Spaces:
Running
Running
File size: 47,947 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
import contextlib
import warnings
import weakref
from typing import ContextManager, Dict, List, Optional, Tuple, TYPE_CHECKING
import torch
from torch._C._functorch import (
_add_batch_dim,
_unwrap_functional_tensor,
_wrap_functional_tensor,
current_level,
get_unwrapped,
is_batchedtensor,
is_functorch_wrapped_tensor,
is_gradtrackingtensor,
maybe_get_bdim,
maybe_get_level,
peek_interpreter_stack,
TransformType,
)
from torch._guards import Source
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._python_dispatch import (
is_traceable_wrapper_subclass,
transform_subclass,
)
from torch.utils.weak import WeakIdRef
if TYPE_CHECKING:
# Import the following modules during type checking to enable code intelligence features,
# Do not import unconditionally, as they import sympy and importing sympy is very slow
from torch.fx.experimental.symbolic_shapes import SymbolicContext
DimList = List
def safe_is_leaf(t):
try:
return t.is_leaf
except RuntimeError:
# inference mode can trigger this
return False
def safe_grad(t):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
return t.grad
def assert_eq(a, b):
assert a == b, f"{a} != {b}"
def assert_metadata_eq(assert_eq, m1, m2, *, skip_symbolic=False):
def go(m1, m2):
assert_eq(m1.dtype, m2.dtype)
if not skip_symbolic:
assert_eq(m1.shape, m2.shape)
assert_eq(m1.requires_grad, m2.requires_grad)
assert_eq(m1.is_leaf, m2.is_leaf)
assert_eq(m1.grad_fn is None, m2.grad_fn is None)
assert_eq(m1.is_sparse, m2.is_sparse)
assert_eq(m1.is_inference(), m2.is_inference())
assert_eq(m1.is_conj(), m2.is_conj())
assert_eq(m1.is_neg(), m2.is_neg())
assert_eq(safe_grad(m1) is not None, safe_grad(m2) is not None)
if safe_grad(m1) is not None:
go(safe_grad(m1), safe_grad(m2))
if m1.is_sparse:
assert_eq(m1.dense_dim(), m2.dense_dim())
assert_eq(m1.sparse_dim(), m2.sparse_dim())
assert_eq(m1.is_coalesced(), m2.is_coalesced())
else:
if not skip_symbolic:
assert_eq(m1.stride(), m2.stride())
assert_eq(m1.storage_offset(), m2.storage_offset())
assert_eq(m1._is_view(), m2._is_view())
if m1._is_view():
go(m1._base, m2._base)
# TODO: test if is resizable (no direct query for this atm)
# TODO: audit AutogradMeta to see if it matches
# TODO: test forward AD
return go(m1, m2)
def is_sparse_coo(t):
return isinstance(t, torch.Tensor) and t.layout is torch.sparse_coo
def is_sparse_compressed(t):
return isinstance(t, torch.Tensor) and t.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}
def is_sparse_any(t):
return is_sparse_coo(t) or is_sparse_compressed(t)
