Spaces:
Running
Running
File size: 39,727 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
import functools
import hashlib
import itertools
import json
import logging
import os
import os.path
import re
import tempfile
from dataclasses import dataclass, field
from importlib import __import__
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from weakref import WeakSet
log = logging.getLogger(__name__)
# This is a synthetic logger which doesn't correspond to an actual logger,
# but handles all of our "tracing" logging, which is structured and doesn't go
# to stderr but always goes to a dedicated log file. We don't put these
# loggers in the classic module hierarchy, because we don't want a suppression
# of logs to also cause a trace to get suppressed (traces typically are not
# collected, unless we are in prod, in which case they always are collected.)
#
# TODO: Maybe we should allow for some sub-hierarchy so you can control which
# traces you want to collect, for performance reasons.
#
# See https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
trace_log = logging.getLogger("torch.__trace")
DEFAULT_LOG_LEVEL = logging.WARNING
LOG_ENV_VAR = "TORCH_LOGS"
LOG_OUT_ENV_VAR = "TORCH_LOGS_OUT"
LOG_FORMAT_ENV_VAR = "TORCH_LOGS_FORMAT"
TRACE_ENV_VAR = "TORCH_TRACE"
@dataclass
class LogRegistry:
# shorthand name to log qualified name
# Note: this only contains loggers registered
# from register_log
# e.g. "dynamo" -> "torch._dynamo"
log_alias_to_log_qnames: Dict[str, List[str]] = field(default_factory=dict)
# artifact logger qualified names,
# this is populated lazily, as calls to getArtifactLogger
# currently formatted as <module>.__<artifact_name>
# e.g. "torch._dynamo.convert_frame.__guards"
artifact_log_qnames: Set[str] = field(default_factory=set)
# child logs of registered logs if specified via open
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
# these need to be tracked so their levels can be reset properly
# e.g. "torch._dynamo.output_graph"
child_log_qnames: Set[str] = field(default_factory=set)
# artifact names, populated by register_artifact
# e.g. "guards"
artifact_names: Set[str] = field(default_factory=set)
# Artifacts that should be visible by default in the error message
visible_artifacts: Set[str] = field(default_factory=set)
# A short description of each artifact
artifact_descriptions: Dict[str, str] = field(default_factory=dict)
# artifacts which are not displayed unless explicitly named in the
# settings. Ex. output_code is NOT displayed even if the inductor
# log level is set to DEBUG. It must be explicitly named in the settings
off_by_default_artifact_names: Set[str] = field(default_factory=set)
# logging format string for artifacts
artifact_log_formatters: Dict[str, logging.Formatter] = field(default_factory=dict)
def is_artifact(self, name):
return name in self.artifact_names
def is_log(self, alias):
return alias in self.log_alias_to_log_qnames
# register a log with an alias
def register_log(self, alias, log_qnames: Union[str, List[str]]):
if isinstance(log_qnames, str):
log_qnames = [log_qnames]
self.log_alias_to_log_qnames[alias] = log_qnames
# register an artifact name
def register_artifact_name(
self, name, description, visible, off_by_default, log_format
):
self.artifact_names.add(name)
if visible:
self.visible_artifacts.add(name)
self.artifact_descriptions[name] = description
# if off by default, don't enable it
# when log_name's log_level is set to DEBUG
if off_by_default:
self.off_by_default_artifact_names.add(name)
if log_format is not None:
self.artifact_log_formatters[name] = logging.Formatter(log_format)
# register the qualified name of an artifact log
# this is needed to know which logs need to be reset
# whenever the log_state is changed
def register_artifact_log(self, artifact_log_qname):
self.artifact_log_qnames.add(artifact_log_qname)
def register_child_log(self, log_qname):
self.child_log_qnames.add(log_qname)
