf_to_snode[node.get_name()] = node
for node in self.nodes:
node.node_users = []
node.inverse_users = []
# compute inverse_users
for node in self.nodes:
inverse_users = []
for dep in node.unmet_dependencies:
assert dep.name in buf_to_snode
dep_node = buf_to_snode[dep.name]
inverse_users.append(dep_node)
node.inverse_users = inverse_users
# compute node_users
# TODO: ideally, we should deduplicate .users and .node_users,
# but currently .users contains extra information that's difficult to
# extract into a standalone container.
node_to_users: Dict[BaseSchedulerNode, List[BaseSchedulerNode]] = {}
for node in self.nodes:
for inverse_user in node.inverse_users:
node_to_users.setdefault(inverse_user, []).append(node)
for node, users in node_to_users.items():
node.node_users = users
def dead_node_elimination(self):
"""
Remove any nodes without users
"""
again = True # repeat until a fixed point
while again:
updated_nodes = []
for node in self.nodes:
def can_eliminate_user(user: NodeUser):
return user.is_weak or user.get_name() in V.graph.removed_buffers
can_eliminate = not node.has_side_effects() and all(
can_eliminate_user(u) for u in node.users
)
if not can_eliminate:
updated_nodes.append(node)
else:
# dead code
log.debug("removed dead node: %s", node.get_name())
V.graph.removed_buffers.add(node.get_name())
again = len(self.nodes) > len(updated_nodes)
self.nodes = updated_nodes
# Prune any WeakDeps no longer needed
for node in self.nodes:
node.prune_weak_deps()
def topological_sort_schedule(self):
"""
Ensure self.nodes is in topologically sorted order
"""
seen: Set[ir.Buffer] = set()
name_to_node: Dict[str, ir.Buffer] = dict()
result: List[ir.Buffer] = []
def visit(n):
if n not in seen:
seen.add(n)
for dep in sorted(n.unmet_dependencies, key=lambda d: d.name):
visit(name_to_node[dep.name])
result.append(n)
for node in self.nodes:
for name in node.get_names():
name_to_node[name] = node
for node in self.nodes:
visit(node)
self.nodes = result
def compute_ancestors(self):
"""
Populate each node.ancestors
"""
# note self.nodes is topologically sorted
name_to_ancestors: Dict[str, Set[str]] = {}
for node in self.nodes:
ancestors = set()
for dep in node.unmet_dependencies:
ancestors.add(dep.name)
ancestors |= name_to_ancestors[dep.name]
name_to_ancestors[node.get_name()] = ancestors
node.ancestors = ancestors
for order, node in enumerate(self.nodes):
node.min_order = order
node.max_order = order
def fuse_nodes(self):
"""
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
"""
for i in range(10):
old_len = len(self.nodes)
fusion_log.debug(
"===== attempting fusion (%d/10): %d nodes =====", i + 1, old_len
)
self.fuse_nodes_once()
new_len = len(self.nodes)
fusion_log.debug(
"completed fusion round (%d/10): fused %d nodes into %d nodes\n",
i + 1,
old_len,
new_len,
)
if new_len == old_len or new_len == 1:
fusion_log.debug("===== fusion complete (%d iterations) =====", i + 1)
break
def benchmark_fused_nodes(self, nodes):
"""
Benchmark fused list of nodes and return the execution time
in milliseconds on randomly generated inputs.
"""
assert len(nodes) > 0
device = nodes[0].get_device()
V.graph.scheduler = self
self.current_device = device
backend = self.get_backend(device)
return backend.benchmark_fused_nodes(nodes)
def speedup_by_fusion(self, node1, node2):
"""
If config.benchmark_fusion is False, always return True.
Otherwise, return True if fusion can brings speedup.
"""
if not config.benchmark_fusion:
return True
if (
node1.is_template()
and not isinstance(node1.get_template_node(), ir.TritonTemplateBuffer)
or node1.is_foreach()
or node2.is_foreach()
):
# TODO support benchmarking epilogue fusion
return True
node_list_1 = node1.get_nodes()
device = node_list_1[0].get_device()
# don't support benchmark fusion for CPU right now.
if device.type == "cpu":
return True
node_list_2 = node2.get_nodes()