# This is a class for converting multiple tensors into meta tensors which
# share the same view/storage structure. The operation model is you allocate
# one of these, and then call it repeatedly on all the tensors you want to
# convert. It's important to use the same object for tensors you want to
# share storage because this is how we correlate shared storages to the same
# meta storages. This class will hold weak references to cached tenosrs
# and tensor storages.
class MetaConverter:
def __init__(self):
self.storage_memo = {}
self.tensor_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
self.maybe_storages_to_delete = []
self.check_expired_frequency = 128
self.check_expired_count = 0
self.hit = 0
self.miss = 0
self.del_hook = None
self.arg_cnt = 0
def successful(self):
return self.hit > 0 and self.miss == 0
def check_for_expired_weak_storages(self):
new_li = []
stor_to_delete = []
for obj in self.maybe_storages_to_delete:
if not obj.expired():
new_li.append(obj)
else:
stor_to_delete.append(obj)
for obj in stor_to_delete:
self.storage_memo.pop(obj, None)
self.maybe_storages_to_delete = new_li
# if for some reason we have aquired many storages which have not expired
# even though a tensor with their storage has expired (aliasing or otherwise)
# check for expired storages less often so as to bound the amount of work we
# do checking for expired storages
self.check_expired_frequency = max(
self.check_expired_frequency, len(self.maybe_storages_to_delete)
)
def get_tensor_memo(self, t):
return self.tensor_memo.get(WeakIdRef(t), None)
def set_tensor_memo(self, t, v):
# hold a weak ref to self, otherwise it will be kept alive
# by the del_ten closure
self_weak_ref = weakref.ref(self)
if is_sparse_any(t) or t.is_mkldnn or is_functorch_wrapped_tensor(t):
weak_st = None
else:
weak_st = StorageWeakRef(t._typed_storage())
tensor_ref_key = WeakIdRef(t)
def del_ten():
# tensor outlives the converter
self_ref = self_weak_ref()
if self_ref is None:
return
# on shutdown, tensor_ref_key may not be in memo
self_ref.tensor_memo.pop(tensor_ref_key, None)
if weak_st and weak_st.expired():
self_ref.storage_memo.pop(weak_st, None)
elif weak_st is not None:
# [expired-storages]
# NB: even though the tensor has died,
# the deallocation of its storage can take longer,
# even when the storage has no other uses/views.
# In this case, the StorageWeakRef object will be kept alive
# longer than it needs to be, however the storage itself
# will be deallocated. We retain the possibly dead storages
# and periodically check if any of them are expired and
# can be freed.
self_ref.maybe_storages_to_delete.append(weak_st)
weakref.finalize(t, del_ten)
self.tensor_memo[tensor_ref_key] = v
# NB: doesn't actually return a storage, because meta storage is
# not supported
def meta_storage(self, s, callback):
# NB: TypedStorage is freshly allocated and cannot be used as hash
# key index.
# Use a Weak Ref to s in order to not leak memory
swr = StorageWeakRef(s)
if swr not in self.storage_memo:
self.storage_memo[swr] = callback(
lambda: torch.empty(s.size(), dtype=torch.uint8, device="meta")
).untyped_storage()
return self.storage_memo[swr]
# This function assumes that it's possible to do the conversion
# NB: name here is used in a conventional way by Dynamo; it corresponds
# precisely to the Source.name() of the tensor we're fakeifying and
# corresponds to a valid Python expression. When we construct sub-names
# as part of this process, we will maintain this invariant! (Even though
# other users of this may not need it this property to be upheld.)
def meta_tensor(
self,
t,
shape_env=None,
callback=lambda t: t(),
source: Optional[Source] = None,
symbolic_context: Optional["SymbolicContext"] = None,
):
if source is None:
from torch._dynamo.source import ConstantSource
# TODO: make a dedicated UnknownSource for this?
source = ConstantSource(
f"__meta_utils_unknown_tensor{len(self.tensor_memo)}"
)
# This indicates you set no_dispatch() before calling into this
# function. This is an error: we may be creating fake tensors and
# will perform operations on them which need fake tensor mode to
# be active. You will segfault if you are in a no_dispatch() block.
assert not torch._C._dispatch_tls_local_exclude_set().has(
torch._C.DispatchKey.Python
)