# flattens all the qnames together (TODO: consider memoizing?)
def get_log_qnames(self) -> Set[str]:
return {
qname
for qnames in self.log_alias_to_log_qnames.values()
for qname in qnames
}
def get_artifact_log_qnames(self):
return set(self.artifact_log_qnames)
def get_child_log_qnames(self):
return set(self.child_log_qnames)
def is_off_by_default(self, artifact_qname):
return artifact_qname in self.off_by_default_artifact_names
@dataclass
class LogState:
# qualified log names -> currently set log level
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
# the set of currently enabled artifacts
artifact_names: Set[str] = field(default_factory=set)
def enable_artifact(self, artifact_name):
self.artifact_names.add(artifact_name)
def is_artifact_enabled(self, name):
return name in self.artifact_names
def enable_log(self, log_qnames, log_level):
if isinstance(log_qnames, str):
log_qnames = [log_qnames]
for log_qname in log_qnames:
self.log_qname_to_level[log_qname] = log_level
def get_log_level_pairs(self):
"""Returns all qualified module names for which the user requested
explicit logging settings.
.. warning:
This function used to return all loggers, regardless of whether
or not the user specified them or not; it now only returns logs
which were explicitly mentioned by the user (and torch, which
always is implicitly requested when we initialize our logging
subsystem.)
"""
return self.log_qname_to_level.items()
def clear(self):
self.log_qname_to_level.clear()
self.artifact_names.clear()
log_registry = LogRegistry()
log_state = LogState()
# sample usage: torch._logging.set_logs(**torch._logging.DEFAULT_LOGGING)
DEFAULT_LOGGING = {
"dynamo": logging.DEBUG,
"aot": logging.DEBUG,
"inductor": logging.DEBUG,
"ddp_graphs": True,
"graph_breaks": True,
"guards": True,
"recompiles": True,
"dynamic": logging.INFO,
}
def set_logs(
*,
all: Optional[int] = None,
dynamo: Optional[int] = None,
aot: Optional[int] = None,
autograd: Optional[int] = None,
dynamic: Optional[int] = None,
inductor: Optional[int] = None,
distributed: Optional[int] = None,
dist_c10d: Optional[int] = None,
dist_ddp: Optional[int] = None,
dist_fsdp: Optional[int] = None,
onnx: Optional[int] = None,
bytecode: bool = False,
aot_graphs: bool = False,
aot_joint_graph: bool = False,
ddp_graphs: bool = False,
graph: bool = False,
graph_code: bool = False,
graph_breaks: bool = False,
graph_sizes: bool = False,
guards: bool = False,
recompiles: bool = False,
recompiles_verbose: bool = False,
trace_source: bool = False,
trace_call: bool = False,
output_code: bool = False,
schedule: bool = False,
perf_hints: bool = False,
post_grad_graphs: bool = False,
onnx_diagnostics: bool = False,
fusion: bool = False,
overlap: bool = False,
export: Optional[int] = None,
modules: Optional[Dict[str, Union[int, bool]]] = None,
cudagraphs: bool = False,
sym_node: bool = False,
):
"""
Sets the log level for individual components and toggles individual log
artifact types.
.. warning:: This feature is a prototype and may have compatibility
breaking changes in the future.
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
over this function, so if it was set, this function does nothing.
A component is a set of related features in PyTorch. All of the log
messages emitted from a given component have their own log levels. If the
log level of a particular message has priority greater than or equal to its
component's log level setting, it is emitted. Otherwise, it is suppressed.
This allows you to, for instance, silence large groups of log messages that
are not relevant to you and increase verbosity of logs for components that
are relevant. The expected log level values, ordered from highest to lowest
priority, are:
* ``logging.CRITICAL``
* ``logging.ERROR``
* ``logging.WARNING``
* ``logging.INFO``
* ``logging.DEBUG``
* ``logging.NOTSET``
See documentation for the Python ``logging`` module for more information on
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
An artifact is a particular type of log message. Each artifact is assigned
to a parent component. A component can emit many different kinds of
artifacts. In general, an artifact is emitted if either its corresponding
setting in the argument list below is turned on or if its parent component
is set to a log level less than or equal to the log level of the artifact.