node_list_fused = node_list_1 + node_list_2
# We can not accurately benchmark kernel using atomic_add
# due to how we generate random integer inputs.
# Skip benchmarking them by allowing fusion.
if any(
hasattr(n.node, "data")
and hasattr(n.node.data, "scatter_mode")
and n.node.data.scatter_mode == "atomic_add"
for n in node_list_fused
):
return True
from triton.compiler.errors import CompilationError
why = WhyNoFuse(node1, node2)
try:
ms1, path1 = self.benchmark_fused_nodes(node_list_1)
if math.isinf(ms1):
why("register spilling of the first kernel")
return False
ms2, path2 = self.benchmark_fused_nodes(node_list_2)
if math.isinf(ms2):
why("register spilling of the second kernel")
return False
ms_fused, path_fused = self.benchmark_fused_nodes(node_list_fused)
if math.isinf(ms_fused):
why("register spilling of the fused kernel")
return False
except CompilationError as e:
# workaround triton issue: https://github.com/openai/triton/issues/2151
if "Loop-carried variable" in str(e):
return True # allow fusion
else:
raise
if fusion_log.isEnabledFor(logging.DEBUG):
if ms_fused < ms1 + ms2:
fusion_log.debug(
"can fuse (benchmark): fusing %s with %s cause %sx speedup",
node1.get_names(),
node2.get_names(),
green_text(f"{(ms1 + ms2) / ms_fused:.3f}"),
)
else:
fusion_log.debug(
"cannot fuse (benchmark): fusing %s with %s cause %sx slowdown",
node1.get_names(),
node2.get_names(),
red_text(f"{ms_fused / (ms1 + ms2):.3f}"),
)
if (
is_metric_table_enabled("slow_fusion")
and ms_fused >= ms1 + ms2
and (path1, path2) not in self.logged_slow_fusion
):
self.logged_slow_fusion.add((path1, path2))
get_metric_table("slow_fusion").add_row(
lambda: {
"kernel1_path": path1,
"kernel1_latency": ms1,
"kernel2_path": path2,
"kernel2_latency": ms2,
"fused_kernel_path": path_fused,
"fused_kernel_latency": ms_fused,
"slow_down_ratio": ms_fused / (ms1 + ms2),
}
)
return ms_fused < ms1 + ms2
def fuse_nodes_once(self):
"""
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
This relies on two key functions to control the logic:
- self.can_fuse(): checks if a fusion is legal
- self.score_fusion(): assigns priority to a given fusion
"""
fused_nodes = set(self.nodes)
for node1, node2 in self.get_possible_fusions():
node1 = self.name_to_fused_node[node1.get_first_name()]
node2 = self.name_to_fused_node[node2.get_first_name()]
if self.can_fuse(node1, node2) and not self.will_fusion_create_cycle(
node1, node2
):
if not self.speedup_by_fusion(node1, node2):
continue
fusion_log.debug(
"fusing %s with %s", node1.get_name(), node2.get_name()
)
# above can_fuse asserts that node2 has the same device
device = node1.get_device()
node3 = self.get_backend(device).fuse(node1, node2)
fused_nodes.remove(node1)
fused_nodes.remove(node2)
fused_nodes.add(node3)
self.name_to_fused_node.update(
{n.get_name(): node3 for n in node3.get_nodes()}
)
self.nodes = sorted(fused_nodes, key=lambda x: x.min_order)
self.topological_sort_schedule()
self.prune_redundant_deps()
def prune_redundant_deps(self):
for node in self.nodes:
node.prune_redundant_deps(self.name_to_fused_node)
def get_possible_fusions(self):
"""
Helper to find all legal fusion opportunities, sorted by self.score_fusion()
"""
possible_fusions = []
seen = set()
def check_all_pairs(nodes):
for node1_index, node1 in enumerate(nodes):
for node2 in nodes[node1_index + 1 :]:
key = (node1, node2)
if key in seen:
continue
seen.add(key)
if self.can_fuse(node1, node2):
possible_fusions.append(key)
elif (node2.is_template() or node2.is_foreach()) and self.can_fuse(
node2, node1
):
# foreach fusions and epilogue fusions are order dependent
possible_fusions.append((node2, node1))
buffer_names_grouping = collections.defaultdict(list)
for node in self.nodes:
for buf in node.used_buffer_names():
buffer_names_grouping[buf].append(node)
for node_grouping in buffer_names_grouping.values():
check_all_pairs(node_grouping)
if config.aggressive_fusion:
group_grouping = collections.defaultdict(list)
for node in self.nodes:
group = getattr(node, "group", None)
if group:
group_grouping[group].append(node)
for node_grouping in group_grouping.values():
check_all_pairs(node_grouping)
possible_fusions.sort(key=self.score_fusion_key, reverse=True)
fusion_log.debug("found %d possible fusions", len(possible_fusions))
return possible_fusions
def will_fusion_create_cycle(self, node1, node2):
"""
Finds whether there's a path from node1 to node2 (or vice-versa)
caused indirectly by other fusions.
