File size: 95,141 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
import collections
import dataclasses
import functools
import itertools
import logging
import math
import operator
import os
import pprint
import textwrap
from typing import (
    Any,
    Counter,
    DefaultDict,
    Dict,
    Generic,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    TypeVar,
    Union,
)

import sympy

import torch
from torch._dynamo.utils import dynamo_timed
from torch._inductor.metrics import get_metric_table, is_metric_table_enabled
from torch.utils._triton import has_triton

from . import comms, config, dependencies, ir, metrics
from .codegen.common import get_scheduling_for_device, Kernel
from .comm_analysis import estimate_nccl_collective_runtime
from .dependencies import Dep, MemoryDep, StarDep, WeakDep
from .ir import ComputedBuffer, MultiOutput, MultiOutputLayout
from .sizevars import SimplifyIndexing
from .utils import (
    cache_on_self,
    cmp,
    free_symbol_has,
    get_device_tflops,
    get_dtype_size,
    get_gpu_dram_gbps,
    green_text,
    is_collective,
    is_wait,
    red_text,
    sympy_product,
)
from .virtualized import V


log = logging.getLogger(__name__)
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")


class WhyNoFuse:
    # TODO when we drop support for Python < 3.10, we can use
    # @dataclass(slots=True) instead of manually specifying __slots__.
    __slots__ = ["node1", "node2", "reason", "args"]
    reason: str
    args: Tuple[Any, ...]

    def __init__(self, node1: "BaseSchedulerNode", node2: "BaseSchedulerNode"):
        self.node1 = node1
        self.node2 = node2

    def __call__(self, reason, *args):
        self.reason = reason
        self.args = args
        fusion_log.debug(self)

    def __str__(self):
        return f"cannot fuse {self.node1.get_name()} with {self.node2.get_name()}: " + (
            self.reason % self.args
        )


def pformat(obj):
    if isinstance(obj, set):
        # pformat has trouble with sets of sympy exprs
        obj = sorted(obj, key=str)
    result = pprint.pformat(obj, indent=4)
    if "\n" in result:
        return f"\n{textwrap.indent(result, ' '*4)}"
    return result


class OutputNode:
    def __init__(self, dep):
        self.unmet_dependencies = {dep}
        self.inverse_users = []

    def is_reduction(self):
        return False

    def get_alias_names(self):
        return ()

    def get_name(self):
        return "OUTPUT"

    __repr__ = get_name


def _prune_redundant_deps(node, name_to_fused_node):
    """

    Prunes weakdeps intended for mutation ordering

    on an upstream fused node if after fusion there is another dependency

    on the fused upstream node, making the weakdep redundant



    In essence this enforces an ordering on fusions. As fusions occur, weakdeps will

    be incrementally removed, enabling other fusions, ensuring they are fused in order.

    """
    name_to_dep_count: Counter[str] = collections.Counter()

    for dep in node.unmet_dependencies:
        if not isinstance(dep, WeakDep):
            name_to_dep_count[name_to_fused_node[dep.name].get_name()] += 1

    def should_prune(dep):
        if isinstance(dep, WeakDep):
            is_redundant = (
                name_to_dep_count[name_to_fused_node[dep.name].get_name()] > 0
            )
            # These can occur because fused nodes always gather deps from their snodes
            # If B has a weakdep on A
            # B gets fused with C, then any time BC is fused, the weakdep will reappear
            is_self_dep = name_to_fused_node[dep.name] == node
            return is_redundant or is_self_dep
        else:
            return False

    deps_to_prune = {dep for dep in node.unmet_dependencies if should_prune(dep)}

    if deps_to_prune:
        node.unmet_dependencies = node.unmet_dependencies - deps_to_prune
        node.set_read_writes(node.read_writes.remove_reads(deps_to_prune))


# TODO(xmfan): reuse an existing mapping for this if it exists, or formalize this into ir.py:ExternKernel
kernel_name_to_op = {
    "extern_kernels.convolution": torch.ops.aten.convolution,
    "extern_kernels.mm": torch.ops.aten.mm,
    "extern_kernels.bmm": torch.ops.aten.bmm,
    "extern_kernels.addmm": torch.ops.aten.addmm,
}


class BaseSchedulerNode:
    def __init__(self, scheduler: "Scheduler", node: ir.Buffer):
        self.scheduler: Scheduler = scheduler
        self.node: ir.Buffer = node
        self.users: List[NodeUser] = []
        self.inverse_users: List[BaseSchedulerNode] = []
        self.node_users: List[BaseSchedulerNode] = []
        self.set_read_writes(node.get_read_writes())
        self.ancestors: Set[str] = set()
        self.min_order: int
        self.max_order: int
        self.last_usage: Set[
            str
        ] = set()  # buffers that won't be used after this kernel
        self.written = False

    def __repr__(self):
        return f"{type(self).__name__}(name={self.get_name()!r})"

    def debug_str(self) -> str:
        """Longer form printout for trace logs"""
        name = self.get_name()
        lines = [
            f"{name}: {type(self).__name__}({type(getattr(self, 'node', None)).__name__})",
            f"{name}.writes = {pformat(self.read_writes.writes)}",
            f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
            f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
            f"{name}.users = {self.users}",
        ]
        try:
            lines += [
                self.debug_str_extra(),
            ]
        except Exception:
            log.warning("Ignoring error in debug_str()", exc_info=True)

        return "\n".join(lines).rstrip()

    def debug_str_extra(self) -> str:
        return ""

    def log_details(self):
        log.info(
            "%s: unmet_dependencies = %s, writes = %s",
            self,
            self.unmet_dependencies,
            self.read_writes.writes,
        )

    def update_mutated_names(self, renames: Dict[str, str]):
        self.set_read_writes(self.read_writes.rename(renames))

    def add_mutation_dep(self, dep):
        self.set_read_writes(self.read_writes.with_read(dep))

    def add_fake_dep(self, dep):
        self.set_read_writes(self.read_writes.with_read(dep))

    def set_users(self, users: List["NodeUser"]):
        # deduplicate
        result: Dict[int, NodeUser] = {}
        for use in users:
            if id(use.node) in result:
                result[id(use.node)] = use.merge(result[id(use.node)])
            else:
                result[id(use.node)] = use
        self.users = list(result.values())

    def set_last_usage(

        self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]

    ):
        used_buffers = self.used_or_aliased_buffer_names()
        used_buffers = {mutation_real_name.get(k, k) for k in used_buffers}
        self.last_usage = used_buffers - future_used_buffers

    def get_aliases(self):
        return self.node.get_alias_names()

    def get_mutations(self):
        return self.node.get_mutation_names()

    def has_aliasing_or_mutation(self):
        return bool(self.get_aliases() or self.get_mutations())

    def set_read_writes(self, rw: dependencies.ReadWrites):
        self.read_writes: dependencies.ReadWrites = rw
        self.unmet_dependencies = self.read_writes.reads
        self.prune_deps()

    def op_counts(self):
        return self.read_writes.op_counts

    def used_buffer_names(self) -> Set[str]:
        return {
            dep.name
            for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes)
        }

    def used_or_aliased_buffer_names(self) -> Set[str]:
        used_names = set()

        for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes):
            used_names.add(dep.name)
            if V.graph.name_to_buffer.get(dep.name):
                layout = V.graph.name_to_buffer[dep.name].get_layout()
                # needed to avoid deallocating aliased buffer
                # if there are still uses of aliases ahead
                if isinstance(layout, ir.AliasedLayout):
                    used_names.add(layout.view.data.get_name())
        return used_names

    def prune_deps(self):
        self.unmet_dependencies = {
            dep
            for dep in self.unmet_dependencies
            if dep.name not in self.scheduler.available_buffer_names
        }

    def prune_weak_deps(self):
        # Prune weak dependencies on buffers that have been removed
        def should_prune(dep):
            return isinstance(dep, WeakDep) and dep.name in V.graph.removed_buffers

        to_remove = {dep for dep in self.read_writes.reads if should_prune(dep)}
        self.set_read_writes(self.read_writes.remove_reads(to_remove))

    def prune_redundant_deps(self, name_to_fused_node):
        _prune_redundant_deps(self, name_to_fused_node)

    def get_name(self) -> str:
        return self.node.get_name()

    def get_first_name(self) -> str:
        return self.get_name()

    def get_names(self) -> Set[str]:
        return {self.get_name()}

    def get_nodes(self) -> Sequence["BaseSchedulerNode"]:
        return [self]

    def get_device(self):
        return self.node.get_device()

    def is_reduction(self):
        return False

    def is_split_scan(self):
        return False

    def is_template(self):
        return False

    def is_extern(self):
        return False

    def is_foreach(self):
        return False

    def can_inplace(self, read_dep: dependencies.MemoryDep):
        return False

    def has_side_effects(self):
        return False

    def decide_inplace_update(self):
        """

        Decide if there should be inplace updates for the node

        and record the decision in the active kernel.