Keyword args:
all (:class:`Optional[int]`):
The default log level for all components. Default: ``logging.WARN``
dynamo (:class:`Optional[int]`):
The log level for the TorchDynamo component. Default: ``logging.WARN``
aot (:class:`Optional[int]`):
The log level for the AOTAutograd component. Default: ``logging.WARN``
autograd (:class:`Optional[int]`):
The log level for autograd. Default: ``logging.WARN``
inductor (:class:`Optional[int]`):
The log level for the TorchInductor component. Default: ``logging.WARN``
dynamic (:class:`Optional[int]`):
The log level for dynamic shapes. Default: ``logging.WARN``
distributed (:class:`Optional[int]`):
Whether to log c10d communication operations and other debug info from PyTorch Distributed components.
Default: ``logging.WARN``
dist_c10d (:class:`Optional[int]`):
Whether to log c10d communication operations related debug info in PyTorch Distributed components.
Default: ``logging.WARN``
dist_ddp (:class:`Optional[int]`):
Whether to log debug info related to ``DistributedDataParallel``(DDP) from PyTorch Distributed components.
Default: ``logging.WARN``
dist_fsdp (:class:`Optional[int]`):
Whether to log debug info related to ``FullyShardedDataParallel``(FSDP) in PyTorch Distributed components.
Default: ``logging.WARN``
onnx (:class:`Optional[int]`):
The log level for the ONNX exporter component. Default: ``logging.WARN``
bytecode (:class:`bool`):
Whether to emit the original and generated bytecode from TorchDynamo.
Default: ``False``
aot_graphs (:class:`bool`):
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
aot_joint_graph (:class:`bool`):
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
inductor (:class:`Optional[int]`):
Whether to log information from inductor cudagraphs. Default: ``logging.WARN``
ddp_graphs (:class:`bool`):
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
graph (:class:`bool`):
Whether to emit the graph captured by TorchDynamo in tabular format.
Default: ``False``
graph_code (:class:`bool`):
Whether to emit the python source of the graph captured by TorchDynamo.
Default: ``False``
graph_breaks (:class:`bool`):
Whether to emit the graph breaks encountered by TorchDynamo.
Default: ``False``
graph_sizes (:class:`bool`):
Whether to emit tensor sizes of the graph captured by TorchDynamo.
Default: ``False``
guards (:class:`bool`):
Whether to emit the guards generated by TorchDynamo for each compiled
function. Default: ``False``
recompiles (:class:`bool`):
Whether to emit a guard failure reason and message every time
TorchDynamo recompiles a function. Default: ``False``
recompiles_verbose (:class:`bool`):
Whether to emit all guard failure reasons when TorchDynamo recompiles
a function, even those that are not actually run. Default: ``False``
trace_source (:class:`bool`):
Whether to emit when TorchDynamo begins tracing a new line. Default: ``False``
trace_call (:class:`bool`):
Whether to emit detailed line location when TorchDynamo creates an FX node
corresponding to function call. Python 3.11+ only. Default: ``False``
output_code (:class:`bool`):
Whether to emit the TorchInductor output code. Default: ``False``
schedule (:class:`bool`):
Whether to emit the TorchInductor schedule. Default: ``False``
perf_hints (:class:`bool`):
Whether to emit the TorchInductor perf hints. Default: ``False``
post_grad_graphs (:class:`bool`):
Whether to emit the graphs generated by after post grad passes. Default: ``False``
onnx_diagnostics (:class:`bool`):
Whether to emit the ONNX exporter diagnostics in logging. Default: ``False``
fusion (:class:`bool`):
Whether to emit detailed Inductor fusion decisions. Default: ``False``
overlap (:class:`bool`):
Whether to emit detailed Inductor compute/comm overlap decisions. Default: ``False``
sym_node (:class:`bool`):
Whether to emit debug info for various SymNode opterations. Default: ``False``
export (:class:`Optional[int]`):
The log level for export. Default: ``logging.WARN``
modules (dict):
This argument provides an alternate way to specify the above log
component and artifact settings, in the format of a keyword args
dictionary given as a single argument. There are two cases
where this is useful (1) if a new log component or artifact has
been registered but a keyword argument for it has not been added
to this function and (2) if the log level for an unregistered module
needs to be set. This can be done by providing the fully-qualified module
name as the key, with the log level as the value. Default: ``None``
Example::