"""
def found_path(node):
# only fused nodes can introduce new ancestors.
if isinstance(node, FusedSchedulerNode) and node not in visited:
visited.add(node)
if node.get_names().issubset(combined_ancestors):
# All fusion outputs are in ancestors of node1 and node2, thus
# cannot introduce new path:
#
# 1. if output is neither descendent of node1 or node2, the
# output cannot introduce a path
# 2. due to [can_fuse]: if WLOG output is descendent of node1, it cannot be
# on path(node1->node2), hence it cannot be ancestor of node2
# 3. due to [acyclic]: if WLOG output is descendent of node1, it cannot be
# ancestor of node1
return False
else:
# continue DFS of new ancestors introduced by the fusion
return bool(combined_names & node.ancestors) or any(
found_path(self.name_to_fused_node[n])
for n in node.ancestors - combined_ancestors
)
return False
visited = set()
combined_names = node1.get_names() | node2.get_names()
combined_ancestors = (node1.ancestors | node2.ancestors) - combined_names
cycle = any(found_path(self.name_to_fused_node[n]) for n in combined_ancestors)
if cycle:
WhyNoFuse(node1, node2)("will create cycle")
return cycle
def can_fusion_increase_peak_memory(
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
):
"""
This function prevents fusion for nodes that can increase memory
footprint. This problem is more common in horizontal fusion, where nodes
that are far apart in the original order get fused, lengthening the live
intervals of tensors. This is very evident in models with activation
checkpointing, where the recomputed nodes from different checkpointed
regions get fused and significantly increase the memory footprint.
The current attempt is a quick, possibly hacky, heuristic to prevent the
fusion of nodes that are far away in the original order.
A better but difficult to implement heurisitic would be to use live
intervals of the buffers, find region of peak pressure in the original
program and prevent fusion that crosses that peak region. We might need
special care or good approximation in this implementation, as fusion of
node changes live intervals, and re-computing live intervals and peak
memory after each fusion can introduce large compilation overhead.
"""
proximity_score = max(
abs(node1.min_order - node2.max_order),
abs(node2.min_order - node1.max_order),
)
return proximity_score > 64
def can_fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Determine if it is possible to combine node1 and node2 into a
single fused node.
"""
if node1 is node2:
return False
why = WhyNoFuse(node1, node2)
if (
isinstance(node1, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
and not node1.is_template()
):
why("node1 is extern or nop")
return False
if (
isinstance(node2, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
and not node2.is_template()
):
why("node2 is extern or nop")
return False
if node2.get_names() & node1.ancestors:
why("node1 must go before node2")
return False
if (
isinstance(node1, (FusedSchedulerNode, SchedulerNode))
and isinstance(node2, SchedulerNode)
and isinstance(node2._body, ir.LoopBody)
):
# Fix issue: https://github.com/pytorch/pytorch/issues/108963
# Check:
# If node2 reads a buf which is a mutation buf of node1(SchedulerNode) or among nodes in node1(FusedSchedulerNode),
# we will get the corresponding mutation buf and check if this mutation buf is stored by atomic_add mode.
# If True, we will disable the fusion of node1 and node2.
if any(
(
node2_used_buf in self.mutation_renames
and node1.has_atomic_add(self.mutation_renames[node2_used_buf])
)
for node2_used_buf in node2._body.reads_name2expr.keys()
):
return False
if node2.is_template():
why("templates can only fuse epilogues")
return False
if node1.is_template() and (
node2.has_aliasing_or_mutation()
or node2.is_reduction()
or not config.epilogue_fusion
):
why("template epilogue not satisfied")
return False
device = node1.get_device()
device2 = node2.get_device()
if device != device2:
why("device mismatch (%s vs %s)", device, device2)
return False
del device2
no_shared_data = self.score_fusion_memory(node1, node2) == 0
if no_shared_data and (
not config.aggressive_fusion or node1.is_reduction() or node2.is_reduction()
):
why("no shared data")
return False # heuristic not needed for correctness
if (
not node1.is_foreach()
and not node2.is_foreach()
and len(node1.get_nodes()) + len(node2.get_nodes()) > config.max_fusion_size
):
why("exceeds max fusion")
return False # heuristic not needed for correctness
if node1.get_names() & node2.ancestors:
# node2 depends on node1 outputs
if not self.can_fuse_vertical(node1, node2):
return False
return self.get_backend(device).can_fuse_vertical(node1, node2)
else: # nodes don't depend on each other, but may have common reads
if self.can_fusion_increase_peak_memory(node1, node2):
why("will increase peak memory")
return False
return self.get_backend(device).can_fuse_horizontal(node1, node2)
def can_fuse_vertical(self, node1, node2):
"""
Check if it is legal to fuse a consumer (node2) into a producer (node1).