        """
        if not self.node.should_allocate():
            return

        if isinstance(self, (SchedulerNode,)) and (
            self.node.get_alias_names() or self.node.get_mutation_names()
        ):
            return

        if (
            (
                isinstance(self, (SchedulerNode,))
                # o what have i done.  lets make this an api
                or (
                    isinstance(self, ExternKernelSchedulerNode)
                    and isinstance(self.node, (ir.AllReduce, ir.InPlaceHint))
                )
            )
            and config.inplace_buffers
            and (
                not isinstance(V.kernel, torch._inductor.codegen.triton.TritonKernel)
                or getattr(V.kernel, "mutations", None) is not None
            )
        ):
            from .codegen.wrapper import buffer_reuse_key

            ordered_reads = sorted(self.read_writes.reads, key=lambda x: x.name)

            for read in ordered_reads:
                input_node: Optional[
                    BaseSchedulerNode
                ] = self.scheduler.name_to_node.get(read.name)
                if input_node and V.graph.wrapper_code.can_reuse(input_node, self):
                    assert input_node.users is not None
                    remaining_uses = [
                        x
                        for x in input_node.users
                        if x.node.get_name()
                        not in self.scheduler.available_buffer_names
                    ]
                    if (
                        len(remaining_uses) == 1
                        and remaining_uses[0].can_inplace
                        and remaining_uses[0].node is self
                        and not isinstance(
                            input_node.node.get_layout(),
                            (
                                ir.MultiOutputLayout,
                                ir.MutationLayout,
                                ir.AliasedLayout,
                            ),
                        )
                        and not (
                            isinstance(
                                input_node.node, (ir.FallbackKernel, ir.MultiOutput)
                            )
                            and len(input_node.node.get_alias_names()) > 0
                        )
                        and buffer_reuse_key(input_node.node)
                        == buffer_reuse_key(self.node)
                    ):
                        # hacky check for if V.kernel is a real kernel or NullHandler
                        if hasattr(V.kernel, "args"):
                            # if there isn't a triton kernel, then we don't need to call triton-specific things.
                            # but TODO this might be a convenient place to signal to the Collective kernels to inplace
                            # (and, can we make "kernel" less generic of a name?)
                            V.kernel.args.make_inplace(
                                input_node.get_name(), self.get_name()
                            )
                            # mutations not tracked in cpp kernels
                            if isinstance(
                                V.kernel, torch._inductor.codegen.triton.TritonKernel
                            ):
                                V.kernel.mutations.add(input_node.get_name())
                                V.kernel.mutations.add(self.get_name())

                            # update last usage of reused node
                            self.last_usage.discard(input_node.get_name())

                            V.kernel.inplace_update_buffers[
                                self.get_name()
                            ] = input_node.get_name()
                        break

    def allocate(self):
        if not self.node.should_allocate():
            return

        if isinstance(self, (SchedulerNode,)) and (
            self.node.get_alias_names() or self.node.get_mutation_names()
        ):
            V.graph.wrapper_code.codegen_allocation(self.node)
            return

        # hacky check for if V.kernel is a real kernel or NullHandler
        if (
            hasattr(V.kernel, "args")
            and self.get_name() in V.kernel.inplace_update_buffers
        ):
            V.graph.wrapper_code.codegen_inplace_reuse(
                self.scheduler.name_to_node[
                    V.kernel.inplace_update_buffers[self.get_name()]
                ].node,
                self.node,
            )
        else:
            V.graph.wrapper_code.codegen_allocation(self.node)

    def can_free(self):
        # There's no real allocated buffer, no need to free it
        if isinstance(self.node.layout, ir.NoneLayout):
            return False
        for use in self.users:
            if isinstance(use.node, OutputNode):
                return False
        return True

    def codegen_originating_info(self, buffer, only_once=True):
        if not config.comment_origin:
            return

        if only_once and self.written:
            return
        origins = self.node.origins
        out_lines = []

        for o in origins:
            if o.op == "output":
                # These are boring and samey
                continue

            out_lines.append("")
            # TODO(voz): Should the pragma be constant somewhere?
            out_lines.append("#pragma CMT ORIGIN:")
            op_info_str = f"#pragma CMT {o.op} {o.target}"
            if "seq_nr" in o.meta:
                op_info_str = op_info_str + f" seq_nr:{o.meta['seq_nr']}"
            out_lines.append(op_info_str)
            if "stack_trace" in o.meta:
                stack_trace = f"{o.meta['stack_trace']}"
                stack_trace_last_line = stack_trace.split("|")[-1]
                out_lines.append(
                    "#pragma CMT "
                    + stack_trace_last_line.replace("{", "{{")
                    .replace("}", "}}")
                    .replace("\n", "\\")
                )
                out_lines.append("#pragma CMT END ORIGIN")
                out_lines.append("")

        if len(out_lines) == 0:
            return

        # TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
        # not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
        buffer.writelines(out_lines)
        self.written = True

    def get_read_write_buffers_sizes(self) -> int:
        """

        Counting the number of bytes accessed for a kernel is

        surprisingly tricky. In particular, there is a differentiation

        between 'theoretical' memory accesses and practical memory

        accesses. For example, a layernorm kernel may actually access an

        input 3 times, but in theory, it only needs to access its input

        once (and may be optimized to do so through say, persistent

        reductions)



        Another example is that even though a buffer is passed in, we may

        not access the entire buffer. This may occur if we are accessing

        a slice of the buffer. Another tricky case is for indirect

        indexing, where the amount of bytes accessed depends on the

        values of the input.



        What this function aims to compute is the memory accesses for

        worst-case inputs, best-case optimization. What this means is

        that for each buffer we compute the amount of potential accesses in two ways and take the minimum.



        1. Numel in ranges multiplied by number of deps the buffer has

        2. The buffer size

        """
        if isinstance(self, NopKernelSchedulerNode):
            return 0
        if isinstance(self, ExternKernelSchedulerNode) and isinstance(
            self.node, MultiOutput
        ):
            return 0

        if isinstance(self, SchedulerNode):
            node_numel = V.graph.sizevars.size_hint(
                sympy_product(self.get_ranges()[0])
                * sympy_product(self.get_ranges()[1])
            )
        else:
            node_numel = int(1e9)
        buf_accesses = collections.defaultdict(list)
        for dep in self.read_writes.reads | self.read_writes.writes:
            buf_accesses[dep.name].append(dep)

        reads = {dep.name for dep in self.read_writes.reads}
        writes = {dep.name for dep in self.read_writes.writes}

        def is_materialized(buf, snodes):
            users = self.scheduler.name_to_node[buf].users
            buf_uses = {user.node for user in users}
            return len(buf_uses - set(snodes)) > 0

        if isinstance(self, FusedSchedulerNode):
            removed_buffers = {
                dep for dep in writes if not is_materialized(dep, self.snodes)
            }
            writes = writes - removed_buffers
            reads = reads - removed_buffers
        node_bytes = 0

        for buf_name in reads | writes:
            buf_accessed_elems = sum([node_numel for dep in buf_accesses[buf_name]])
            buf: Union[ir.Buffer, ir.TensorBox]
            if buf_name in V.graph.name_to_buffer:
                buf = V.graph.name_to_buffer[buf_name]
            elif buf_name in V.graph.graph_inputs:
                buf = V.graph.graph_inputs[buf_name]
            else:
                continue

            def get_buf_elems(buf):
                return V.graph.sizevars.size_hint(sympy_product(buf.get_size()))

            # Kind of a lazy way to get the MultiOutput nodes corresponding to
            # a MultiOutputLayout
            if isinstance(buf.layout, MultiOutputLayout):
                users = self.scheduler.name_to_node[buf.get_name()].users
                buf_elems = sum(get_buf_elems(user.node.node) for user in users)
            else:
                buf_elems = get_buf_elems(buf)

            node_bytes += min(buf_elems, buf_accessed_elems) * get_dtype_size(
                buf.get_dtype()
            )

        return node_bytes

    def get_estimated_runtime(self) -> float:
        """

        Returns estimated op runtime in nanoseconds (ns)

        """
        layout = None
        dtype = None
        if not hasattr(self, "node") or not self.node:
            assert isinstance(
                self, (FusedSchedulerNode, ForeachKernelSchedulerNode)
            ), f"{type(self)=}"
            assert self.snodes
            if not self.snodes[0].node:
                return 0
            layout = self.snodes[0].node.get_layout()
            dtype = self.snodes[0].node.get_dtype()
        else:
            layout = self.node.get_layout()
            dtype = self.node.get_dtype()

        if "cuda" != layout.device.type:
            # default to no reordering based on runtime
            return 0

        # Collective kernels
        if is_collective(self.node):
            return estimate_nccl_collective_runtime(self.node)
        elif is_wait(self.node):
            # ir.Wait is only used for collective ops.
            # The time needed for the collective op is already estimated and considered
            # when we are processing the collective op IR node, so ir.Wait takes 0 time
            # since it doesn't take extra time to get the result after the collective is completed.
            return 0

        try:
            gpu_memory_bandwidth = get_gpu_dram_gbps()
            gpu_flops = get_device_tflops(dtype) * 10**12
        except Exception:
            return 0

        if isinstance(self, ExternKernelSchedulerNode):
            assert isinstance(self.node, ir.ExternKernel), f"{type(self.node)=}"
            op = kernel_name_to_op.get(
                getattr(self.node, "python_kernel_name", ""), None
            )

            # if there is a resolved op, dry-run using fake mode and record flop count
            if op is not None:
                from torch._subclasses.fake_tensor import FakeTensorMode
                from torch.utils.flop_counter import FlopCounterMode

                with FakeTensorMode(), FlopCounterMode(
                    display=False
                ) as flop_counter_mode:
                    from .ir import ir_node_to_tensor

                    fake_inputs = [
                        ir_node_to_tensor(input, guard_shape=False)
                        for input in self.node.inputs
                    ]
                    cls = self.node.__class__
                    cls.process_kernel(op, *fake_inputs, **self.node.kwargs)

                    # TODO(xmfan): find a better heuristic to model FLOPS/latency relationship
                    factor = 1.0
                    counted_flops = flop_counter_mode.get_total_flops()
                    counted_bytes = self.get_read_write_buffers_sizes()
                    compute_time = (factor * counted_flops / gpu_flops) * 1e9
                    transfer_time = counted_bytes / gpu_memory_bandwidth