>>> # xdoctest: +SKIP
>>> import logging
# The following changes the "dynamo" component to emit DEBUG-level
# logs, and to emit "graph_code" artifacts.
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
# The following enables the logs for a different module
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
"""
# ignore if env var is set
if LOG_ENV_VAR in os.environ:
log.warning(
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
)
return
log_state.clear()
modules = modules or {}
def _set_logs(**kwargs):
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
if val is None:
continue
if log_registry.is_artifact(alias):
if not isinstance(val, bool):
raise ValueError(
f"Expected bool to enable artifact {alias}, received {val}"
)
if val:
log_state.enable_artifact(alias)
elif log_registry.is_log(alias) or alias in log_registry.child_log_qnames:
if val not in logging._levelToName:
raise ValueError(
f"Unrecognized log level for log {alias}: {val}, valid level values "
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
)
log_state.enable_log(
log_registry.log_alias_to_log_qnames.get(alias, alias), val
)
else:
raise ValueError(
f"Unrecognized log or artifact name passed to set_logs: {alias}"
)
_init_logs()
_set_logs(
torch=all,
dynamo=dynamo,
aot=aot,
autograd=autograd,
inductor=inductor,
dynamic=dynamic,
bytecode=bytecode,
aot_graphs=aot_graphs,
aot_joint_graph=aot_joint_graph,
ddp_graphs=ddp_graphs,
distributed=distributed,
dist_c10d=dist_c10d,
dist_ddp=dist_ddp,
dist_fsdp=dist_fsdp,
graph=graph,
graph_code=graph_code,
graph_breaks=graph_breaks,
graph_sizes=graph_sizes,
guards=guards,
recompiles=recompiles,
recompiles_verbose=recompiles_verbose,
trace_source=trace_source,
trace_call=trace_call,
output_code=output_code,
schedule=schedule,
perf_hints=perf_hints,
post_grad_graphs=post_grad_graphs,
onnx=onnx,
onnx_diagnostics=onnx_diagnostics,
fusion=fusion,
overlap=overlap,
sym_node=sym_node,
export=export,
cudagraphs=cudagraphs,
)
def get_loggers():
"""
Returns: a list of all registered loggers
"""
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
def register_log(setting_name, log_name):
"""
Enables a log to be controlled by the env var and user API with the setting_name
Args:
setting_name: the shorthand name used in the env var and user API
log_name: the log name that the setting_name is associated with
"""
log_registry.register_log(setting_name, log_name)
def register_artifact(
setting_name, description, visible=False, off_by_default=False, log_format=None
):
"""
Enables an artifact to be controlled by the env var and user API with name
Args:
setting_name: the shorthand name used in the env var and user API
description: A description of what this outputs
visible: Whether it gets suggested to users by default
off_by_default: whether this artifact should be logged when the ancestor loggers
are enabled at level DEBUG
"""
log_registry.register_artifact_name(
setting_name, description, visible, off_by_default, log_format
)
def getArtifactLogger(module_qname, artifact_name):
if artifact_name not in log_registry.artifact_names:
raise ValueError(
f"Artifact name: {repr(artifact_name)} not registered,"
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
)
qname = module_qname + f".__{artifact_name}"
log = logging.getLogger(qname)
log.artifact_name = artifact_name # type: ignore[attr-defined]
log_registry.register_artifact_log(qname)
configure_artifact_log(log)
return log
INCR_VERBOSITY_CHAR = "+"
DECR_VERBOSITY_CHAR = "-"
VERBOSITY_REGEX = (
"("
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
+ "?)"