We can fuse them if all the reads of node2 either match
corresponding writes in node1, or are written by nodes that can
be scheduled before the fusion of node1 and node2.
We also disable fusion of a write subsequent to a read if the reads
and writes do not align.
"""
node1_names = node1.get_names()
computed_deps = set()
why = WhyNoFuse(node1, node2)
# StarDep doesn't match MemoryDep, different indices don't match
# However, broadcasting sometimes strips dimensions, and if that's the case
# we still can match unmet dep
# if there's indirect indexing, don't match it
def fusable_read_and_write(read: Dep, write: Dep):
return (
self.mutation_renames.get(read.name, read.name) == write.name
and (isinstance(read, MemoryDep) and isinstance(write, MemoryDep))
and not free_symbol_has(read.index, "tmp")
and not free_symbol_has(write.index, "tmp")
and read.index == write.index
and len(read.size) >= len(write.size)
and read.size[: len(write.size)] == write.size
)
for rd in node2.unmet_dependencies:
for cd in node1.read_writes.writes:
if fusable_read_and_write(rd, cd):
computed_deps.add(rd)
remaining_deps = {dep.name for dep in node2.unmet_dependencies - computed_deps}
if remaining_deps & node1_names:
# MemoryDeps didn't match and read different locations of the same buffer.
# Examples here include:
# - MemoryDep("foo", x) != MemoryDep("foo", x + 1)
# - MemoryDep("foo", x) != StarDep("foo")
why("memory deps did not match")
return False
for name in remaining_deps:
if node1_names & self.name_to_fused_node[name].ancestors:
why("intermediate nodes between node1 & node2")
return False
# similar to can_inplace, if we are going to fuse a write subsequent to a read
# require that the indexing and size is the same
for write in node2.read_writes.writes:
for read in node1.read_writes.reads:
if write.name != self.mutation_renames.get(read.name, read.name):
continue
# bail on StarDep
if not fusable_read_and_write(read=read, write=write):
why("fusing a write into a read with different indexing formula")
return False
return True
def score_fusion(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Assign a score (higher comes first) to the fusion of node1
and node2. When different fusions conflict with each other,
this is the way we decide what order to run them in.
Our current score is based on:
- Estimate of the saved memory operations
- Fusions closer together in original order
"""
memory_score = self.score_fusion_memory(node1, node2)
proximity_score = -max(
abs(node1.min_order - node2.max_order),
abs(node2.min_order - node1.max_order),
)
return (
node1.is_template() == config.epilogue_fusion_first and memory_score > 0,
node1.is_reduction() == node2.is_reduction() and memory_score > 0,
memory_score,
proximity_score,
)
def score_fusion_memory(self, node1, node2):
"""
The first term in our fusion score that estimates number of saved memory operations.
"""
common_memory_deps = (node1.read_writes.reads | node1.read_writes.writes) & (
node2.read_writes.reads | node2.read_writes.writes
)
common_memory_deps = {
dep for dep in common_memory_deps if not dep.has_unbacked_symbols()
}
return sum(dep.numbytes_hint() for dep in common_memory_deps)
def score_fusion_key(self, nodes):
"""
Shim for list.sort(key=...)