arg_cnt = self.arg_cnt
self.arg_cnt += 1
# When we make as_strided calls, we end up generating a guard
# that the new as_strided tensor is in bounds for the old storage
# for the base (since as_strided calls can "bust" out of their
# bounding box.) This guard is unnecessary: if a user is able
# to provide us a tensor with the view base setup this way, we
# don't need to produce a guard, because the fact that they
# were able to produce the view base means its in bounds.
#
# Now, ordinarily, this guard would be harmless. However, the
# generated guard refers to variables bound on the base variable.
# At the moment, Dynamo doesn't actually guard on x._base, because
# according to Voz this results in a lot of spurious invalidations,
# and also if the user doesn't directly make use of _base, its
# pointless anyway (because programs should be parametric over
# whether or not the input tensor is a view or not--unless you're
# mutating the input, but that's a whole 'nother ballgame). So
# for expediency, we suppress these guards so we don't have to
# deal with this (yet, anyway.)
#
# NB: An old version of this code suppressed guards for ALL operations
# happening during meta conversion, not just as_strided calls.
# This is too aggressive: we do duck sizing and 0/1 simplification
# as we allocate variables, and we do need to register guards for
# these cases.
maybe_suppress = contextlib.nullcontext
if shape_env is not None:
maybe_suppress = shape_env.suppress_guards
def sym_sizes_strides_storage_offset(
t, src, symbolic_context=symbolic_context
) -> Tuple[Tuple[int, ...], Tuple[int, ...], int]:
if shape_env is not None:
fake_mode = torch._subclasses.fake_tensor.maybe_get_fake_mode(t)
if fake_mode is not None and fake_mode.shape_env is shape_env:
# Don't reallocate the sizes; the shape envs are the same,
# so reuse the old sizes/strides/etc
return (t.size(), t.stride(), t.storage_offset())
else:
return shape_env.create_symbolic_sizes_strides_storage_offset(
t,
src,
symbolic_context=symbolic_context,
)
else:
assert symbolic_context is None
return (t.size(), t.stride(), t.storage_offset())
def empty_create(inner_t, inner_src, symbolic_context=symbolic_context):
(
inner_sizes,
inner_strides,
inner_storage_offset,
) = sym_sizes_strides_storage_offset(inner_t, inner_src, symbolic_context)
return torch.empty_strided(
inner_sizes,
inner_strides,
dtype=inner_t.dtype,
device="meta",
)
# Creates a subclass instance with empty inner tensors according to the specified
# symbolic context.
def empty_create_subclass(
t,
outer_size,
outer_stride,
symbolic_context=symbolic_context,
callback=callback,
source=source,
):
from torch._dynamo.source import AttrSource
from torch.fx.experimental.symbolic_shapes import SubclassSymbolicContext
assert symbolic_context is None or isinstance(
symbolic_context, SubclassSymbolicContext
)
# Note: transform_subclass will use __tensor_unflatten__ to generate
# a fresh subclass wrapper with outer sizes / strides according to the
# outer symbolic context (passed in to this function). Inner size / stride
# / storage offset symbols are allocated according to the appropriate inner
# symbolic contexts, after which the checks in transform_subclass() will
# relate them to the outer metadata as possible.
return transform_subclass(
t,
lambda attr, inner_t: callback(
lambda: empty_create(
inner_t,
AttrSource(source, attr),
symbolic_context=(
None
if symbolic_context is None
else symbolic_context.inner_contexts[attr]
),
)
),
outer_size=outer_size,
outer_stride=outer_stride,
)
# Returns an all-dynamic symbolic context used for metafying the given tensor with
# fully dynamic dims. This is useful when fake-ifying intermediate tensors in
# closed-over ViewFunc state, as we don't have symbolic contexts for them, but we
# don't want to over-specialize during view replay.
def all_dynamic_symbolic_context(t, source, shape_env, callback):
from torch._dynamo.source import AttrSource
from torch.fx.experimental.symbolic_shapes import (
DimDynamic,
StatelessSymbolicContext,
SubclassSymbolicContext,
SymbolicContext,
)
view_base_context: Optional[SymbolicContext] = None
if t._is_view():
view_base_context = all_dynamic_symbolic_context(
t._base, AttrSource(source, "_base"), shape_env, callback
)
t_symbolic_context: SymbolicContext
t_dynamic_sizes = [DimDynamic.DYNAMIC] * t.dim()
if is_traceable_wrapper_subclass(t):
inner_contexts: Dict[str, SymbolicContext] = {}
attrs, _ = t.__tensor_flatten__()
for attr in attrs:
assert isinstance(attr, str)
inner = getattr(t, attr)
inner_contexts[attr] = all_dynamic_symbolic_context(
inner, AttrSource(source, attr), shape_env, callback
)
t_symbolic_context = SubclassSymbolicContext(
dynamic_sizes=t_dynamic_sizes,
constraint_sizes=[None] * t.dim(),
inner_contexts=inner_contexts,
tensor_source=source,
view_base_context=view_base_context,
)
else:
t_symbolic_context = StatelessSymbolicContext(
dynamic_sizes=t_dynamic_sizes,
constraint_sizes=[None] * t.dim(),
view_base_context=view_base_context,
)