)
def configure_artifact_log(log):
# If the artifact is off by default, then it should only be logged when explicitly
# enabled; set propagate to False so that this artifact is not propagated
# to its ancestor logger
if log_registry.is_off_by_default(log.artifact_name):
log.propagate = False
# enable artifact logging when explicitly enabled
if log_state.is_artifact_enabled(log.artifact_name):
log.setLevel(logging.DEBUG)
log.propagate = True
# match a comma separated list of loggable names (whitespace allowed after commas)
def _gen_settings_regex():
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
def _validate_settings(settings):
return re.fullmatch(_gen_settings_regex(), settings) is not None
def help_message(verbose=False):
def pad_to(s, length=30):
assert len(s) <= length
return s + " " * (length - len(s))
if verbose:
printed_artifacts = log_registry.artifact_names
else:
printed_artifacts = log_registry.visible_artifacts
if verbose:
heading = "All registered names"
else:
heading = "Visible registered names (use TORCH_LOGS='+help' for full list)"
lines = (
["all"]
+ sorted(log_registry.log_alias_to_log_qnames.keys())
+ sorted(
[
f"{pad_to(name)}\t{log_registry.artifact_descriptions[name]}"
for name in printed_artifacts
]
)
)
setting_info = " " + "\n ".join(lines)
examples = """
Examples:
TORCH_LOGS="+dynamo,aot" will set the log level of TorchDynamo to
logging.DEBUG and AOT to logging.INFO
TORCH_LOGS="-dynamo,+inductor" will set the log level of TorchDynamo to
logging.ERROR and TorchInductor to logging.DEBUG
TORCH_LOGS="aot_graphs" will enable the aot_graphs artifact
TORCH_LOGS="+dynamo,schedule" will enable set the log level of TorchDynamo
to logging.DEBUG and enable the schedule artifact
TORCH_LOGS="+some.random.module,schedule" will set the log level of
some.random.module to logging.DEBUG and enable the schedule artifact
TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" or any provided format
string will set the output format
Valid keys are "levelname", "message", "pathname", "levelno", "lineno",
"filename" and "name".
TORCH_LOGS_OUT=/tmp/output.txt will output the logs to /tmp/output.txt as
well. This is useful when the output is long.
""" # flake8: noqa: B950
msg = f"""
TORCH_LOGS Info
{examples}
{heading}
{setting_info}
"""
return msg
def _invalid_settings_err_msg(settings, verbose=False):
valid_settings = ", ".join(
["all"]
+ list(log_registry.log_alias_to_log_qnames.keys())
+ list(log_registry.artifact_names)
)
msg = f"""
Invalid log settings: {settings}, must be a comma separated list of fully
qualified module names, registered log names or registered artifact names.
