File size: 47,947 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
import contextlib
import warnings
import weakref
from typing import ContextManager, Dict, List, Optional, Tuple, TYPE_CHECKING

import torch
from torch._C._functorch import (
    _add_batch_dim,
    _unwrap_functional_tensor,
    _wrap_functional_tensor,
    current_level,
    get_unwrapped,
    is_batchedtensor,
    is_functorch_wrapped_tensor,
    is_gradtrackingtensor,
    maybe_get_bdim,
    maybe_get_level,
    peek_interpreter_stack,
    TransformType,
)
from torch._guards import Source

from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._python_dispatch import (
    is_traceable_wrapper_subclass,
    transform_subclass,
)
from torch.utils.weak import WeakIdRef

if TYPE_CHECKING:
    # Import the following modules during type checking to enable code intelligence features,
    # Do not import unconditionally, as they import sympy and importing sympy is very slow
    from torch.fx.experimental.symbolic_shapes import SymbolicContext

DimList = List


def safe_is_leaf(t):
    try:
        return t.is_leaf
    except RuntimeError:
        # inference mode can trigger this
        return False


def safe_grad(t):
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
        return t.grad


def assert_eq(a, b):
    assert a == b, f"{a} != {b}"


def assert_metadata_eq(assert_eq, m1, m2, *, skip_symbolic=False):
    def go(m1, m2):
        assert_eq(m1.dtype, m2.dtype)
        if not skip_symbolic:
            assert_eq(m1.shape, m2.shape)
        assert_eq(m1.requires_grad, m2.requires_grad)
        assert_eq(m1.is_leaf, m2.is_leaf)
        assert_eq(m1.grad_fn is None, m2.grad_fn is None)
        assert_eq(m1.is_sparse, m2.is_sparse)
        assert_eq(m1.is_inference(), m2.is_inference())
        assert_eq(m1.is_conj(), m2.is_conj())
        assert_eq(m1.is_neg(), m2.is_neg())
        assert_eq(safe_grad(m1) is not None, safe_grad(m2) is not None)
        if safe_grad(m1) is not None:
            go(safe_grad(m1), safe_grad(m2))
        if m1.is_sparse:
            assert_eq(m1.dense_dim(), m2.dense_dim())
            assert_eq(m1.sparse_dim(), m2.sparse_dim())
            assert_eq(m1.is_coalesced(), m2.is_coalesced())
        else:
            if not skip_symbolic:
                assert_eq(m1.stride(), m2.stride())
                assert_eq(m1.storage_offset(), m2.storage_offset())
            assert_eq(m1._is_view(), m2._is_view())
            if m1._is_view():
                go(m1._base, m2._base)
        # TODO: test if is resizable (no direct query for this atm)
        # TODO: audit AutogradMeta to see if it matches
        # TODO: test forward AD

    return go(m1, m2)


def is_sparse_coo(t):
    return isinstance(t, torch.Tensor) and t.layout is torch.sparse_coo


def is_sparse_compressed(t):
    return isinstance(t, torch.Tensor) and t.layout in {
        torch.sparse_csr,
        torch.sparse_csc,
        torch.sparse_bsr,
        torch.sparse_bsc,
    }


def is_sparse_any(t):
    return is_sparse_coo(t) or is_sparse_compressed(t)


# This is a class for converting multiple tensors into meta tensors which
# share the same view/storage structure.  The operation model is you allocate
# one of these, and then call it repeatedly on all the tensors you want to
# convert.  It's important to use the same object for tensors you want to
# share storage because this is how we correlate shared storages to the same
# meta storages. This class will hold weak references to cached tenosrs
# and tensor storages.
class MetaConverter:
    def __init__(self):
        self.storage_memo = {}
        self.tensor_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
        self.maybe_storages_to_delete = []
        self.check_expired_frequency = 128
        self.check_expired_count = 0
        self.hit = 0
        self.miss = 0
        self.del_hook = None
        self.arg_cnt = 0

    def successful(self):
        return self.hit > 0 and self.miss == 0

    def check_for_expired_weak_storages(self):
        new_li = []
        stor_to_delete = []
        for obj in self.maybe_storages_to_delete:
            if not obj.expired():
                new_li.append(obj)
            else:
                stor_to_delete.append(obj)
        for obj in stor_to_delete:
            self.storage_memo.pop(obj, None)
        self.maybe_storages_to_delete = new_li