                    # Return estimated runtime in nanoseconds
                    return max(compute_time, transfer_time)

        elif isinstance(self, FusedSchedulerNode) or isinstance(
            self.node, ComputedBuffer
        ):
            # Return estimated runtime in nanoseconds (bytes / gbps)
            return self.get_read_write_buffers_sizes() / gpu_memory_bandwidth

        return 0


class ExternKernelSchedulerNode(BaseSchedulerNode):
    def debug_str_extra(self) -> str:
        return f"{self.get_name()}.node.kernel = {getattr(self.node, 'python_kernel_name', None)}"

    def is_extern(self):
        return True

    def has_side_effects(self):
        return hasattr(self.node, "has_side_effects") and self.node.has_side_effects()

    def can_inplace(self, read_dep: dependencies.MemoryDep):
        if self.get_aliases() or self.is_template():
            return False

        if read_dep.name not in self.scheduler.name_to_node:
            # don't allow reuse of an 'input' buffer, we don't own it
            # (would this have been fixed if I tracked mutations properly above?)
            return False
        if not isinstance(
            self.node, (torch._inductor.ir.AllReduce, torch._inductor.ir.InPlaceHint)
        ):
            # TODO make this a property of the IR
            return False

        if len(self.read_writes.writes) == 1:
            write_dep = next(iter(self.read_writes.writes))
            numel_diff = read_dep.get_numel() - write_dep.get_numel()
            return V.graph.sizevars.simplify(numel_diff) == 0

        return False


class NopKernelSchedulerNode(BaseSchedulerNode):
    pass


class SchedulerNode(BaseSchedulerNode):
    def __init__(

        self,

        scheduler: "Scheduler",

        node: Union[ir.ComputedBuffer, ir.TemplateBuffer],

    ):
        super().__init__(scheduler, node)
        self._compute_attrs()

    def _compute_attrs(

        self,

        extra_indexing_constraints: Optional[Tuple[Dict[Any, Any], List[Any]]] = None,

    ):
        assert isinstance(self.node, (ir.ComputedBuffer, ir.TemplateBuffer))
        self._sizes, self._body = self.node.simplify_and_reorder(
            extra_indexing_constraints=extra_indexing_constraints
        )

        group_fn = self.scheduler.get_backend(self.node.get_device()).group_fn
        self.group = (self.node.get_device(), group_fn(self._sizes))

        if isinstance(self.node, ir.TemplateBuffer):
            self.set_read_writes(self.node.normalized_read_writes())
        else:
            self.set_read_writes(
                dependencies.extract_read_writes(
                    self._body, *self._sizes, normalize=True
                )
            )

    def recompute_size_and_body(

        self, extra_indexing_constraints: Tuple[Dict[Any, Any], List[Any]]

    ):
        self._compute_attrs(extra_indexing_constraints=extra_indexing_constraints)

    def debug_str_extra(self) -> str:
        name = self.get_name()
        lines = [
            f"{name}.group.device = {self.group[0]}",
            f"{name}.group.iteration = {self.group[1]}",
            f"{name}.sizes = {self._sizes}",
        ]
        if self.get_aliases():
            lines.append(f"{name}.aliases = {pformat(self.get_aliases())}")
        if self.get_mutations():
            lines.append(f"{name}.mutations = {pformat(self.get_mutations())}")
        if isinstance(self._body, ir.LoopBody):
            lines.append(f"class {name}_loop_body:")
            lines.append(textwrap.indent(self._body.debug_str(), "    "))
        return "\n".join(lines)

    def get_ranges(self):
        return self._sizes

    def is_reduction(self):
        assert isinstance(
            self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
        ), f"{type(self.node)=}"
        return bool(self.node.get_reduction_type())

    def is_split_scan(self):
        assert isinstance(
            self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
        ), f"{type(self.node)=}"
        return isinstance(self.node, ir.ComputedBuffer) and isinstance(
            self.node.data, ir.SplitScan
        )

    def is_template(self):
        return isinstance(self.node, ir.TemplateBuffer)

    def get_template_node(self):
        return self.node if self.is_template() else None

    def run(self, *index_vars):
        self.decide_inplace_update()
        self.mark_run()
        self.codegen(index_vars)

    def mark_run(self):
        self.allocate()

    def ranges_from_index_vars(self, index_vars):
        sizes = self._sizes
        assert sum(map(len, sizes)) == sum(map(len, index_vars))
        var_ranges = dict(
            zip(
                itertools.chain.from_iterable(index_vars),
                itertools.chain.from_iterable(sizes),
            )
        )
        return var_ranges

    def codegen(self, index_vars):
        var_ranges = self.ranges_from_index_vars(index_vars)
        try:
            with V.set_ops_handler(
                SimplifyIndexing(V.get_ops_handler(), var_ranges)
            ), V.kernel.set_current_node(self):
                self._body(*index_vars)
        except Exception:
            log.fatal("Error in codegen for %s", self.node)
            raise

    def pointwise_read_writes(self):
        """

        Get the memory dependencies in the non-reduction axis.

        """
        sizes, reduction_sizes = self._sizes

        def fn(index):
            return self._body(index, [sympy.Integer(0) for _ in reduction_sizes])

        return dependencies.extract_read_writes(fn, sizes)

    def can_inplace(self, read_dep: dependencies.MemoryDep):
        if self.get_aliases() or self.is_template():
            return False
        if len(self.read_writes.writes) == 1 and isinstance(
            read_dep, dependencies.MemoryDep
        ):
            write_dep = next(iter(self.read_writes.writes))
            assert isinstance(write_dep, dependencies.MemoryDep), f"{type(write_dep)=}"
            return read_dep.index == write_dep.index and read_dep.size == write_dep.size
        return False

    @cache_on_self
    def _get_atomic_add_buffers(self) -> Set[str]:
        buffers_store_as_atomic_add = set()
        if isinstance(self._body, ir.LoopBody):
            for node in self._body.get_nodes():
                if (
                    node.op == "call_method"
                    and node.target == "store"
                    and (
                        ("mode" in node.kwargs and node.kwargs["mode"] == "atomic_add")
                        or (len(node.args) == 5 and node.args[4] == "atomic_add")
                    )
                ):
                    buffers_store_as_atomic_add.add(
                        node.kwargs["name"]
                        if "name" in node.kwargs
                        else (node.args[1] if len(node.args) >= 2 else "")
                    )
        return buffers_store_as_atomic_add

    def has_atomic_add(self, check_buf):
        return check_buf in self._get_atomic_add_buffers()


class FusedSchedulerNode(BaseSchedulerNode):
    """

    This is a "fake" scheduler node that represents a group of scheduler nodes

    that are meant to be fused together. The way it does this is by maintaining

    its unmet dependencies as the union of its constituent nodes.

    """

    @classmethod
    def fuse(cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        assert node1.scheduler is node2.scheduler
        assert isinstance(node1, (SchedulerNode, FusedSchedulerNode)) and isinstance(
            node2, (SchedulerNode, FusedSchedulerNode)
        )
        return cls(node1.scheduler, list(node1.get_nodes()) + list(node2.get_nodes()))  # type: ignore[arg-type]

    def __init__(self, scheduler: "Scheduler", snodes: List[SchedulerNode]):
        # NB: No need to call super().__init__() because we don't need to re-use any of its logic.
        self.snodes = snodes
        self.scheduler = scheduler
        self.node: ir.Buffer = None  # type: ignore[assignment]
        self.users: List[NodeUser] = []
        self.inverse_users = []
        self.node_users = []
        self.group = max(snodes, key=lambda x: int(x.is_reduction())).group
        self.ancestors = set.union(
            *[x.ancestors for x in snodes if x.ancestors is not None]
        )

        self.set_read_writes(
            dependencies.ReadWrites.merge_list([x.read_writes for x in snodes])
        )

        self.unmet_dependencies = {
            dep
            for dep in set.union(*[x.unmet_dependencies for x in snodes])
            if dep.name not in self.get_names()
        } - self.read_writes.writes
        self.min_order = min([x.min_order for x in self.snodes])
        self.max_order = max([x.max_order for x in self.snodes])

    @cache_on_self
    def get_name(self) -> str:
        return "_".join([x.get_name() for x in self.snodes])

    def get_first_name(self) -> str:
        return self.snodes[0].get_name()

    @cache_on_self
    def get_names(self) -> Set[str]:
        return set.union(*[x.get_names() for x in self.snodes])

    def debug_str_extra(self) -> str:
        lines = [
            f"{self.get_name()}.snodes[{i}] =\n{node.debug_str()}"
            for i, node in enumerate(self.snodes)
        ]
        return textwrap.indent("\n".join(lines).rstrip(), "    ")

    def set_last_usage(

        self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]

    ):
        # Set self.last_usage using the global information
        # This will be used for inter-kernel optimisations
        super().set_last_usage(future_used_buffers, mutation_real_name)
        # Set self.last_usage on the snodes
        # This will be used for optimisations within the kernel
        future_used_buffers: Set[str] = set()
        for node in reversed(self.snodes):
            node.set_last_usage(future_used_buffers, mutation_real_name)
            future_used_buffers.update(node.last_usage)  # type: ignore[arg-type]

    @cache_on_self
    def used_buffer_names(self) -> Set[str]:
        return set.union(*[x.used_buffer_names() for x in self.snodes])

    @cache_on_self
    def used_or_aliased_buffer_names(self) -> Set[str]:
        return set.union(*[x.used_or_aliased_buffer_names() for x in self.snodes])

    def get_nodes(self) -> List[SchedulerNode]:
        return self.snodes

    def __repr__(self):
        return f"{type(self).__name__}(nodes={self.get_name()})"

    @cache_on_self
    def is_reduction(self):
        return any(x.is_reduction() for x in self.snodes)

    @cache_on_self
    def is_split_scan(self):
        return any(x.is_split_scan() for x in self.snodes)

    @cache_on_self
    def is_template(self):
        return any(x.is_template() for x in self.snodes)

    @cache_on_self
    def get_template_node(self):
        for node in self.snodes:
            if node.is_template():
                return node
        return None

    def get_device(self):
        return self.group[0]

    @cache_on_self
    def has_aliasing_or_mutation(self):
        return any(x.has_aliasing_or_mutation() for x in self.snodes)