For more info on various settings, try TORCH_LOGS="help"
Valid settings:
{valid_settings}
"""
return msg
@functools.lru_cache
def _parse_log_settings(settings):
if settings == "":
return dict()
if settings == "help":
raise ValueError(help_message(verbose=False))
elif settings == "+help":
raise ValueError(help_message(verbose=True))
if not _validate_settings(settings):
raise ValueError(_invalid_settings_err_msg(settings))
settings = re.sub(r"\s+", "", settings)
log_names = settings.split(",")
def get_name_level_pair(name):
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
if name[0] == INCR_VERBOSITY_CHAR:
level = logging.DEBUG
elif name[0] == DECR_VERBOSITY_CHAR:
level = logging.ERROR
else:
level = logging.INFO
return clean_name, level
log_state = LogState()
for name in log_names:
name, level = get_name_level_pair(name)
if name == "all":
name = "torch"
if log_registry.is_log(name):
assert level is not None
log_qnames = log_registry.log_alias_to_log_qnames[name]
log_state.enable_log(log_qnames, level)
elif log_registry.is_artifact(name):
log_state.enable_artifact(name)
elif _is_valid_module(name):
if not _has_registered_parent(name):
log_registry.register_log(name, name)
else:
log_registry.register_child_log(name)
log_state.enable_log(name, level)
else:
raise ValueError(_invalid_settings_err_msg(settings))
return log_state
def _is_valid_module(qname):
try:
__import__(qname)
return True
except ImportError:
return False
def _update_log_state_from_env():
global log_state
log_setting = os.environ.get(LOG_ENV_VAR, None)
if log_setting is not None:
log_state = _parse_log_settings(log_setting)
def _has_registered_parent(log_qname):
cur_log = logging.getLogger(log_qname)
registered_log_qnames = log_registry.get_log_qnames()
while cur_log.parent:
if cur_log.name in registered_log_qnames:
return True
cur_log = cur_log.parent
return False
# apply custom formats to artifacts when necessary
class TorchLogsFormatter(logging.Formatter):
def __init__(self, *, trace: bool = False):
super().__init__()
self._is_trace = trace
def format(self, record):
artifact_name = getattr(logging.getLogger(record.name), "artifact_name", None)
if artifact_name is not None:
artifact_formatter = log_registry.artifact_log_formatters.get(
artifact_name, None
)
if artifact_formatter is not None:
return artifact_formatter.format(record)
record.message = record.getMessage()
record.asctime = self.formatTime(record, "%m%d %H:%M:%S")
# exception handling - copied from logging.Formatter.format
s = record.message
if record.exc_info:
# Cache the traceback text to avoid converting it multiple times
# (it's constant anyway)
if not record.exc_text:
record.exc_text = self.formatException(record.exc_info)
if record.exc_text:
if s[-1:] != "\n":
s = s + "\n"
s = s + record.exc_text
if record.stack_info:
if s[-1:] != "\n":
s = s + "\n"
s = s + self.formatStack(record.stack_info)
record.rankprefix = ""
if not self._is_trace and dist.is_available() and dist.is_initialized():
record.rankprefix = f"[rank{dist.get_rank()}]:"
record.traceid = ""
if (
not self._is_trace
and (trace_id := torch._guards.CompileContext.current_trace_id())
is not None
):
record.traceid = f" [{trace_id}]"
glog_level_to_abbr = {
"DEBUG": "V", # V is for VERBOSE in glog
"INFO": "I",
"WARNING": "W",
"ERROR": "E",
"CRITICAL": "C",
}
shortlevel = glog_level_to_abbr.get(record.levelname, record.levelname)
record.artifactprefix = ""
if artifact_name is not None:
record.artifactprefix = f" [__{artifact_name}]"
prefix = (
f"{record.rankprefix}{shortlevel}{record.asctime}.{int(record.msecs*1000):06d} {record.thread} "
f"{os.path.relpath(record.pathname, os.path.dirname(os.path.dirname(torch.__file__)))}:"
f"{record.lineno}]{record.traceid}{record.artifactprefix}"
)
if self._is_trace:
assert s == ""
r = f"{prefix} {json.dumps(record.metadata)}"
if record.payload is not None:
r += "".join(f"\n\t{l}" for l in record.payload.split("\n"))
return r
else:
lines = s.split("\n")
return "\n".join(f"{prefix} {l}" for l in lines)
def _default_formatter():
fmt = os.environ.get(LOG_FORMAT_ENV_VAR, None)