        # if for some reason we have aquired many storages which have not expired
        # even though a tensor with their storage has expired (aliasing or otherwise)
        # check for expired storages less often so as to bound the amount of work we
        # do checking for expired storages
        self.check_expired_frequency = max(
            self.check_expired_frequency, len(self.maybe_storages_to_delete)
        )

    def get_tensor_memo(self, t):
        return self.tensor_memo.get(WeakIdRef(t), None)

    def set_tensor_memo(self, t, v):
        # hold a weak ref to self, otherwise it will be kept alive
        # by the del_ten closure
        self_weak_ref = weakref.ref(self)
        if is_sparse_any(t) or t.is_mkldnn or is_functorch_wrapped_tensor(t):
            weak_st = None
        else:
            weak_st = StorageWeakRef(t._typed_storage())
        tensor_ref_key = WeakIdRef(t)

        def del_ten():
            # tensor outlives the converter
            self_ref = self_weak_ref()
            if self_ref is None:
                return
            # on shutdown, tensor_ref_key may not be in memo
            self_ref.tensor_memo.pop(tensor_ref_key, None)
            if weak_st and weak_st.expired():
                self_ref.storage_memo.pop(weak_st, None)
            elif weak_st is not None:
                # [expired-storages]
                # NB: even though the tensor has died,
                # the deallocation of its storage can take longer,
                # even when the storage has no other uses/views.
                # In this case, the StorageWeakRef object will be kept alive
                # longer than it needs to be, however the storage itself
                # will be deallocated. We retain the possibly dead storages
                # and periodically check if any of them are expired and
                # can be freed.
                self_ref.maybe_storages_to_delete.append(weak_st)

        weakref.finalize(t, del_ten)
        self.tensor_memo[tensor_ref_key] = v

    # NB: doesn't actually return a storage, because meta storage is
    # not supported
    def meta_storage(self, s, callback):
        # NB: TypedStorage is freshly allocated and cannot be used as hash
        # key index.

        # Use a Weak Ref to s in order to not leak memory
        swr = StorageWeakRef(s)
        if swr not in self.storage_memo:
            self.storage_memo[swr] = callback(
                lambda: torch.empty(s.size(), dtype=torch.uint8, device="meta")
            ).untyped_storage()
        return self.storage_memo[swr]

    # This function assumes that it's possible to do the conversion
    # NB: name here is used in a conventional way by Dynamo; it corresponds
    # precisely to the Source.name() of the tensor we're fakeifying and
    # corresponds to a valid Python expression.  When we construct sub-names
    # as part of this process, we will maintain this invariant!  (Even though
    # other users of this may not need it this property to be upheld.)
    def meta_tensor(

        self,

        t,

        shape_env=None,

        callback=lambda t: t(),

        source: Optional[Source] = None,

        symbolic_context: Optional["SymbolicContext"] = None,

    ):
        if source is None:
            from torch._dynamo.source import ConstantSource

            # TODO: make a dedicated UnknownSource for this?
            source = ConstantSource(
                f"__meta_utils_unknown_tensor{len(self.tensor_memo)}"
            )

        # This indicates you set no_dispatch() before calling into this
        # function.  This is an error: we may be creating fake tensors and
        # will perform operations on them which need fake tensor mode to
        # be active.  You will segfault if you are in a no_dispatch() block.
        assert not torch._C._dispatch_tls_local_exclude_set().has(
            torch._C.DispatchKey.Python
        )
        arg_cnt = self.arg_cnt
        self.arg_cnt += 1