return t_symbolic_context
# Returns a fake-ified version of an input view tensor t, given an already fake-ified
# base. At a high level, we want two things:
# 1. fake_t should have the same view relationship to the given fake base as the
# input t has to its _base.
# 2. fake_t should have symbolic sizes / strides / storage offset according to the
# appropriate symbolic context (i.e. from the automatic dynamic algorithm).
#
# We currently take different strategies across view types:
# * For dense -> dense views, accomplish both (1) and (2) simultaneously via an
# as_strided() call on the fake-ified base, passing symbolic metadata.
# * For views involving subclasses, perform view replay using view funcs to
# achieve (1). It's necessary for (2) to swap out any closed-over state in
# the view funcs with symbolicized SymInts and fake-ified tensors. Doing this
# avoids specialization (and thus over-eager simplification of symbols) that
# could occur during view replay on the fake-ified base.
#
# Examples:
# * t.unsqueeze(-1) with dense t is a dense -> dense view. It can be modeled
# with an as_strided() call on the fake base passing symbolic metadata.
# * sub.select(dim=0, index=3) is a subclass -> subclass view. The index arg
# is made symbolic to avoid invalid specialization and view replay is then
# done to reconstruct the view.
# * _nested_from_jagged(values, offsets) is a dense -> subclass view
# that returns a subclass instance from a dense values tensor. The offsets
# tensor is closed over in the view func, as it can be considered view metadata.
# First, the offsets tensor is fake-ified according to the inner symbolic
# context and with the correct relationship to the outer size / stride metadata.
# Then view replay is done, swapping in the fake offsets so the view replay output
# is fully fake with no invalid specialization.
def view_from_base(base, t, source=source, shape_env=shape_env):
# fake-ify t's metadata according to the outer symbolic context
(sizes, strides, storage_offset) = sym_sizes_strides_storage_offset(
t, source
)
if not is_traceable_wrapper_subclass(
t
) and not is_traceable_wrapper_subclass(base):
# Dense -> Dense view case uses as_strided() to construct view relationship.
# TODO: Change this logic to use view replay for consistency?
# It's likely there is no view func available.
return base.as_strided(sizes, strides, storage_offset)
from torch._dynamo.source import EphemeralSource
from torch.fx.experimental.symbolic_shapes import sym_eq
def symint_visitor_fn(s):
if shape_env is None:
return s
# NB: The symbol here is expected to be simplified out because we a priori
# allocate inner and outer symbols according to the appropriate symbolic
# contexts and prefer those over this symbol during symbol simplification
# (via usage of EphemeralSource below). This -shouldn't- happen, but if
# this symbol somehow leaks out beyond the view tensor's shape metadata, our
# assumption of it being simplified out will fail and it may be guarded on,
# which will hard error.
sym_source = EphemeralSource("symint_visitor_fn")
symbol = shape_env.create_symbol(s, sym_source)
return shape_env.create_symintnode(symbol, hint=s, source=sym_source)
real_to_fake_mapping = {}
if is_traceable_wrapper_subclass(t):