    @cache_on_self
    def op_counts(self):
        op_counts: Counter[str] = collections.Counter()
        for node in self.snodes:
            op_counts.update(node.op_counts())
        return op_counts

    def has_atomic_add(self, check_buf):
        return any(
            (
                isinstance(sub_schedule_node1, SchedulerNode)
                and sub_schedule_node1.has_atomic_add(check_buf)
            )
            for sub_schedule_node1 in self.get_nodes()
        )

    # None of these need to be implemented, as a FusedSchedulerNode is just an
    # abstraction for scheduling purposes
    def update_mutated_names(self, renames: Dict[str, str]):
        raise NotImplementedError

    def add_mutation_dep(self, name):
        raise NotImplementedError

    def set_users(self, users: List["NodeUser"]):
        raise NotImplementedError

    def get_aliases(self):
        raise NotImplementedError

    def get_mutations(self):
        raise NotImplementedError

    def can_inplace(self, read_dep: dependencies.MemoryDep):
        raise NotImplementedError

    def allocate(self):
        raise NotImplementedError

    def can_free(self):
        raise NotImplementedError

    def debug_str(self) -> str:
        """Longer form printout for trace logs"""
        name = self.get_name()
        node_typestr = ",".join(type(n).__name__ for n in self.snodes)
        lines = [
            f"{name}: {type(self).__name__}({node_typestr})",
            f"{name}.writes = {pformat(self.read_writes.writes)}",
            f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
            f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
            f"{name}.users = {self.users}",
        ]
        try:
            lines += [
                self.debug_str_extra(),
            ]
        except Exception:
            log.warning("Ignoring error in debug_str()", exc_info=True)

        return "\n".join(lines).rstrip()


class ForeachKernelSchedulerNode(FusedSchedulerNode):
    """Scheduler node which consists of a list of scheduler nodes that each operate on a

    distinct tensor in a list of tensors."""

    def get_consumer_subnode_for(self, producer):
        if producer.get_name() in self.read_to_node:
            return self.read_to_node[producer.get_name()]

        return None

    def get_producer_subnode_for(self, consumer):
        for rd in consumer.read_writes.reads:
            if rd.name in self.name_to_node:
                return self.name_to_node[rd.name]

        return None

    @classmethod
    def can_fuse(cls, producer, consumer):
        why = WhyNoFuse(producer, consumer)
        if producer.is_foreach() and consumer.is_foreach():
            foreach_match = len(producer.snodes) == len(consumer.snodes)
            if not foreach_match:
                why("foreach do not have same length")
            return foreach_match and all(
                producer.scheduler.can_fuse(l, r)
                for l, r in zip(producer.snodes, consumer.snodes)
            )
        elif consumer.is_foreach():
            consumer_subnode = consumer.get_consumer_subnode_for(producer)
            if consumer_subnode is not None:
                return consumer.scheduler.can_fuse(producer, consumer_subnode)

            why("candidate producer is not dep of any foreach consumer")
            return False

        elif producer.is_foreach():
            producer_subnode = producer.get_producer_subnode_for(consumer)
            if producer_subnode is not None:
                return producer.scheduler.can_fuse(producer_subnode, consumer)

            why("candidate consumer has no dep in any foreach producer")
            return False

        raise AssertionError(
            "At least one node passed to ForeachKernelSchedulerNode.can_fuse should be a foreach node"
        )

    @classmethod
    def fuse(cls, producer, consumer):
        assert producer.is_foreach() or consumer.is_foreach()
        prev_node_1 = None
        prev_node_2 = None
        if producer.is_foreach() and consumer.is_foreach():
            fused_nodes = [
                FusedSchedulerNode.fuse(l, r)
                for l, r in zip(producer.snodes, consumer.snodes)
            ]
        elif producer.is_foreach():
            producer_subnode = producer.get_producer_subnode_for(consumer)
            fused_nodes = []
            prev_node_1 = producer
            prev_node_2 = None
            for node in producer.snodes:
                if node is producer_subnode:
                    new_node = FusedSchedulerNode.fuse(node, consumer)
                    prev_node_2 = new_node
                    fused_nodes.append(new_node)
                else:
                    fused_nodes.append(node)

        elif consumer.is_foreach():
            consumer_subnode = consumer.get_consumer_subnode_for(producer)
            fused_nodes = []
            prev_node_1 = consumer
            prev_node_2 = None

            for node in consumer.snodes:
                if node is consumer_subnode:
                    new_node = FusedSchedulerNode.fuse(producer, node)
                    prev_node_2 = new_node
                    fused_nodes.append(new_node)
                else:
                    fused_nodes.append(node)

        return cls(producer.scheduler, fused_nodes, prev_node_1, prev_node_2)  # type: ignore[possibly-undefined]

    def __init__(

        self,

        scheduler: "Scheduler",

        nodes: List[SchedulerNode],

        prev_node_1=None,

        prev_node_2=None,

    ):
        self.read_to_node = {}
        self.name_to_node = {}

        if prev_node_1 is None or prev_node_2 is None:
            super().__init__(scheduler, nodes)

            for node in nodes:
                for read in node.read_writes.reads:
                    self.read_to_node[read.name] = node

                for name in node.get_names():
                    self.name_to_node[name] = node
        else:
            self.scheduler = scheduler
            self.snodes = nodes
            self.node: ir.Buffer = None  # type: ignore[assignment]
            self.users: List[NodeUser] = []

            self.set_read_writes(
                dependencies.ReadWrites.merge_list(
                    [prev_node_1.read_writes, prev_node_2.read_writes]
                )
            )

            self.unmet_dependencies = {
                dep
                for dep in set.union(
                    prev_node_1.unmet_dependencies, prev_node_2.unmet_dependencies
                )
                if dep.name not in self.get_names()
            } - self.read_writes.writes

            self.min_order = min([prev_node_1.min_order, prev_node_2.min_order])
            self.max_order = max([prev_node_1.max_order, prev_node_2.max_order])

            foreach_node = prev_node_1 if prev_node_1.is_foreach() else prev_node_2
            other_node = prev_node_2 if prev_node_1.is_foreach() else prev_node_1

            self.ancestors = foreach_node.ancestors
            self.ancestors.update(other_node.ancestors)

            self.name_to_node = foreach_node.name_to_node
            for name in other_node.get_names():
                self.name_to_node[name] = other_node

        self.group = (nodes[0].get_device(), "foreach")

        self.origins: Set[torch.fx.Node] = set()

    def mark_run(self):
        raise NotImplementedError

    def codegen(self):
        assert isinstance(self.node, ir.ComputedBuffer), f"{type(self.node)=}"
        self.node.get_store_function()(self.node.make_loader()())

    def can_free(self):
        return NotImplementedError

    def is_foreach(self):
        return True

    def get_subkernel_nodes(self):
        """Returns a list of nodes which comprise the foreach kernel, operating on corresponding elements of our input lists.

        These nodes may be vertically fused."""
        return list(self.snodes)

    def get_nodes(self):
        """Returns all nodes contained in this kernel, unpacking fused nodes into their constituent scheduler nodes."""
        return list(itertools.chain.from_iterable(x.get_nodes() for x in self.snodes))

    def get_first_name(self):
        return self.snodes[0].get_first_name()

    def prune_redundant_deps(self, name_to_fused_node):
        _prune_redundant_deps(self, name_to_fused_node)

        for node in self.snodes:
            node.prune_redundant_deps(name_to_fused_node)


def pick_loop_order(stride_lengths, sizes, priority_idx=()):
    """

    A heuristic to decide loop iteration orders.  This has not been well

    tuned and may be something we should autotune.

    """

    @functools.cmp_to_key
    def index_cmp(a, b):
        if sizes[a] == 1 or sizes[b] == 1:
            # 1-sizes don't matter, just move them to the end
            return cmp(sizes[a] == 1, sizes[b] == 1)

        stride_len_a = [sl[a] for sl in stride_lengths]
        stride_len_b = [sl[b] for sl in stride_lengths]

        # equivalent to
        # np.logical_or(stride_lengths[:, b] == 0, stride_lengths[:, a] < stride_lengths[:, b]).all()
        a_first = sum(
            sl_b == 0 or sl_a < sl_b for sl_a, sl_b in zip(stride_len_a, stride_len_b)
        )
        b_first = sum(
            sl_a == 0 or sl_b < sl_a for sl_a, sl_b in zip(stride_len_a, stride_len_b)
        )
        if a_first > b_first:
            return -1
        if b_first > a_first:
            return 1

        # otherwise contiguous
        return cmp(b, a)

    order = list(reversed(range(len(stride_lengths[0]))))
    if len(priority_idx) > 0:
        # if we have priority node, only use that node's order
        stride_lengths = [stride_lengths[pi] for pi in priority_idx]
    if config.pick_loop_orders:
        order.sort(key=index_cmp)
    return order


@dataclasses.dataclass
class NodeUser:
    node: BaseSchedulerNode
    can_inplace: bool = False

    # A weak user must be scheduled after a given node, but doesn't actually
    # use the result
    is_weak: bool = False

    def __hash__(self):
        return hash((self.node.get_name(), self.can_inplace, self.is_weak))

    def __eq__(self, other):
        return (
            self.get_name() == other.get_name()
            and self.can_inplace == other.can_inplace
            and self.is_weak == other.is_weak
        )

    def get_name(self):
        return self.node.get_name()

    def merge(self, other: "NodeUser") -> "NodeUser":
        assert self.node is other.node
        return NodeUser(
            self.node,
            self.can_inplace and other.can_inplace,
            self.is_weak and other.is_weak,
        )


_post_grad_graph_counter = itertools.count()


class Scheduler:
    @dynamo_timed
    def __init__(self, nodes):
        super().__init__()
        self.backends = {}
        self.fuse_cache = {}
        self.post_grad_graph_id = next(_post_grad_graph_counter)

        self.nodes = []
        self.available_buffer_names = {
            *V.graph.graph_inputs.keys(),
            *V.graph.constants.keys(),
        }

        self.nodes = [self.create_scheduler_node(n) for n in nodes]