"""
node1, node2 = nodes
return self.score_fusion(node1, node2)
def compute_last_usage(self):
"""
Populate node.last_usage recursively (also for the nodes within a FusedSchedulerNode)
"""
future_used_buffers = set()
for node_name in V.graph.get_output_names():
future_used_buffers.add(node_name)
for node in reversed(self.nodes):
node.set_last_usage(future_used_buffers, self.mutation_real_name)
future_used_buffers.update(node.last_usage)
def free_buffers(self):
"""Free any buffers that are no longer needed"""
for name in sorted(
self.buffer_names_to_free
- V.graph.removed_buffers
- V.graph.wrapper_code.freed
):
if name in self.name_to_node:
node = self.name_to_node[name]
if node.can_free():
V.graph.wrapper_code.codegen_free(node.node)
elif name in V.graph.graph_inputs:
storage = V.graph.graph_inputs[name].data
assert isinstance(storage, ir.StorageBox) and storage.is_input_buffer()
V.graph.wrapper_code.codegen_free(storage.data)
self.buffer_names_to_free.clear()
def remove_kernel_local_buffers(self):
"""
Any buffers that are both created and have a last use in the
same kernel can be removed.
"""
# V.kernel.store_buffer_names should represent the set of nodes
# get fused
fused_node_names = V.kernel.store_buffer_names
names_to_remove = []
for out_buf in V.kernel.store_buffer_names:
users = self.name_to_node[out_buf].users
assert users is not None
users = {user.get_name() for user in users if not user.is_weak}
if users.issubset(fused_node_names):
names_to_remove.append(out_buf)
def remove_filter(n):
return (
n not in V.kernel.must_keep_buffers
and n not in V.kernel.args.input_buffers
and n not in self.mutation_renames
and n not in self.mutation_real_name
)
names_to_remove = list(filter(remove_filter, names_to_remove))
for name in names_to_remove:
if name in V.kernel.args.inplace_buffers:
buf = V.kernel.args.inplace_buffers[name]
if isinstance(buf, str) and buf.startswith("REMOVED"):
continue
remove = all(n in names_to_remove for n in buf.other_names)
if remove:
self.remove_inplace_buffer(name)
V.kernel.inplaced_to_remove.add(name)
else:
self.remove_buffer(name)
def remove_buffer(self, name):
# Assign a special value instead of deleting the entry
# because we still rely on output_buffers's length to
# generate unique arg name.
log.debug("remove_buffer(%r)", name)
V.kernel.args.output_buffers[name] = "REMOVED"
V.kernel.removed_buffers.add(name)
def remove_inplace_buffer(self, name):
log.debug("removing_inplace_buffer(%r)", name)
inner_name = V.kernel.args.inplace_buffers[name].inner_name
V.kernel.args.inplace_buffers[name] = inner_name.replace(
"in_out_ptr", "REMOVED"
)
V.kernel.removed_buffers.add(name)
def flush(self):
for backend in self.backends.values():
backend.flush()
self.free_buffers()
def codegen_extern_call(self, scheduler_node: ExternKernelSchedulerNode):
assert isinstance(scheduler_node, ExternKernelSchedulerNode)
# 'decide_inplace_update' stores the inplace update decisions in
# the current kernel from where 'allocate' retrieve those decisions.
# We have to make sure there is a non-NULL kernel handler to store
# those inplace update decisions.
with V.set_kernel_handler(Kernel(increase_kernel_count=False)):
scheduler_node.decide_inplace_update()
scheduler_node.allocate()
node = scheduler_node.node
assert isinstance(node, ir.ExternKernel), f"{type(node)=}"
node.codegen(V.graph.wrapper_code)
self.free_buffers()
def create_backend(self, device: torch.device):
assert (
device.type != "cuda" or device.index is not None
), f"{device} should have been normalized in lowering"
V.graph.add_device_info(device)
device_scheduling = get_scheduling_for_device(device.type)
if device_scheduling is None:
raise RuntimeError(f"Unsupported device type: {device.type}")
if device.type == "cuda" and not has_triton():
device_props = torch.cuda.get_device_properties(device)
if device_props.major < 7:
raise RuntimeError(
f"Found {device_props.name} which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability {device_props.major}.{device_props.minor}" # noqa: B950
)
else:
raise RuntimeError(
"Cannot find a working triton installation. More information on installing Triton can be found at https://github.com/openai/triton" # noqa: B950
)
return device_scheduling(self)
def get_backend(self, device: torch.device):
if device not in self.backends:
self.backends[device] = self.create_backend(device)
return self.backends[device]
def enter_context(self, node):
def get_order(n):
if n not in self.origin_to_index:
self.origin_to_index.update({n: i for i, n in enumerate(n.graph.nodes)})
return self.origin_to_index[n]