        # When we make as_strided calls, we end up generating a guard
        # that the new as_strided tensor is in bounds for the old storage
        # for the base (since as_strided calls can "bust" out of their
        # bounding box.)  This guard is unnecessary: if a user is able
        # to provide us a tensor with the view base setup this way, we
        # don't need to produce a guard, because the fact that they
        # were able to produce the view base means its in bounds.
        #
        # Now, ordinarily, this guard would be harmless.  However, the
        # generated guard refers to variables bound on the base variable.
        # At the moment, Dynamo doesn't actually guard on x._base, because
        # according to Voz this results in a lot of spurious invalidations,
        # and also if the user doesn't directly make use of _base, its
        # pointless anyway (because programs should be parametric over
        # whether or not the input tensor is a view or not--unless you're
        # mutating the input, but that's a whole 'nother ballgame).  So
        # for expediency, we suppress these guards so we don't have to
        # deal with this (yet, anyway.)
        #
        # NB: An old version of this code suppressed guards for ALL operations
        # happening during meta conversion, not just as_strided calls.
        # This is too aggressive: we do duck sizing and 0/1 simplification
        # as we allocate variables, and we do need to register guards for
        # these cases.
        maybe_suppress = contextlib.nullcontext
        if shape_env is not None:
            maybe_suppress = shape_env.suppress_guards

        def sym_sizes_strides_storage_offset(

            t, src, symbolic_context=symbolic_context

        ) -> Tuple[Tuple[int, ...], Tuple[int, ...], int]:
            if shape_env is not None:
                fake_mode = torch._subclasses.fake_tensor.maybe_get_fake_mode(t)
                if fake_mode is not None and fake_mode.shape_env is shape_env:
                    # Don't reallocate the sizes; the shape envs are the same,
                    # so reuse the old sizes/strides/etc
                    return (t.size(), t.stride(), t.storage_offset())
                else:
                    return shape_env.create_symbolic_sizes_strides_storage_offset(
                        t,
                        src,
                        symbolic_context=symbolic_context,
                    )
            else:
                assert symbolic_context is None
            return (t.size(), t.stride(), t.storage_offset())

        def empty_create(inner_t, inner_src, symbolic_context=symbolic_context):
            (
                inner_sizes,
                inner_strides,
                inner_storage_offset,
            ) = sym_sizes_strides_storage_offset(inner_t, inner_src, symbolic_context)
            return torch.empty_strided(
                inner_sizes,
                inner_strides,
                dtype=inner_t.dtype,
                device="meta",
            )

        # Creates a subclass instance with empty inner tensors according to the specified
        # symbolic context.
        def empty_create_subclass(

            t,

            outer_size,

            outer_stride,

            symbolic_context=symbolic_context,

            callback=callback,

            source=source,

        ):
            from torch._dynamo.source import AttrSource
            from torch.fx.experimental.symbolic_shapes import SubclassSymbolicContext

            assert symbolic_context is None or isinstance(
                symbolic_context, SubclassSymbolicContext
            )

            # Note: transform_subclass will use __tensor_unflatten__ to generate
            # a fresh subclass wrapper with outer sizes / strides according to the
            # outer symbolic context (passed in to this function). Inner size / stride
            # / storage offset symbols are allocated according to the appropriate inner
            # symbolic contexts, after which the checks in transform_subclass() will
            # relate them to the outer metadata as possible.
            return transform_subclass(
                t,
                lambda attr, inner_t: callback(
                    lambda: empty_create(
                        inner_t,
                        AttrSource(source, attr),
                        symbolic_context=(
                            None
                            if symbolic_context is None
                            else symbolic_context.inner_contexts[attr]
                        ),
                    )
                ),
                outer_size=outer_size,
                outer_stride=outer_stride,
            )