        # some new constants could have been created above
        self.available_buffer_names.update(V.graph.constants.keys())
        for node in self.nodes:
            node.prune_deps()

        self.name_to_node: Dict[str, BaseSchedulerNode] = {
            n.get_name(): n for n in self.nodes
        }
        self.name_to_fused_node: Dict[
            str, BaseSchedulerNode
        ] = dict()  # set in fuse_nodes()

        # mutation_real_name: Maps back to the original name for codegen
        # Example:
        # If you mutate buf0 inside of buf1's kernel, then:
        # mutation_real_name = {"buf0" : "buf1"}
        # all subsequent uses of buf0 become buf1's usage in dependency graph
        self.mutation_real_name = {}

        # We handle mutation by renaming modified versions of the same
        # buffer in the dependency graph to prevent cycles.
        # mutation_renames: tracks the current name for a given buffer
        #                   (changed once per mutation)
        # Example:
        # If you mutate buf0 inside of buf1's kernel, then:
        # mutation_renames = {"buf1" : "buf0"}
        # in codegen we only use buf0, never buf1
        self.mutation_renames = {}

        self.compute_dependencies()
        self.topological_sort_schedule()
        self.dead_node_elimination()
        if config.reorder_for_compute_comm_overlap:
            comms.decide_global_ordering_of_comms(self.nodes)
        self.compute_ancestors()

        metrics.ir_nodes_pre_fusion += len(self.nodes)
        V.debug.ir_pre_fusion(self.nodes)
        self.num_orig_nodes = len(self.nodes)
        self.name_to_fused_node = {n.get_name(): n for n in self.nodes}
        self.create_foreach_nodes()
        self.topological_sort_schedule()
        self.logged_slow_fusion = set()
        self.fuse_nodes()
        if config.reorder_for_compute_comm_overlap:
            # Refresh node_users and inverse_users to reflect fused nodes
            self.compute_node_users()
            self.nodes = comms.reorder_compute_and_comm_for_overlap(self.nodes)
        self.compute_last_usage()
        V.debug.ir_post_fusion(self.nodes)
        V.debug.graph_diagram(self.nodes)
        self.debug_draw_graph()

        # used during codegen:
        self.current_device: torch.device = None  # type: ignore[assignment]
        self.buffer_names_to_free = set()

        # fx graph node to the position it appears in the graph
        # for debug attribution
        self.origin_to_index = {}

        get_metric_table("graph_stats").add_row(
            lambda: {
                "graph_id": self.post_grad_graph_id,
                "num_nodes_before_fusion": self.num_orig_nodes,
                "num_nodes_after_fusion": len(self.nodes),
            }
        )

    def debug_draw_graph(self):
        """Generate an image of the graph for debugging"""
        if os.environ.get("INDUCTOR_WRITE_SCHEDULER_GRAPH", None) == "1":
            from .debug import draw_buffers

            draw_buffers(self.nodes, print_graph=True)

    def debug_print_nodes(self, label):
        if log.isEnabledFor(logging.INFO):
            log.info("%s:", label)
            for node in self.nodes:
                node.log_details()

    def create_scheduler_node(self, node):
        assert (
            node.origins is not None
        ), "All nodes passed to scheduling must have an origin"
        if node.is_no_op():
            return NopKernelSchedulerNode(self, node)
        elif isinstance(node, (ir.ComputedBuffer, ir.TemplateBuffer)):
            return SchedulerNode(self, node)
        elif isinstance(node, ir.ExternKernel):
            return ExternKernelSchedulerNode(self, node)
        else:
            raise NotImplementedError(node)

    def create_foreach_nodes(self):
        removed_node_names = set()
        fe_nodes = []
        kept_node_names = self.name_to_fused_node.keys()

        for names in V.graph.lists.values():
            names = [
                name
                for name in names
                if name in kept_node_names
                and not isinstance(self.name_to_node[name], NopKernelSchedulerNode)
            ]
            if not names:
                # All nodes eliminated
                continue

            removed_node_names.update(names)
            snodes = [self.name_to_node[name] for name in names]

            fe_node = ForeachKernelSchedulerNode(self, snodes)  # type: ignore[arg-type]

            fe_nodes.append(fe_node)

            for name in names:
                self.name_to_fused_node[name] = fe_node

        self.nodes = [
            node for node in self.nodes if node.get_name() not in removed_node_names
        ] + fe_nodes

    def compute_dependencies(self):
        """

        Create dependency edges between nodes, handling aliasing and

        mutation properly.

        """

        T = TypeVar("T")

        class DedupList(Generic[T]):
            """

            This data structure behaves like a list except it makes sure the

            elements remain unique.

            Normally one could use a set/dict for this purpose however

            the list in question gets elements appended as it is being

            iterated over which means that we need to keep the list

            semantics.

            """

            def __init__(self, items=None, membership=None):
                self.items = items or list()
                self.membership = membership or set()

            def append(self, node_user: T) -> None:
                if node_user in self.membership:
                    return
                self.items.append(node_user)
                self.membership.add(node_user)

            def __add__(self, other: "DedupList[T]") -> "DedupList[T]":
                new_membership = set.union(self.membership, other.membership)
                new_items = self.items + [
                    x for x in other.items if x not in self.membership
                ]
                return DedupList(new_items, new_membership)

        name_to_users: DefaultDict[str, DedupList[NodeUser]] = collections.defaultdict(
            DedupList
        )

        # handle aliasing by using python aliasing in name_to_users
        # if foo aliases bar then we will make name_to_users["foo"] point
        # to the same python list as name_to_users["bar"]
        for node1 in self.nodes:
            node1_name = node1.get_name()
            for node2_name in node1.get_aliases():
                if node1_name in name_to_users and node2_name in name_to_users:
                    # merge the two
                    list1 = name_to_users[node1_name]
                    list2 = name_to_users[node2_name]
                    combined = list1 + list2
                    for key in name_to_users.keys():
                        if name_to_users[key] is list1 or name_to_users[key] is list2:
                            name_to_users[key] = combined
                elif node1_name in name_to_users:
                    name_to_users[node2_name] = name_to_users[node1_name]
                else:
                    name_to_users[node1_name] = name_to_users[node2_name]

        def rename(n):
            if n in self.mutation_renames:
                return rename(self.mutation_renames[n])
            return n

        def dep_closure(node_name):
            reachable_names = {node_name}
            node = self.name_to_node[node_name]
            write_dep = next(iter(node.read_writes.writes))
            for read_dep in node.read_writes.reads:
                if (
                    read_dep.name in self.name_to_node
                    and isinstance(read_dep, dependencies.MemoryDep)
                    and isinstance(write_dep, dependencies.MemoryDep)
                    and read_dep.index == write_dep.index
                    and read_dep.size == write_dep.size
                ):
                    reachable_names.update(dep_closure(read_dep.name))
            return reachable_names

        def add_user(used_by_name, user_node, can_inplace=False, is_weak=False):
            name_to_users[rename(used_by_name)].append(
                NodeUser(user_node, can_inplace, is_weak)
            )

        unbacked_symbol_to_origin_node = {}

        for node in self.nodes:
            log.debug("scheduling %s", node.node)

            # unbacked symbols don't follow ordinary buffer dependencies, so
            # we track their def/uses separately
            unbacked_symbol_defs = sorted(
                node.node.get_unbacked_symbol_defs(), key=lambda x: x.name
            )
            for s in unbacked_symbol_defs:
                assert isinstance(s, sympy.Symbol)
                # Pick the first definer as canonical.  There may be multiple
                # because if a MultiOutputLayout buffer propagates an unbacked
                # symint to multiple outputs, they will all claim to def it.
                if s not in unbacked_symbol_to_origin_node:
                    unbacked_symbol_to_origin_node[s] = node

            unbacked_symbol_uses = sorted(
                node.node.get_unbacked_symbol_uses(), key=lambda x: x.name
            )
            # if a kernel takes unbacked symints, register dependencies
            for s in unbacked_symbol_uses:
                assert (
                    s in unbacked_symbol_to_origin_node
                ), f"{s} not in {unbacked_symbol_to_origin_node}"
                node.add_fake_dep(StarDep(unbacked_symbol_to_origin_node[s].get_name()))

            # a node will mutate either 0 or 1 buffers
            assert len(node.get_mutations()) <= 1
            for alt_name in node.get_mutations():
                alt_name = rename(alt_name)
                # this node must run after the prior writer
                add_user(alt_name, node)
                node.add_mutation_dep(StarDep(alt_name))
                for other_node in name_to_users[alt_name].items:
                    # this node must run after all prior readers
                    other_name = rename(other_node.get_name())
                    known_dep_node_names = dep_closure(node.get_name())
                    if other_name not in known_dep_node_names:
                        # If this node already directly or indirectly depends on other_node,
                        # we don't need to insert an extra dep.
                        node.add_mutation_dep(WeakDep(other_name))
                        add_user(other_name, node, is_weak=True)

            # add normal non-mutation dependencies
            for read in node.read_writes.reads:
                is_weak = isinstance(read, WeakDep)
                add_user(read.name, node, node.can_inplace(read), is_weak)

            node.update_mutated_names(self.mutation_renames)

            # update our renaming scheme for the next iteration
            for alt_name in node.get_mutations():
                self.mutation_renames[rename(alt_name)] = node.get_name()
                self.mutation_renames[alt_name] = node.get_name()
                self.mutation_real_name[node.get_name()] = self.mutation_real_name.get(
                    alt_name, alt_name
                )

        # make sure outputs aren't dead-code-eliminated
        for node_name in V.graph.get_output_names():
            log.debug("scheduling output %s", node_name)
            add_user(node_name, OutputNode(StarDep(node_name)))