if fmt is None:
return TorchLogsFormatter()
else:
if fmt in ("short", "basic"):
fmt = logging.BASIC_FORMAT
return logging.Formatter(fmt)
DEFAULT_FORMATTER = _default_formatter()
def _setup_handlers(create_handler_fn, log):
debug_handler = _track_handler(create_handler_fn())
debug_handler.setFormatter(DEFAULT_FORMATTER)
debug_handler.setLevel(logging.DEBUG)
log.addHandler(debug_handler)
handlers = WeakSet() # type: ignore[var-annotated]
# mark handlers that we've created
# so we don't modify user handlers
def _track_handler(handler):
handlers.add(handler)
return handler
def _is_torch_handler(handler):
return handler in handlers
# clears all torch handlers on specified loggers
def _clear_handlers(log):
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
for handler in to_remove:
log.removeHandler(handler)
def _reset_logs():
# reset all registered logs
for log_qname in log_registry.get_log_qnames():
log = logging.getLogger(log_qname)
log.setLevel(logging.WARNING)
log.propagate = False
_clear_handlers(log)
# reset all artifact and child logs
for artifact_log_qname in itertools.chain(
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
):
log = logging.getLogger(artifact_log_qname)
log.setLevel(logging.NOTSET)
log.propagate = True
trace_log.propagate = False
_clear_handlers(trace_log)
def _get_log_state():
return log_state
def _set_log_state(state):
global log_state
log_state = state
def _init_logs(log_file_name=None):
_reset_logs()
_update_log_state_from_env()
out = os.environ.get(LOG_OUT_ENV_VAR, None)
if out is not None:
log_file_name = out
# First, reset all known (registered) loggers to NOTSET, so that they
# respect their parent log level
for log_qname in log_registry.get_log_qnames():
# But not the top level torch level: this defaults to WARNING so
# that our log messages don't leak to the lower levels
if log_qname == "torch":
continue
log = logging.getLogger(log_qname)
log.setLevel(logging.NOTSET)
# Now, for all loggers which the user requested to have non-standard
# logging behavior, modify their log levels
for log_qname, level in log_state.get_log_level_pairs():
log = logging.getLogger(log_qname)
log.setLevel(level)
# Finally, setup handlers for all registered loggers
for log_qname in log_registry.get_log_qnames():
log = logging.getLogger(log_qname)
_setup_handlers(
logging.StreamHandler,
log,
)
if log_file_name is not None:
_setup_handlers(
lambda: logging.FileHandler(log_file_name),
log,
)
# configure artifact loggers, note: this must happen last
# since the levels of ancestor loggers are taken into account
for artifact_log_qname in log_registry.get_artifact_log_qnames():
log = logging.getLogger(artifact_log_qname)
configure_artifact_log(log)
# Setup handler for the special trace_log, with different default
# configuration
trace_dir_name = os.environ.get(TRACE_ENV_VAR, None)
# This handler may remove itself if trace_dir_name is None and we are not
# actually in an FB environment. This allows us to defer actually
# initializing it until we actually need to log anything. This is
# important because JK initializes a C++ singleton, which will pork our
# process if we subsequently fork.
handler = LazyTraceHandler(trace_dir_name)
# This log is ALWAYS at debug level. We will additionally test if there
# are any handlers before deciding to actually call logging on this. Do
# not manually call
trace_log.setLevel(logging.DEBUG)
trace_log_handler = _track_handler(handler)
trace_log_handler.setFormatter(TorchLogsFormatter(trace=True))
trace_log.addHandler(trace_log_handler)
class LazyTraceHandler(logging.StreamHandler):
"""Like FileHandler, but the file is allocated lazily only upon the first log message"""
def __init__(self, root_dir: Optional[str]):
# This is implemented in the same way that delay is implemented on
# FileHandler
self.root_dir = root_dir
logging.Handler.__init__(self)
self.stream = None
self._builtin_open = open
# cloned from FileHandler in cpython
def close(self):
self.acquire()
try:
try:
if self.stream:
try:
self.flush()
finally:
stream = self.stream
self.stream = None