        # Returns an all-dynamic symbolic context used for metafying the given tensor with
        # fully dynamic dims. This is useful when fake-ifying intermediate tensors in
        # closed-over ViewFunc state, as we don't have symbolic contexts for them, but we
        # don't want to over-specialize during view replay.
        def all_dynamic_symbolic_context(t, source, shape_env, callback):
            from torch._dynamo.source import AttrSource
            from torch.fx.experimental.symbolic_shapes import (
                DimDynamic,
                StatelessSymbolicContext,
                SubclassSymbolicContext,
                SymbolicContext,
            )

            view_base_context: Optional[SymbolicContext] = None
            if t._is_view():
                view_base_context = all_dynamic_symbolic_context(
                    t._base, AttrSource(source, "_base"), shape_env, callback
                )

            t_symbolic_context: SymbolicContext
            t_dynamic_sizes = [DimDynamic.DYNAMIC] * t.dim()
            if is_traceable_wrapper_subclass(t):
                inner_contexts: Dict[str, SymbolicContext] = {}
                attrs, _ = t.__tensor_flatten__()
                for attr in attrs:
                    assert isinstance(attr, str)
                    inner = getattr(t, attr)
                    inner_contexts[attr] = all_dynamic_symbolic_context(
                        inner, AttrSource(source, attr), shape_env, callback
                    )
                t_symbolic_context = SubclassSymbolicContext(
                    dynamic_sizes=t_dynamic_sizes,
                    constraint_sizes=[None] * t.dim(),
                    inner_contexts=inner_contexts,
                    tensor_source=source,
                    view_base_context=view_base_context,
                )
            else:
                t_symbolic_context = StatelessSymbolicContext(
                    dynamic_sizes=t_dynamic_sizes,
                    constraint_sizes=[None] * t.dim(),
                    view_base_context=view_base_context,
                )

            return t_symbolic_context

        # Returns a fake-ified version of an input view tensor t, given an already fake-ified
        # base. At a high level, we want two things:
        #   1. fake_t should have the same view relationship to the given fake base as the
        #      input t has to its _base.
        #   2. fake_t should have symbolic sizes / strides / storage offset according to the
        #      appropriate symbolic context (i.e. from the automatic dynamic algorithm).
        #
        # We currently take different strategies across view types:
        #   * For dense -> dense views, accomplish both (1) and (2) simultaneously via an
        #     as_strided() call on the fake-ified base, passing symbolic metadata.
        #   * For views involving subclasses, perform view replay using view funcs to
        #     achieve (1). It's necessary for (2) to swap out any closed-over state in
        #     the view funcs with symbolicized SymInts and fake-ified tensors. Doing this
        #     avoids specialization (and thus over-eager simplification of symbols) that
        #     could occur during view replay on the fake-ified base.
        #
        # Examples:
        #   * t.unsqueeze(-1) with dense t is a dense -> dense view. It can be modeled
        #     with an as_strided() call on the fake base passing symbolic metadata.
        #   * sub.select(dim=0, index=3) is a subclass -> subclass view. The index arg
        #     is made symbolic to avoid invalid specialization and view replay is then
        #     done to reconstruct the view.
        #   * _nested_from_jagged(values, offsets) is a dense -> subclass view
        #     that returns a subclass instance from a dense values tensor. The offsets
        #     tensor is closed over in the view func, as it can be considered view metadata.
        #     First, the offsets tensor is fake-ified according to the inner symbolic
        #     context and with the correct relationship to the outer size / stride metadata.
        #     Then view replay is done, swapping in the fake offsets so the view replay output
        #     is fully fake with no invalid specialization.
        def view_from_base(base, t, source=source, shape_env=shape_env):
            # fake-ify t's metadata according to the outer symbolic context
            (sizes, strides, storage_offset) = sym_sizes_strides_storage_offset(
                t, source
            )
            if not is_traceable_wrapper_subclass(
                t
            ) and not is_traceable_wrapper_subclass(base):
                # Dense -> Dense view case uses as_strided() to construct view relationship.
                # TODO: Change this logic to use view replay for consistency?
                # It's likely there is no view func available.
                return base.as_strided(sizes, strides, storage_offset)

            from torch._dynamo.source import EphemeralSource
            from torch.fx.experimental.symbolic_shapes import sym_eq

            def symint_visitor_fn(s):
                if shape_env is None:
                    return s