# Fake-ify t naively here; this is only done so we can get fake-ified inner
# tensors with the correct relationships to the outer sizes / strides for use
# in view replay. It's done beforehand here because it's not easy to do when
# visiting tensors one-by-one during view replay.
#
# Example:
# Consider a Dense -> NJT view. NJT has (values, offsets) components and we
# want a view of values with the offsets closed over. As the offsets component
# is needed to describe the output view, it's important that it's fakeified
# correctly.
fake_t = empty_create_subclass(
t, outer_size=sizes, outer_stride=strides
)
attrs, _ = fake_t.__tensor_flatten__()
for attr in attrs:
real_to_fake_mapping[getattr(t, attr)] = getattr(fake_t, attr)
def tensor_visitor_fn(
visited_t, shape_env=shape_env, callback=callback, source=source
):
# It's possible to close over an undefined tensor (e.g. NJT's lengths).
if visited_t is None:
return None
# Fake inner tensors of view subclasses will come from the mapping built above.
fake_visited_t = real_to_fake_mapping.get(visited_t, None)
if fake_visited_t is not None:
return fake_visited_t
# For other closed-over tensor state, fake-ify it as all dynamic with an
# ephemeral source. This avoids invalid specialization during view replay.
# If we find that in practice the usage of ephemeral sources isn't enough
# to guarantee that we don't have guards on these symbols, we may need to
# explicitly suppress guards (as is done for _base in the dense -> dense
# view case).
temp_source = EphemeralSource("tensor_visitor_fn")
return self.meta_tensor(
visited_t,
shape_env,
callback,
source=temp_source,
symbolic_context=all_dynamic_symbolic_context(
visited_t, temp_source, shape_env, callback
),
)
# Replay the view, swapping out any non-symbolic SymInts or real tensors
# for symbolic SymInts or fake tensors.
fake_t = t._view_func_unsafe(base, symint_visitor_fn, tensor_visitor_fn)
# Ensure the output has symbolic shapes according to the outer symbolic context.
# These checks should simplify out any symbols created for closed-over view func
# SymInts.
torch._check(sym_eq(fake_t.size(), sizes))
torch._check(sym_eq(fake_t.stride(), strides))
torch._check(sym_eq(fake_t.storage_offset(), storage_offset))
return fake_t
# see expired-storages
self.check_expired_count += 1
if self.check_expired_count >= self.check_expired_frequency:
self.check_for_expired_weak_storages()
self.check_expired_count = 0
if self.get_tensor_memo(t) is None:
with torch.inference_mode(t.is_inference()):
if t.is_sparse:
is_leaf = safe_is_leaf(t)
# The lambda function below is similar to
# `t.to(device='meta')` except the latter
# preserves nnz value
r = callback(
lambda: torch.ops.aten._sparse_coo_tensor_with_dims(
t.sparse_dim(),
t.dense_dim(),
t.shape,
dtype=t.dtype,
layout=torch.sparse_coo,
device="meta",
)
)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
# Note [is_coalesced is dispatched]
# Strangely enough, is_coalesced() is a dispatched operator,
# which means that it will get caught by fake tensor mode.
# Ordinarily this would error, but there's some logic in
# fake tensor ensure this doesn't happen.
r._coalesced_(t.is_coalesced())
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
with torch.enable_grad():
r = r.clone()
r._coalesced_(t.is_coalesced())
elif is_sparse_compressed(t):
is_leaf = safe_is_leaf(t)
def mk_meta():
nnz = 0
batch_dim = t.ndim - t.sparse_dim() - t.dense_dim()
batch_size = t.shape[:batch_dim]
if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
index_dtype = t.crow_indices().dtype
compressed_indices = torch.empty(
t.crow_indices().shape, device="meta", dtype=index_dtype
)
plain_indices = torch.empty(
(*t.col_indices().shape[:-1], nnz),
device="meta",
dtype=index_dtype,
)
else:
index_dtype = t.ccol_indices().dtype
compressed_indices = torch.empty(
t.ccol_indices().shape, device="meta", dtype=index_dtype
)
plain_indices = torch.empty(
(*t.row_indices().shape[:-1], nnz),
device="meta",
dtype=index_dtype,
)
values_shape = t.values().shape
values = torch.empty(
(
*values_shape[:batch_dim],
nnz,
*values_shape[batch_dim + 1 :],
),
dtype=t.dtype,
device="meta",
)
return torch.ops.aten.sparse_compressed_tensor(
compressed_indices,
plain_indices,
values,
t.shape,
layout=t.layout,
dtype=t.dtype,
device="meta",
)
# `mk_meta()` is similar to `t.to(device='meta'))`
# except `to('meta')` preserves nnz value while
# `mk_meta` result has nnz == 0.
r = callback(mk_meta)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
with torch.enable_grad():
r = r.clone()
elif t.is_nested and not is_traceable_wrapper_subclass(t):