if hasattr(stream, "close"):
stream.close()
finally:
# Issue #19523: call unconditionally to
# prevent a handler leak when delay is set
# Also see Issue #42378: we also rely on
# self._closed being set to True there
logging.StreamHandler.close(self)
finally:
self.release()
def emit(self, record):
if self.stream is None:
ok = False
if self.root_dir is None:
TRACE_LOG_DIR = "/logs"
open_func = self._builtin_open
import torch.version as torch_version
if hasattr(torch_version, "git_version"):
log.info("LazyTraceHandler: disabled because not fbcode")
elif not torch._utils_internal.justknobs_check("pytorch/trace:enable"):
log.info(
"LazyTraceHandler: disabled because justknobs_check('pytorch/trace:enable') returned False"
)
elif not os.path.exists(TRACE_LOG_DIR):
log.info(
"LazyTraceHandler: disabled because %s does not exist",
TRACE_LOG_DIR,
)
elif not os.access(TRACE_LOG_DIR, os.W_OK):
log.info(
"LazyTraceHandler: disabled because %s is not writeable",
TRACE_LOG_DIR,
)
else:
self.root_dir = TRACE_LOG_DIR
if self.root_dir is not None:
os.makedirs(self.root_dir, exist_ok=True)
ranksuffix = ""
if dist.is_available() and dist.is_initialized():
ranksuffix = f"rank_{dist.get_rank()}_"
self.stream = tempfile.NamedTemporaryFile(
mode="w+",
suffix=".log",
prefix=f"dedicated_log_torch_trace_{ranksuffix}",
dir=self.root_dir,
delete=False,
)
log.info("LazyTraceHandler: logging to %s", self.stream.name)
else:
# We go poof, remove and no-op
trace_log.removeHandler(self)
return
if self.stream:
super().emit(record)
@functools.lru_cache(None)
def warning_once(logger_obj, *args, **kwargs):
"""
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
another type of cache that includes the caller frame information in the hashing function.
"""
logger_obj.warning(*args, **kwargs)
class LazyString:
def __init__(self, func, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
def __str__(self):
return self.func(*self.args, **self.kwargs)
def trace_structured(
name: str,
# NB: metadata expected to be dict so adding more info is forward compatible
# Tuple[str, int] is a special case for string interning
metadata_fn: Callable[[], Union[Dict[str, Any], Tuple[str, int]]] = dict,
*,
payload_fn: Callable[[], Optional[Union[str, object]]] = lambda: None,
suppress_context: bool = False,
):
"""
metadata is an arbitrary JSON compatible struct, but it's expected to not be
too long (e.g., less than 1MB)
payload is an arbitrary string, which can be arbitrarily long (but expected to have
newlines so no lines are too long)
"""
assert "name" not in ["rank", "frame_id", "frame_compile_id", "attempt"]
assert callable(
metadata_fn
), f"metadata_fn should be callable, but got {type(metadata_fn)}"
assert callable(
payload_fn
), f"payload_fn should be callable, but got {type(payload_fn)}"
# trace_log never propagates and is ALWAYS DEBUG, so also check that there
# are handlers instead of checking the log level
if trace_log.handlers:
record: Dict[str, object] = {}
record[name] = metadata_fn()
if not suppress_context:
# TODO: Actually, the rank probably should just be emitted once at
# the top, and not repeatedly spammed in all the logs, since it
# never changes and we assume no interleaving
if dist.is_available() and dist.is_initialized():
record["rank"] = dist.get_rank()
if (
trace_id := torch._guards.CompileContext.current_trace_id()
) is not None:
record["frame_id"] = trace_id.compile_id.frame_id
record["frame_compile_id"] = trace_id.compile_id.frame_compile_id
record["attempt"] = trace_id.attempt
payload = payload_fn()
if payload is not None:
if not isinstance(payload, str):
if isinstance(payload, list):
# special case to look better
payload = "[\n" + ",\n".join(json.dumps(i) for i in payload) + "\n]"
else:
# force newlines so we are unlikely to overflow line limit
payload = json.dumps(payload, indent=0)
h = hashlib.md5()
h.update(payload.encode("utf-8"))
record["has_payload"] = h.hexdigest()
trace_log.debug(
"", extra={"metadata": record, "payload": payload}, stacklevel=2
)
import torch._guards
import torch._utils_internal
import torch.distributed as dist
|