                # NB: The symbol here is expected to be simplified out because we a priori
                # allocate inner and outer symbols according to the appropriate symbolic
                # contexts and prefer those over this symbol during symbol simplification
                # (via usage of EphemeralSource below). This -shouldn't- happen, but if
                # this symbol somehow leaks out beyond the view tensor's shape metadata, our
                # assumption of it being simplified out will fail and it may be guarded on,
                # which will hard error.
                sym_source = EphemeralSource("symint_visitor_fn")
                symbol = shape_env.create_symbol(s, sym_source)
                return shape_env.create_symintnode(symbol, hint=s, source=sym_source)

            real_to_fake_mapping = {}
            if is_traceable_wrapper_subclass(t):
                # Fake-ify t naively here; this is only done so we can get fake-ified inner
                # tensors with the correct relationships to the outer sizes / strides for use
                # in view replay. It's done beforehand here because it's not easy to do when
                # visiting tensors one-by-one during view replay.
                #
                # Example:
                #   Consider a Dense -> NJT view. NJT has (values, offsets) components and we
                #   want a view of values with the offsets closed over. As the offsets component
                #   is needed to describe the output view, it's important that it's fakeified
                #   correctly.
                fake_t = empty_create_subclass(
                    t, outer_size=sizes, outer_stride=strides
                )
                attrs, _ = fake_t.__tensor_flatten__()
                for attr in attrs:
                    real_to_fake_mapping[getattr(t, attr)] = getattr(fake_t, attr)

            def tensor_visitor_fn(

                visited_t, shape_env=shape_env, callback=callback, source=source

            ):
                # It's possible to close over an undefined tensor (e.g. NJT's lengths).
                if visited_t is None:
                    return None

                # Fake inner tensors of view subclasses will come from the mapping built above.
                fake_visited_t = real_to_fake_mapping.get(visited_t, None)
                if fake_visited_t is not None:
                    return fake_visited_t

                # For other closed-over tensor state, fake-ify it as all dynamic with an
                # ephemeral source. This avoids invalid specialization during view replay.
                # If we find that in practice the usage of ephemeral sources isn't enough
                # to guarantee that we don't have guards on these symbols, we may need to
                # explicitly suppress guards (as is done for _base in the dense -> dense
                # view case).
                temp_source = EphemeralSource("tensor_visitor_fn")
                return self.meta_tensor(
                    visited_t,
                    shape_env,
                    callback,
                    source=temp_source,
                    symbolic_context=all_dynamic_symbolic_context(
                        visited_t, temp_source, shape_env, callback
                    ),
                )

            # Replay the view, swapping out any non-symbolic SymInts or real tensors
            # for symbolic SymInts or fake tensors.
            fake_t = t._view_func_unsafe(base, symint_visitor_fn, tensor_visitor_fn)

            # Ensure the output has symbolic shapes according to the outer symbolic context.
            # These checks should simplify out any symbols created for closed-over view func
            # SymInts.
            torch._check(sym_eq(fake_t.size(), sizes))
            torch._check(sym_eq(fake_t.stride(), strides))
            torch._check(sym_eq(fake_t.storage_offset(), storage_offset))
            return fake_t

        # see expired-storages
        self.check_expired_count += 1
        if self.check_expired_count >= self.check_expired_frequency:
            self.check_for_expired_weak_storages()
            self.check_expired_count = 0

        if self.get_tensor_memo(t) is None:
            with torch.inference_mode(t.is_inference()):
                if t.is_sparse:
                    is_leaf = safe_is_leaf(t)