# TODO: Handle this better in Dynamo?
# There are checks there now, but this can still be triggered by a dense
# tensor graph input that is a view of a strided NT.
from torch._dynamo.exc import unimplemented
unimplemented(
"strided nested tensors are not supported by meta conversion"
)
elif t.is_mkldnn:
is_leaf = safe_is_leaf(t)
sizes, strides, _storage_offset = sym_sizes_strides_storage_offset(
t, source
)
r = callback(
lambda: torch.empty_strided(
sizes, strides, dtype=t.dtype, device="meta"
)
)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
with torch.enable_grad():
r = r.clone()
elif is_functorch_wrapped_tensor(t):
if t._is_view():
from torch._dynamo.exc import unimplemented
unimplemented(
"view functorch tensors are not supported by meta conversion"
)
# Wraps a functorch tensor class (BatchedTensor, GradTrackingTensor)
# in a FakeTensor
def _to_fake_tensor(t):
if is_batchedtensor(t):
ft = _to_fake_tensor(get_unwrapped(t))
lvl = maybe_get_level(t)
bdim = maybe_get_bdim(t)
r = _add_batch_dim(ft, bdim, lvl)
elif is_gradtrackingtensor(t):
disable_functorch = torch._C._DisableFuncTorch
with disable_functorch():
ft = _to_fake_tensor(get_unwrapped(t))
lvl = torch._C._functorch.maybe_get_level(t)
r = torch._C._functorch._wrap_for_grad(ft, lvl)
is_leaf = safe_is_leaf(t)
if t.requires_grad and safe_is_leaf(r):
r.requires_grad = True
elif t.requires_grad and not is_leaf:
with torch.enable_grad():
r = r.clone()
else:
sizes = t.size()
strides = t.stride()
r = callback(
lambda: torch.empty_strided(
sizes,
strides,
dtype=t.dtype,
device="meta",
)
)
return r
r = _to_fake_tensor(t)
elif t._is_view():
# Construct views in two steps: recursively meta-fy their
# base, and then create view(s) off that. NB: doing it
# directly from storage is WRONG because this won't cause
# version counters to get shared.
assert t._is_view()
base_symbolic_context = None
if shape_env and symbolic_context is not None:
from torch.fx.experimental.symbolic_shapes import (
StatelessSymbolicContext,
)
assert isinstance(symbolic_context, StatelessSymbolicContext)
# NB: This should generally be set when the input is a view,
# but the exception right now is for fake-ifying grads, which is
# a work in progress.
if symbolic_context.view_base_context is not None:
base_symbolic_context = symbolic_context.view_base_context
base = self.meta_tensor(
t._base,
shape_env,
callback,
source=torch._dynamo.source.AttrSource(source, "_base"),
symbolic_context=base_symbolic_context,
)
def is_c_of_r(complex_dtype, real_dtype):
return (
utils.is_complex_dtype(complex_dtype)
and utils.corresponding_real_dtype(complex_dtype)
== real_dtype
)
# In some situations, MetaConverter may be called in a
# context where autograd is disabled. For the _is_view
# assert to pass, we have to setup the autograd view
# metadata anyway. Do this by reenabling the
# ADInplaceOrView key. This is kind of a hack.
old_exclude = torch._C._dispatch_tls_is_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView
)
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, False
)
try:
if base.dtype == t.dtype:
pass
elif is_c_of_r(base.dtype, t.dtype):
base = torch.view_as_real(base)
elif is_c_of_r(t.dtype, base.dtype):
base = torch.view_as_complex(base)
else:
# This is not guaranteed to succeed. If it fails, it
# means there is another dtype-converting view function
# that hasn't been handled here
base = base.view(t.dtype)