# Use a dict to have ordering
origins = {
(get_order(e), e): None for n in node.get_nodes() for e in n.node.origins
}
origins = list(origins.keys())
if origins:
_, last = max(origins, key=operator.itemgetter(0))
V.graph.wrapper_code.enter_context(last)
@dynamo_timed
def codegen(self):
for node in self.nodes:
try:
log.debug(
"Generating code for node %s with estimated runtime %f",
node.get_name(),
node.get_estimated_runtime(),
)
except Exception as e:
log.debug(
"Generating code for node %s with estimated runtime 0.0",
node.get_name(),
)
self.enter_context(node)
if not isinstance(node, NopKernelSchedulerNode):
device = node.get_device()
if (
device != self.current_device
or node.is_extern()
or node.is_template()
):
self.flush()
if device != self.current_device:
if device.type == "cuda":
if self.current_device and self.current_device.type == "cuda":
V.graph.wrapper_code.codegen_device_guard_exit()
assert device.index is not None, "device should have an index"
V.graph.wrapper_code.codegen_device_guard_enter(device.index)
elif self.current_device and self.current_device.type == "cuda":
V.graph.wrapper_code.codegen_device_guard_exit()
self.current_device = device
self.buffer_names_to_free.update(node.last_usage)
if node.is_template():
node, *epilogue = node.get_nodes()
self.get_backend(device).codegen_template(node, epilogue) # type: ignore[possibly-undefined]
elif node.is_extern():
self.codegen_extern_call(node)
elif node.is_foreach():
self.get_backend(device).codegen_foreach(node) # type: ignore[possibly-undefined]
elif isinstance(node, (FusedSchedulerNode, SchedulerNode)):
self.get_backend(device).codegen_nodes(node.get_nodes()) # type: ignore[possibly-undefined]
else:
assert isinstance(node, NopKernelSchedulerNode)
node.allocate()
if config.debug_check_inf_and_nan:
V.graph.wrapper_code.generate_inf_and_nan_checker(node)
if config.triton.debug_sync_kernel:
self.get_backend(device).codegen_sync() # type: ignore[possibly-undefined]
self.available_buffer_names.update(node.get_names())
if not isinstance(node, NopKernelSchedulerNode):
device = node.get_device()
if self.get_backend(device).ready_to_flush():
self.flush()
if self.current_device and self.current_device.type == "cuda":
# exit the outermost CUDA device guard. this is
# important for nested indentation codegen-ing.
V.graph.wrapper_code.codegen_device_guard_exit()
self.flush()
def is_unaligned_buffer(self, buf_name):
if buf_name in V.graph.graph_inputs or buf_name in V.graph.constants:
# all graph inputs or constants are assumed to be aligned
return False
node = self.name_to_node[buf_name]
layout = node.node.get_layout()
if isinstance(layout, ir.AliasedLayout):
return not layout.maybe_guard_aligned()
else:
return False
class BaseScheduling:
def can_fuse_vertical(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Check whether node1 and node2 can be vertically fused or not.
"""
raise NotImplementedError()
def can_fuse_horizontal(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Check whether node1 and node2 can be horizontally fused or not.
"""
raise NotImplementedError()
def fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Fuse two nodes
"""
if node1.is_foreach() or node2.is_foreach():
return ForeachKernelSchedulerNode.fuse(node1, node2)
else:
return FusedSchedulerNode.fuse(node1, node2)
def group_fn(self, sizes):
"""
Process the iteration sizes in case a transformation needs to be applied.
"""
raise NotImplementedError()
def codegen_template(
self, template_node: SchedulerNode, epilogue_nodes: List[SchedulerNode]
):
"""
Given a template node, generate a kernel.
This function is only available for triton now. If the third-party backend behaves as a sub-class
of TritonScheduling, it can override it or reuse it.
"""
raise NotImplementedError()
def codegen_nodes(self, nodes: List[SchedulerNode]):
"""
Generate a kernel given a list of pre-fused nodes.
"""
raise NotImplementedError()
def codegen_sync(self):
"""
Generate synchronization code for the kernel. This method depends on the hardware characteristics.
"""
raise NotImplementedError()
def ready_to_flush(self) -> bool:
"""
Check whether the backend is requesting the scheduler to flush the generated kernel.
If not supported, please return False.
"""
return False
def flush(self):
"""
Flush the generated kernel and python wrapper code to the source code file.
"""
raise NotImplementedError()
def benchmark_fused_nodes(self, nodes):
"""
Benchmark fused list of nodes and return the execution time
in milliseconds on randomly generated inputs.
"""
raise NotImplementedError()
|