                    # The lambda function below is similar to
                    # `t.to(device='meta')` except the latter
                    # preserves nnz value
                    r = callback(
                        lambda: torch.ops.aten._sparse_coo_tensor_with_dims(
                            t.sparse_dim(),
                            t.dense_dim(),
                            t.shape,
                            dtype=t.dtype,
                            layout=torch.sparse_coo,
                            device="meta",
                        )
                    )
                    assert safe_is_leaf(r), "the callback you passed in doesn't detach"
                    # Note [is_coalesced is dispatched]
                    # Strangely enough, is_coalesced() is a dispatched operator,
                    # which means that it will get caught by fake tensor mode.
                    # Ordinarily this would error, but there's some logic in
                    # fake tensor ensure this doesn't happen.
                    r._coalesced_(t.is_coalesced())
                    if t.requires_grad:
                        r.requires_grad = True
                    if t.requires_grad and not is_leaf:
                        with torch.enable_grad():
                            r = r.clone()
                            r._coalesced_(t.is_coalesced())
                elif is_sparse_compressed(t):
                    is_leaf = safe_is_leaf(t)

                    def mk_meta():
                        nnz = 0
                        batch_dim = t.ndim - t.sparse_dim() - t.dense_dim()
                        batch_size = t.shape[:batch_dim]
                        if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
                            index_dtype = t.crow_indices().dtype
                            compressed_indices = torch.empty(
                                t.crow_indices().shape, device="meta", dtype=index_dtype
                            )
                            plain_indices = torch.empty(
                                (*t.col_indices().shape[:-1], nnz),
                                device="meta",
                                dtype=index_dtype,
                            )
                        else:
                            index_dtype = t.ccol_indices().dtype
                            compressed_indices = torch.empty(
                                t.ccol_indices().shape, device="meta", dtype=index_dtype
                            )
                            plain_indices = torch.empty(
                                (*t.row_indices().shape[:-1], nnz),
                                device="meta",
                                dtype=index_dtype,
                            )
                        values_shape = t.values().shape
                        values = torch.empty(
                            (
                                *values_shape[:batch_dim],
                                nnz,
                                *values_shape[batch_dim + 1 :],
                            ),
                            dtype=t.dtype,
                            device="meta",
                        )
                        return torch.ops.aten.sparse_compressed_tensor(
                            compressed_indices,
                            plain_indices,
                            values,
                            t.shape,
                            layout=t.layout,
                            dtype=t.dtype,
                            device="meta",
                        )

                    # `mk_meta()` is similar to `t.to(device='meta'))`
                    # except `to('meta')` preserves nnz value while
                    # `mk_meta` result has nnz == 0.
                    r = callback(mk_meta)

                    assert safe_is_leaf(r), "the callback you passed in doesn't detach"
                    if t.requires_grad:
                        r.requires_grad = True
                    if t.requires_grad and not is_leaf:
                        with torch.enable_grad():
                            r = r.clone()
                elif t.is_nested and not is_traceable_wrapper_subclass(t):
                    # TODO: Handle this better in Dynamo?
                    # There are checks there now, but this can still be triggered by a dense
                    # tensor graph input that is a view of a strided NT.
                    from torch._dynamo.exc import unimplemented

                    unimplemented(
                        "strided nested tensors are not supported by meta conversion"
                    )
                elif t.is_mkldnn:
                    is_leaf = safe_is_leaf(t)
                    sizes, strides, _storage_offset = sym_sizes_strides_storage_offset(
                        t, source
                    )
                    r = callback(
                        lambda: torch.empty_strided(
                            sizes, strides, dtype=t.dtype, device="meta"
                        )
                    )
                    assert safe_is_leaf(r), "the callback you passed in doesn't detach"
                    if t.requires_grad:
                        r.requires_grad = True
                    if t.requires_grad and not is_leaf:
                        with torch.enable_grad():
                            r = r.clone()
                elif is_functorch_wrapped_tensor(t):
                    if t._is_view():
                        from torch._dynamo.exc import unimplemented

                        unimplemented(
                            "view functorch tensors are not supported by meta conversion"
                        )