# This is very tricky. Naively, you might expect this
# to hold:
#
# if t.requires_grad and not safe_is_leaf(t)
# assert t._base.requires_grad
#
# But it's not true! As you can see in the following
# program:
#
# x = torch.zeros(4)
# y = x.view(1, 4)
# y.requires_grad = True
# z = y.view(1, 1, 4)
# assert z._base is x
#
# So we may have to do *two* views out of the base to
# recreate this situation.
if safe_is_leaf(t):
# Leaf views that track view metadata are created by
# creating a view inside a no_grad block
with torch.no_grad(), maybe_suppress():
r = view_from_base(base, t)
# As it's a leaf, we can directly assign requires_grad
r.requires_grad = t.requires_grad
else:
if t._base.requires_grad == t.requires_grad:
# Easy case, just run the view op
with torch.enable_grad(), maybe_suppress():
r = view_from_base(base, t)
# NB: We don't actaully faithfully replicate
# autograd connectivity, but that doesn't matter
# today. See following for more info:
# https://gist.github.com/soulitzer/e03f015b314c3f5fcf80888c69390913
else:
# Obscure case. Create a leaf view and give it the
# correct requires_grad, then do the final view.
# NB: Can't have a non-leaf without requiring grad!
assert t.requires_grad
with torch.no_grad():
mid = base.view(base.shape)
mid.requires_grad = t.requires_grad
with torch.enable_grad(), maybe_suppress():
r = view_from_base(mid, t)
# The CreationMeta influences whether or not inplace
# mutation is an error or not. So we need to make
# sure we properly propagate this as well.
torch._C._autograd._set_creation_meta(
r, torch._C._autograd._get_creation_meta(t)
)
finally:
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, old_exclude
)
else:
is_leaf = safe_is_leaf(t)
(
sizes,
strides,
storage_offset,
) = sym_sizes_strides_storage_offset(t, source, symbolic_context)
# If we have a subclass that desugars into dense tensors,
# perform our callback on each inner tensor.
if is_traceable_wrapper_subclass(t):
r = empty_create_subclass(
t, outer_size=sizes, outer_stride=strides
)
else:
r = callback(
lambda: torch.empty_strided(
sizes,
strides,
dtype=t.dtype,
device="meta",
)
)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = t.requires_grad
if not is_leaf:
# Fake up some autograd history.
with torch.enable_grad():
# preserve_format is the default, but we want to
# emphasize how important it is to preserve
# format here
r = r.clone(memory_format=torch.preserve_format)
# Graph-Break for wrapped tensors
if not (
is_batchedtensor(t) or is_gradtrackingtensor(t)
) and torch._C._functorch.is_functorch_wrapped_tensor(t):
return NotImplemented
s = t.untyped_storage()
swr = StorageWeakRef(s)
if swr not in self.storage_memo and (
r.is_nested
or (
r.stride() == strides
and r.storage_offset() == storage_offset
)
):
# You're normal and happy, install the fresh storage into the memo
self.storage_memo[swr] = r.untyped_storage()
else:
# You're in crazy town; somehow you gave us a tensor
# that wasn't a view, but had nonzero storage offset,
# nontrivial strides (such that clone() couldn't
# preserve them), or already aliases with another
# tensor's storage. The most typical way to end
# up here is with set_. So use set_ to bludgeon this
# in.
r_s = self.meta_storage(s, callback=callback)