        # make sure unbacked symints aren't dead-code-eliminated
        for node in V.graph.graph_outputs:
            for s in node.get_unbacked_symbol_uses():
                assert (
                    s in unbacked_symbol_to_origin_node
                ), f"{s} not in {unbacked_symbol_to_origin_node.keys()}"
                node_name = unbacked_symbol_to_origin_node[s].node.name
                log.debug("scheduling output %s for unbacked symint %s", node_name, s)
                add_user(node_name, OutputNode(StarDep(node_name)))

        # make sure input mutation isn't dead-code-eliminated
        for name in self.mutation_renames:
            if name in V.graph.graph_inputs:
                add_user(name, OutputNode(StarDep(name)))
                V.graph.mutated_inputs.add(name)

        inp_names = {
            name: index for index, name in enumerate(V.graph.graph_inputs.keys())
        }
        V.graph.mutated_input_idxs = [
            inp_names[name] for name in V.graph.mutated_inputs
        ]

        # copy users information onto the nodes
        for node in self.nodes:
            node.set_users(name_to_users[node.get_name()].items)

        # populate inverse_users
        for node in self.nodes:
            for user in node.users:
                user.node.inverse_users.append(node)

    def compute_node_users(self):
        # set up buffer name to (fused)snode mapping
        buf_to_snode = {}
        for node in self.nodes:
            if isinstance(node, FusedSchedulerNode):
                for x in node.snodes:
                    buf_to_snode[x.get_name()] = node
            buf_to_snode[node.get_name()] = node

        for node in self.nodes:
            node.node_users = []
            node.inverse_users = []

        # compute inverse_users
        for node in self.nodes:
            inverse_users = []
            for dep in node.unmet_dependencies:
                assert dep.name in buf_to_snode
                dep_node = buf_to_snode[dep.name]
                inverse_users.append(dep_node)
            node.inverse_users = inverse_users

        # compute node_users
        # TODO: ideally, we should deduplicate .users and .node_users,
        # but currently .users contains extra information that's difficult to
        # extract into a standalone container.
        node_to_users: Dict[BaseSchedulerNode, List[BaseSchedulerNode]] = {}
        for node in self.nodes:
            for inverse_user in node.inverse_users:
                node_to_users.setdefault(inverse_user, []).append(node)
        for node, users in node_to_users.items():
            node.node_users = users

    def dead_node_elimination(self):
        """

        Remove any nodes without users

        """
        again = True  # repeat until a fixed point
        while again:
            updated_nodes = []
            for node in self.nodes:

                def can_eliminate_user(user: NodeUser):
                    return user.is_weak or user.get_name() in V.graph.removed_buffers

                can_eliminate = not node.has_side_effects() and all(
                    can_eliminate_user(u) for u in node.users
                )

                if not can_eliminate:
                    updated_nodes.append(node)
                else:
                    # dead code
                    log.debug("removed dead node: %s", node.get_name())
                    V.graph.removed_buffers.add(node.get_name())

            again = len(self.nodes) > len(updated_nodes)
            self.nodes = updated_nodes

        # Prune any WeakDeps no longer needed
        for node in self.nodes:
            node.prune_weak_deps()

    def topological_sort_schedule(self):
        """

        Ensure self.nodes is in topologically sorted order

        """
        seen: Set[ir.Buffer] = set()
        name_to_node: Dict[str, ir.Buffer] = dict()
        result: List[ir.Buffer] = []

        def visit(n):
            if n not in seen:
                seen.add(n)
                for dep in sorted(n.unmet_dependencies, key=lambda d: d.name):
                    visit(name_to_node[dep.name])
                result.append(n)

        for node in self.nodes:
            for name in node.get_names():
                name_to_node[name] = node
        for node in self.nodes:
            visit(node)
        self.nodes = result

    def compute_ancestors(self):
        """

        Populate each node.ancestors

        """
        # note self.nodes is topologically sorted
        name_to_ancestors: Dict[str, Set[str]] = {}
        for node in self.nodes:
            ancestors = set()
            for dep in node.unmet_dependencies:
                ancestors.add(dep.name)
                ancestors |= name_to_ancestors[dep.name]
            name_to_ancestors[node.get_name()] = ancestors
            node.ancestors = ancestors

        for order, node in enumerate(self.nodes):
            node.min_order = order
            node.max_order = order

    def fuse_nodes(self):
        """

        Mutates self.nodes to combine nodes into FusedSchedulerNodes.

        """
        for i in range(10):
            old_len = len(self.nodes)
            fusion_log.debug(
                "===== attempting fusion (%d/10): %d nodes =====", i + 1, old_len
            )
            self.fuse_nodes_once()
            new_len = len(self.nodes)
            fusion_log.debug(
                "completed fusion round (%d/10): fused %d nodes into %d nodes\n",
                i + 1,
                old_len,
                new_len,
            )
            if new_len == old_len or new_len == 1:
                fusion_log.debug("===== fusion complete (%d iterations) =====", i + 1)
                break

    def benchmark_fused_nodes(self, nodes):
        """

        Benchmark fused list of nodes and return the execution time

        in milliseconds on randomly generated inputs.

        """
        assert len(nodes) > 0
        device = nodes[0].get_device()
        V.graph.scheduler = self
        self.current_device = device
        backend = self.get_backend(device)
        return backend.benchmark_fused_nodes(nodes)

    def speedup_by_fusion(self, node1, node2):
        """

        If config.benchmark_fusion is False, always return True.

        Otherwise, return True if fusion can brings speedup.

        """
        if not config.benchmark_fusion:
            return True

        if (
            node1.is_template()
            and not isinstance(node1.get_template_node(), ir.TritonTemplateBuffer)
            or node1.is_foreach()
            or node2.is_foreach()
        ):
            # TODO support benchmarking epilogue fusion
            return True

        node_list_1 = node1.get_nodes()
        device = node_list_1[0].get_device()

        # don't support benchmark fusion for CPU right now.
        if device.type == "cpu":
            return True

        node_list_2 = node2.get_nodes()
        node_list_fused = node_list_1 + node_list_2

        # We can not accurately benchmark kernel using atomic_add
        # due to how we generate random integer inputs.
        # Skip benchmarking them by allowing fusion.
        if any(
            hasattr(n.node, "data")
            and hasattr(n.node.data, "scatter_mode")
            and n.node.data.scatter_mode == "atomic_add"
            for n in node_list_fused
        ):
            return True

        from triton.compiler.errors import CompilationError

        why = WhyNoFuse(node1, node2)

        try:
            ms1, path1 = self.benchmark_fused_nodes(node_list_1)
            if math.isinf(ms1):
                why("register spilling of the first kernel")
                return False
            ms2, path2 = self.benchmark_fused_nodes(node_list_2)
            if math.isinf(ms2):
                why("register spilling of the second kernel")
                return False
            ms_fused, path_fused = self.benchmark_fused_nodes(node_list_fused)
            if math.isinf(ms_fused):
                why("register spilling of the fused kernel")
                return False
        except CompilationError as e:
            # workaround triton issue: https://github.com/openai/triton/issues/2151
            if "Loop-carried variable" in str(e):
                return True  # allow fusion
            else:
                raise

        if fusion_log.isEnabledFor(logging.DEBUG):
            if ms_fused < ms1 + ms2:
                fusion_log.debug(
                    "can fuse (benchmark): fusing %s with %s cause %sx speedup",
                    node1.get_names(),
                    node2.get_names(),
                    green_text(f"{(ms1 + ms2) / ms_fused:.3f}"),
                )
            else:
                fusion_log.debug(
                    "cannot fuse (benchmark): fusing %s with %s cause %sx slowdown",
                    node1.get_names(),
                    node2.get_names(),
                    red_text(f"{ms_fused / (ms1 + ms2):.3f}"),
                )

        if (
            is_metric_table_enabled("slow_fusion")
            and ms_fused >= ms1 + ms2
            and (path1, path2) not in self.logged_slow_fusion
        ):
            self.logged_slow_fusion.add((path1, path2))
            get_metric_table("slow_fusion").add_row(
                lambda: {
                    "kernel1_path": path1,
                    "kernel1_latency": ms1,
                    "kernel2_path": path2,
                    "kernel2_latency": ms2,
                    "fused_kernel_path": path_fused,
                    "fused_kernel_latency": ms_fused,
                    "slow_down_ratio": ms_fused / (ms1 + ms2),
                }
            )
        return ms_fused < ms1 + ms2

    def fuse_nodes_once(self):
        """

        Mutates self.nodes to combine nodes into FusedSchedulerNodes.



        This relies on two key functions to control the logic:

            - self.can_fuse(): checks if a fusion is legal

            - self.score_fusion(): assigns priority to a given fusion

        """
        fused_nodes = set(self.nodes)
        for node1, node2 in self.get_possible_fusions():
            node1 = self.name_to_fused_node[node1.get_first_name()]
            node2 = self.name_to_fused_node[node2.get_first_name()]
            if self.can_fuse(node1, node2) and not self.will_fusion_create_cycle(
                node1, node2
            ):
                if not self.speedup_by_fusion(node1, node2):
                    continue
                fusion_log.debug(
                    "fusing %s with %s", node1.get_name(), node2.get_name()
                )

                # above can_fuse asserts that node2 has the same device
                device = node1.get_device()
                node3 = self.get_backend(device).fuse(node1, node2)
                fused_nodes.remove(node1)
                fused_nodes.remove(node2)
                fused_nodes.add(node3)
                self.name_to_fused_node.update(
                    {n.get_name(): node3 for n in node3.get_nodes()}
                )
        self.nodes = sorted(fused_nodes, key=lambda x: x.min_order)
        self.topological_sort_schedule()
        self.prune_redundant_deps()

    def prune_redundant_deps(self):
        for node in self.nodes:
            node.prune_redundant_deps(self.name_to_fused_node)

    def get_possible_fusions(self):
        """

        Helper to find all legal fusion opportunities, sorted by self.score_fusion()

        """
        possible_fusions = []
        seen = set()

        def check_all_pairs(nodes):
            for node1_index, node1 in enumerate(nodes):
                for node2 in nodes[node1_index + 1 :]:
                    key = (node1, node2)
                    if key in seen:
                        continue
                    seen.add(key)

                    if self.can_fuse(node1, node2):
                        possible_fusions.append(key)
                    elif (node2.is_template() or node2.is_foreach()) and self.can_fuse(
                        node2, node1
                    ):
                        # foreach fusions and epilogue fusions are order dependent
                        possible_fusions.append((node2, node1))

        buffer_names_grouping = collections.defaultdict(list)
        for node in self.nodes:
            for buf in node.used_buffer_names():
                buffer_names_grouping[buf].append(node)
        for node_grouping in buffer_names_grouping.values():
            check_all_pairs(node_grouping)

        if config.aggressive_fusion:
            group_grouping = collections.defaultdict(list)
            for node in self.nodes:
                group = getattr(node, "group", None)
                if group:
                    group_grouping[group].append(node)
            for node_grouping in group_grouping.values():
                check_all_pairs(node_grouping)

        possible_fusions.sort(key=self.score_fusion_key, reverse=True)
        fusion_log.debug("found %d possible fusions", len(possible_fusions))
        return possible_fusions

    def will_fusion_create_cycle(self, node1, node2):
        """

        Finds whether there's a path from node1 to node2 (or vice-versa)

        caused indirectly by other fusions.