# NB: In principle, this should always work, but there
# is some subtle difference in the autograd metadata
# that means we will backprop the set_ call, even if
# r is declared as an input to grad.
# See https://github.com/pytorch/pytorch/issues/87956
# for the reproducer.
# NB: The in_kernel_invocation_manager here is necessary
# for fake tensor. If we run the set_ call with fake
# tensor on, r will improperly report that it is NOT a
# meta tensor but a cpu tensor, and then the set_ call
# will fail due to device mismatch. no_dispatch() is
# not enough, because the fake tensor will still claim
# to be a CPU tensor and you'll end up in the CPU
# kernel. Arguably this is a hack; a cleaner way to
# solve this is to have a FakeStorage concept which
# would report it's CPU device--no problem now! But
# this is difficult to do because we don't have storage
# subclasses. Relevant test is
# DynamicShapesFunctionTests::test_add_dynamic_shapes in
# test/dynamo/test_dynamic_shapes.py
maybe_fake_mgr: ContextManager[None] = contextlib.nullcontext()
from torch._subclasses.fake_tensor import (
in_kernel_invocation_manager,
maybe_get_fake_mode,
)
mb_fake_mode = maybe_get_fake_mode(r)
if mb_fake_mode is not None:
maybe_fake_mgr = in_kernel_invocation_manager(mb_fake_mode)
with maybe_fake_mgr, torch.no_grad():
r.set_(r_s, storage_offset, sizes, strides)
if safe_grad(t) is not None:
from torch._dynamo.source import AttrSource
# TODO: Use a valid grad-specific symbolic context instead of recycling
# the one from t. This isn't correct if e.g. t._is_view() != t.grad._is_view().
r.grad = self.meta_tensor(
safe_grad(t),
shape_env,
callback,
source=AttrSource(source, "grad"),
symbolic_context=symbolic_context,
)
torch._C._set_conj(r, t.is_conj())
torch._C._set_neg(r, t.is_neg())
# This can be skipped if necessary for performance reasons
assert_metadata_eq(assert_eq, t, r, skip_symbolic=True)
self.set_tensor_memo(t, r)
return self.get_tensor_memo(t)
def __call__(
self,
t,
shape_env=None,
*,
callback=lambda t: t(),
source=None,
symbolic_context=None,
):
# TODO: zero tensors? We appear to have eliminated them by
# excluding complex for now
if isinstance(t, torch.Tensor) or is_traceable_wrapper_subclass(t):
if t.device.type != "xla" and any(
[
t.is_quantized,
t._is_view() and t._base is not None and t._base.is_sparse,
torch._is_functional_tensor(t),
t.device.type in ("lazy"),
# We need a way to test if a tensor is batched but there
# is no official APi to do it
# torch._C._is_batched(t),
]
):
# TODO: sparse should support meta
# NB technically to('meta') does work but our logging
# instrumentation will see the meta conversions and the
# tests all break so we just exclude this. In any case
# the to conversion isn't really right anyhow.
if torch._is_functional_tensor(t) and t.device.type != "lazy":
if t._is_view():
raise RuntimeError(
"Cannot safely fakify a view because this process drops the view information right now."
)
st = peek_interpreter_stack()
assert (
st is None or st.key() == TransformType.Functionalize
), "Expect st to be either None or have Functionalize transform key."
if st is None:
# the case of AOTAutograd
torch._sync(t)
unwrap_t = torch._from_functional_tensor(t)
with torch._dispatch.python.suspend_functionalization():
fake_t = self.meta_tensor(
unwrap_t,
shape_env=shape_env,
callback=callback,
source=source,
symbolic_context=symbolic_context,
)
out = torch._to_functional_tensor(fake_t)
torch._mirror_autograd_meta_to(fake_t, out)
return out
else:
# torch.func.functionalize
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrap_t = _unwrap_functional_tensor(t, reapply_views)
pop_st_ctx = (
torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack()
)
with pop_st_ctx:
fake_t = self.meta_tensor(
unwrap_t,
shape_env=shape_env,
callback=callback,
source=source,
symbolic_context=symbolic_context,
)
return _wrap_functional_tensor(fake_t, current_level())
self.miss += 1
return NotImplemented
else:
self.hit += 1
disable_functorch = torch._C._DisableFuncTorch
with disable_functorch():
r = self.meta_tensor(
t,
shape_env=shape_env,
callback=callback,
source=source,
symbolic_context=symbolic_context,
)
if type(t) is torch.nn.Parameter:
# NB: Cannot directly use Parameter constructor
# because that would force a detach, not desirable
r._is_param = True
return r
elif torch.overrides.is_tensor_like(t):
self.miss += 1
return NotImplemented
else:
# non-Tensor types don't count as hit or miss
return t
import torch._prims_common as utils
|