        """

        def found_path(node):
            # only fused nodes can introduce new ancestors.
            if isinstance(node, FusedSchedulerNode) and node not in visited:
                visited.add(node)
                if node.get_names().issubset(combined_ancestors):
                    # All fusion outputs are in ancestors of node1 and node2, thus
                    # cannot introduce new path:
                    #
                    # 1. if output is neither descendent of node1 or node2, the
                    #        output cannot introduce a path
                    # 2. due to [can_fuse]: if WLOG output is descendent of node1, it cannot be
                    #        on path(node1->node2), hence it cannot be ancestor of node2
                    # 3. due to [acyclic]: if WLOG output is descendent of node1, it cannot be
                    #        ancestor of node1
                    return False
                else:
                    # continue DFS of new ancestors introduced by the fusion
                    return bool(combined_names & node.ancestors) or any(
                        found_path(self.name_to_fused_node[n])
                        for n in node.ancestors - combined_ancestors
                    )
            return False

        visited = set()
        combined_names = node1.get_names() | node2.get_names()
        combined_ancestors = (node1.ancestors | node2.ancestors) - combined_names
        cycle = any(found_path(self.name_to_fused_node[n]) for n in combined_ancestors)
        if cycle:
            WhyNoFuse(node1, node2)("will create cycle")
        return cycle

    def can_fusion_increase_peak_memory(

        self, node1: BaseSchedulerNode, node2: BaseSchedulerNode

    ):
        """

        This function prevents fusion for nodes that can increase memory

        footprint. This problem is more common in horizontal fusion, where nodes

        that are far apart in the original order get fused, lengthening the live

        intervals of tensors. This is very evident in models with activation

        checkpointing, where the recomputed nodes from different checkpointed

        regions get fused and significantly increase the memory footprint.



        The current attempt is a quick, possibly hacky, heuristic to prevent the

        fusion of nodes that are far away in the original order.



        A better but difficult to implement heurisitic would be to use live

        intervals of the buffers, find region of peak pressure in the original

        program and prevent fusion that crosses that peak region. We might need

        special care or good approximation in this implementation, as fusion of

        node changes live intervals, and re-computing live intervals and peak

        memory after each fusion can introduce large compilation overhead.

        """
        proximity_score = max(
            abs(node1.min_order - node2.max_order),
            abs(node2.min_order - node1.max_order),
        )
        return proximity_score > 64

    def can_fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        """

        Determine if it is possible to combine node1 and node2 into a

        single fused node.

        """

        if node1 is node2:
            return False

        why = WhyNoFuse(node1, node2)

        if (
            isinstance(node1, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
            and not node1.is_template()
        ):
            why("node1 is extern or nop")
            return False
        if (
            isinstance(node2, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
            and not node2.is_template()
        ):
            why("node2 is extern or nop")
            return False

        if node2.get_names() & node1.ancestors:
            why("node1 must go before node2")
            return False

        if (
            isinstance(node1, (FusedSchedulerNode, SchedulerNode))
            and isinstance(node2, SchedulerNode)
            and isinstance(node2._body, ir.LoopBody)
        ):
            # Fix issue: https://github.com/pytorch/pytorch/issues/108963
            # Check:
            #   If node2 reads a buf which is a mutation buf of node1(SchedulerNode) or among nodes in node1(FusedSchedulerNode),
            #   we will get the corresponding mutation buf and check if this mutation buf is stored by atomic_add mode.
            # If True, we will disable the fusion of node1 and node2.
            if any(
                (
                    node2_used_buf in self.mutation_renames
                    and node1.has_atomic_add(self.mutation_renames[node2_used_buf])
                )
                for node2_used_buf in node2._body.reads_name2expr.keys()
            ):
                return False

        if node2.is_template():
            why("templates can only fuse epilogues")
            return False
        if node1.is_template() and (
            node2.has_aliasing_or_mutation()
            or node2.is_reduction()
            or not config.epilogue_fusion
        ):
            why("template epilogue not satisfied")
            return False

        device = node1.get_device()
        device2 = node2.get_device()
        if device != device2:
            why("device mismatch (%s vs %s)", device, device2)
            return False
        del device2

        no_shared_data = self.score_fusion_memory(node1, node2) == 0
        if no_shared_data and (
            not config.aggressive_fusion or node1.is_reduction() or node2.is_reduction()
        ):
            why("no shared data")
            return False  # heuristic not needed for correctness

        if (
            not node1.is_foreach()
            and not node2.is_foreach()
            and len(node1.get_nodes()) + len(node2.get_nodes()) > config.max_fusion_size
        ):
            why("exceeds max fusion")
            return False  # heuristic not needed for correctness

        if node1.get_names() & node2.ancestors:
            # node2 depends on node1 outputs
            if not self.can_fuse_vertical(node1, node2):
                return False
            return self.get_backend(device).can_fuse_vertical(node1, node2)
        else:  # nodes don't depend on each other, but may have common reads
            if self.can_fusion_increase_peak_memory(node1, node2):
                why("will increase peak memory")
                return False
            return self.get_backend(device).can_fuse_horizontal(node1, node2)

    def can_fuse_vertical(self, node1, node2):
        """

        Check if it is legal to fuse a consumer (node2) into a producer (node1).



        We can fuse them if all the reads of node2 either match

        corresponding writes in node1, or are written by nodes that can

        be scheduled before the fusion of node1 and node2.



        We also disable fusion of a write subsequent to a read if the reads

        and writes do not align.

        """
        node1_names = node1.get_names()
        computed_deps = set()
        why = WhyNoFuse(node1, node2)

        # StarDep doesn't match MemoryDep, different indices don't match
        # However, broadcasting sometimes strips dimensions, and if that's the case
        # we still can match unmet dep
        # if there's indirect indexing, don't match it
        def fusable_read_and_write(read: Dep, write: Dep):
            return (
                self.mutation_renames.get(read.name, read.name) == write.name
                and (isinstance(read, MemoryDep) and isinstance(write, MemoryDep))
                and not free_symbol_has(read.index, "tmp")
                and not free_symbol_has(write.index, "tmp")
                and read.index == write.index
                and len(read.size) >= len(write.size)
                and read.size[: len(write.size)] == write.size
            )

        for rd in node2.unmet_dependencies:
            for cd in node1.read_writes.writes:
                if fusable_read_and_write(rd, cd):
                    computed_deps.add(rd)

        remaining_deps = {dep.name for dep in node2.unmet_dependencies - computed_deps}
        if remaining_deps & node1_names:
            # MemoryDeps didn't match and read different locations of the same buffer.
            # Examples here include:
            #   - MemoryDep("foo", x) != MemoryDep("foo", x + 1)
            #   - MemoryDep("foo", x) != StarDep("foo")
            why("memory deps did not match")
            return False
        for name in remaining_deps:
            if node1_names & self.name_to_fused_node[name].ancestors:
                why("intermediate nodes between node1 & node2")
                return False

        # similar to can_inplace, if we are going to fuse a write subsequent to a read
        # require that the indexing and size is the same
        for write in node2.read_writes.writes:
            for read in node1.read_writes.reads:
                if write.name != self.mutation_renames.get(read.name, read.name):
                    continue

                # bail on StarDep
                if not fusable_read_and_write(read=read, write=write):
                    why("fusing a write into a read with different indexing formula")
                    return False

        return True

    def score_fusion(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        """

        Assign a score (higher comes first) to the fusion of node1

        and node2.  When different fusions conflict with each other,

        this is the way we decide what order to run them in.



        Our current score is based on:

        - Estimate of the saved memory operations

        - Fusions closer together in original order

        """
        memory_score = self.score_fusion_memory(node1, node2)
        proximity_score = -max(
            abs(node1.min_order - node2.max_order),
            abs(node2.min_order - node1.max_order),
        )
        return (
            node1.is_template() == config.epilogue_fusion_first and memory_score > 0,
            node1.is_reduction() == node2.is_reduction() and memory_score > 0,
            memory_score,
            proximity_score,
        )

    def score_fusion_memory(self, node1, node2):
        """

        The first term in our fusion score that estimates number of saved memory operations.

        """
        common_memory_deps = (node1.read_writes.reads | node1.read_writes.writes) & (
            node2.read_writes.reads | node2.read_writes.writes
        )
        common_memory_deps = {
            dep for dep in common_memory_deps if not dep.has_unbacked_symbols()
        }
        return sum(dep.numbytes_hint() for dep in common_memory_deps)

    def score_fusion_key(self, nodes):
        """

        Shim for list.sort(key=...)

        """
        node1, node2 = nodes
        return self.score_fusion(node1, node2)

    def compute_last_usage(self):
        """

        Populate node.last_usage recursively (also for the nodes within a FusedSchedulerNode)

        """

        future_used_buffers = set()
        for node_name in V.graph.get_output_names():
            future_used_buffers.add(node_name)

        for node in reversed(self.nodes):
            node.set_last_usage(future_used_buffers, self.mutation_real_name)
            future_used_buffers.update(node.last_usage)

    def free_buffers(self):
        """Free any buffers that are no longer needed"""
        for name in sorted(
            self.buffer_names_to_free
            - V.graph.removed_buffers
            - V.graph.wrapper_code.freed
        ):
            if name in self.name_to_node:
                node = self.name_to_node[name]
                if node.can_free():
                    V.graph.wrapper_code.codegen_free(node.node)
            elif name in V.graph.graph_inputs:
                storage = V.graph.graph_inputs[name].data
                assert isinstance(storage, ir.StorageBox) and storage.is_input_buffer()
                V.graph.wrapper_code.codegen_free(storage.data)

        self.buffer_names_to_free.clear()

    def remove_kernel_local_buffers(self):
        """

        Any buffers that are both created and have a last use in the

        same kernel can be removed.

        """

        # V.kernel.store_buffer_names should represent the set of nodes
        # get fused
        fused_node_names = V.kernel.store_buffer_names
        names_to_remove = []
        for out_buf in V.kernel.store_buffer_names:
            users = self.name_to_node[out_buf].users
            assert users is not None
            users = {user.get_name() for user in users if not user.is_weak}
            if users.issubset(fused_node_names):
                names_to_remove.append(out_buf)

        def remove_filter(n):
            return (
                n not in V.kernel.must_keep_buffers
                and n not in V.kernel.args.input_buffers
                and n not in self.mutation_renames
                and n not in self.mutation_real_name
            )

        names_to_remove = list(filter(remove_filter, names_to_remove))

        for name in names_to_remove:
            if name in V.kernel.args.inplace_buffers:
                buf = V.kernel.args.inplace_buffers[name]
                if isinstance(buf, str) and buf.startswith("REMOVED"):
                    continue
                remove = all(n in names_to_remove for n in buf.other_names)
                if remove:
                    self.remove_inplace_buffer(name)
                V.kernel.inplaced_to_remove.add(name)
            else:
                self.remove_buffer(name)

    def remove_buffer(self, name):
        # Assign a special value instead of deleting the entry
        # because we still rely on output_buffers's length to
        # generate unique arg name.
        log.debug("remove_buffer(%r)", name)
        V.kernel.args.output_buffers[name] = "REMOVED"
        V.kernel.removed_buffers.add(name)

    def remove_inplace_buffer(self, name):
        log.debug("removing_inplace_buffer(%r)", name)
        inner_name = V.kernel.args.inplace_buffers[name].inner_name
        V.kernel.args.inplace_buffers[name] = inner_name.replace(
            "in_out_ptr", "REMOVED"
        )
        V.kernel.removed_buffers.add(name)

    def flush(self):
        for backend in self.backends.values():
            backend.flush()
        self.free_buffers()

    def codegen_extern_call(self, scheduler_node: ExternKernelSchedulerNode):
        assert isinstance(scheduler_node, ExternKernelSchedulerNode)
        # 'decide_inplace_update' stores the inplace update decisions in
        # the current kernel from where 'allocate' retrieve those decisions.
        # We have to make sure there is a non-NULL kernel handler to store
        # those inplace update decisions.
        with V.set_kernel_handler(Kernel(increase_kernel_count=False)):
            scheduler_node.decide_inplace_update()
            scheduler_node.allocate()
        node = scheduler_node.node
        assert isinstance(node, ir.ExternKernel), f"{type(node)=}"
        node.codegen(V.graph.wrapper_code)
        self.free_buffers()

    def create_backend(self, device: torch.device):
        assert (
            device.type != "cuda" or device.index is not None
        ), f"{device} should have been normalized in lowering"
        V.graph.add_device_info(device)

        device_scheduling = get_scheduling_for_device(device.type)
        if device_scheduling is None:
            raise RuntimeError(f"Unsupported device type: {device.type}")

        if device.type == "cuda" and not has_triton():
            device_props = torch.cuda.get_device_properties(device)
            if device_props.major < 7:
                raise RuntimeError(
                    f"Found {device_props.name} which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability {device_props.major}.{device_props.minor}"  # noqa: B950
                )
            else:
                raise RuntimeError(
                    "Cannot find a working triton installation. More information on installing Triton can be found at https://github.com/openai/triton"  # noqa: B950
                )

        return device_scheduling(self)

    def get_backend(self, device: torch.device):
        if device not in self.backends:
            self.backends[device] = self.create_backend(device)
        return self.backends[device]

    def enter_context(self, node):
        def get_order(n):
            if n not in self.origin_to_index:
                self.origin_to_index.update({n: i for i, n in enumerate(n.graph.nodes)})
            return self.origin_to_index[n]

        # Use a dict to have ordering
        origins = {
            (get_order(e), e): None for n in node.get_nodes() for e in n.node.origins
        }
        origins = list(origins.keys())
        if origins:
            _, last = max(origins, key=operator.itemgetter(0))
            V.graph.wrapper_code.enter_context(last)

    @dynamo_timed
    def codegen(self):
        for node in self.nodes:
            try:
                log.debug(
                    "Generating code for node %s with estimated runtime %f",
                    node.get_name(),
                    node.get_estimated_runtime(),
                )
            except Exception as e:
                log.debug(
                    "Generating code for node %s with estimated runtime 0.0",
                    node.get_name(),
                )

            self.enter_context(node)

            if not isinstance(node, NopKernelSchedulerNode):
                device = node.get_device()
                if (
                    device != self.current_device
                    or node.is_extern()
                    or node.is_template()
                ):
                    self.flush()
                if device != self.current_device:
                    if device.type == "cuda":
                        if self.current_device and self.current_device.type == "cuda":
                            V.graph.wrapper_code.codegen_device_guard_exit()
                        assert device.index is not None, "device should have an index"
                        V.graph.wrapper_code.codegen_device_guard_enter(device.index)
                    elif self.current_device and self.current_device.type == "cuda":
                        V.graph.wrapper_code.codegen_device_guard_exit()
                    self.current_device = device

            self.buffer_names_to_free.update(node.last_usage)

            if node.is_template():
                node, *epilogue = node.get_nodes()
                self.get_backend(device).codegen_template(node, epilogue)  # type: ignore[possibly-undefined]
            elif node.is_extern():
                self.codegen_extern_call(node)
            elif node.is_foreach():
                self.get_backend(device).codegen_foreach(node)  # type: ignore[possibly-undefined]
            elif isinstance(node, (FusedSchedulerNode, SchedulerNode)):
                self.get_backend(device).codegen_nodes(node.get_nodes())  # type: ignore[possibly-undefined]
            else:
                assert isinstance(node, NopKernelSchedulerNode)
                node.allocate()

            if config.debug_check_inf_and_nan:
                V.graph.wrapper_code.generate_inf_and_nan_checker(node)

            if config.triton.debug_sync_kernel:
                self.get_backend(device).codegen_sync()  # type: ignore[possibly-undefined]

            self.available_buffer_names.update(node.get_names())

            if not isinstance(node, NopKernelSchedulerNode):
                device = node.get_device()
                if self.get_backend(device).ready_to_flush():
                    self.flush()

        if self.current_device and self.current_device.type == "cuda":
            # exit the outermost CUDA device guard. this is
            # important for nested indentation codegen-ing.
            V.graph.wrapper_code.codegen_device_guard_exit()

        self.flush()

    def is_unaligned_buffer(self, buf_name):
        if buf_name in V.graph.graph_inputs or buf_name in V.graph.constants:
            # all graph inputs or constants are assumed to be aligned
            return False
        node = self.name_to_node[buf_name]
        layout = node.node.get_layout()
        if isinstance(layout, ir.AliasedLayout):
            return not layout.maybe_guard_aligned()
        else:
            return False


class BaseScheduling:
    def can_fuse_vertical(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        """

        Check whether node1 and node2 can be vertically fused or not.

        """
        raise NotImplementedError()

    def can_fuse_horizontal(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        """

        Check whether node1 and node2 can be horizontally fused or not.

        """
        raise NotImplementedError()

    def fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
        """

        Fuse two nodes

        """
        if node1.is_foreach() or node2.is_foreach():
            return ForeachKernelSchedulerNode.fuse(node1, node2)
        else:
            return FusedSchedulerNode.fuse(node1, node2)

    def group_fn(self, sizes):
        """

        Process the iteration sizes in case a transformation needs to be applied.

        """
        raise NotImplementedError()

    def codegen_template(

        self, template_node: SchedulerNode, epilogue_nodes: List[SchedulerNode]

    ):
        """

        Given a template node, generate a kernel.



        This function is only available for triton now. If the third-party backend behaves as a sub-class

        of TritonScheduling, it can override it or reuse it.

        """
        raise NotImplementedError()

    def codegen_nodes(self, nodes: List[SchedulerNode]):
        """

        Generate a kernel given a list of pre-fused nodes.

        """
        raise NotImplementedError()

    def codegen_sync(self):
        """

        Generate synchronization code for the kernel. This method depends on the hardware characteristics.

        """
        raise NotImplementedError()

    def ready_to_flush(self) -> bool:
        """

        Check whether the backend is requesting the scheduler to flush the generated kernel.

        If not supported, please return False.

        """
        return False

    def flush(self):
        """

        Flush the generated kernel and python wrapper code to the source code file.

        """
        raise NotImplementedError()

    def benchmark_fused_nodes(self, nodes):
        """

        Benchmark fused list of nodes and return the execution time

        in milliseconds on randomly generated inputs.

        """
        raise NotImplementedError()