                    # Wraps a functorch tensor class (BatchedTensor, GradTrackingTensor)
                    # in a FakeTensor
                    def _to_fake_tensor(t):
                        if is_batchedtensor(t):
                            ft = _to_fake_tensor(get_unwrapped(t))
                            lvl = maybe_get_level(t)
                            bdim = maybe_get_bdim(t)
                            r = _add_batch_dim(ft, bdim, lvl)
                        elif is_gradtrackingtensor(t):
                            disable_functorch = torch._C._DisableFuncTorch
                            with disable_functorch():
                                ft = _to_fake_tensor(get_unwrapped(t))
                            lvl = torch._C._functorch.maybe_get_level(t)
                            r = torch._C._functorch._wrap_for_grad(ft, lvl)

                            is_leaf = safe_is_leaf(t)
                            if t.requires_grad and safe_is_leaf(r):
                                r.requires_grad = True
                            elif t.requires_grad and not is_leaf:
                                with torch.enable_grad():
                                    r = r.clone()
                        else:
                            sizes = t.size()
                            strides = t.stride()
                            r = callback(
                                lambda: torch.empty_strided(
                                    sizes,
                                    strides,
                                    dtype=t.dtype,
                                    device="meta",
                                )
                            )
                        return r

                    r = _to_fake_tensor(t)

                elif t._is_view():
                    # Construct views in two steps: recursively meta-fy their
                    # base, and then create view(s) off that.  NB: doing it
                    # directly from storage is WRONG because this won't cause
                    # version counters to get shared.
                    assert t._is_view()

                    base_symbolic_context = None
                    if shape_env and symbolic_context is not None:
                        from torch.fx.experimental.symbolic_shapes import (
                            StatelessSymbolicContext,
                        )

                        assert isinstance(symbolic_context, StatelessSymbolicContext)
                        # NB: This should generally be set when the input is a view,
                        # but the exception right now is for fake-ifying grads, which is
                        # a work in progress.
                        if symbolic_context.view_base_context is not None:
                            base_symbolic_context = symbolic_context.view_base_context

                    base = self.meta_tensor(
                        t._base,
                        shape_env,
                        callback,
                        source=torch._dynamo.source.AttrSource(source, "_base"),
                        symbolic_context=base_symbolic_context,
                    )

                    def is_c_of_r(complex_dtype, real_dtype):
                        return (
                            utils.is_complex_dtype(complex_dtype)
                            and utils.corresponding_real_dtype(complex_dtype)
                            == real_dtype
                        )

                    # In some situations, MetaConverter may be called in a
                    # context where autograd is disabled.  For the _is_view
                    # assert to pass, we have to setup the autograd view
                    # metadata anyway.  Do this by reenabling the
                    # ADInplaceOrView key.  This is kind of a hack.
                    old_exclude = torch._C._dispatch_tls_is_dispatch_key_excluded(
                        torch._C.DispatchKey.ADInplaceOrView
                    )
                    torch._C._dispatch_tls_set_dispatch_key_excluded(
                        torch._C.DispatchKey.ADInplaceOrView, False
                    )
                    try:
                        if base.dtype == t.dtype:
                            pass
                        elif is_c_of_r(base.dtype, t.dtype):
                            base = torch.view_as_real(base)
                        elif is_c_of_r(t.dtype, base.dtype):
                            base = torch.view_as_complex(base)
                        else:
                            # This is not guaranteed to succeed.  If it fails, it
                            # means there is another dtype-converting view function
                            # that hasn't been handled here
                            base = base.view(t.dtype)

                        # This is very tricky.  Naively, you might expect this
                        # to hold:
                        #
                        #   if t.requires_grad and not safe_is_leaf(t)
                        #       assert t._base.requires_grad
                        #
                        # But it's not true!  As you can see in the following
                        # program:
                        #
                        #   x = torch.zeros(4)
                        #   y = x.view(1, 4)
                        #   y.requires_grad = True
                        #   z = y.view(1, 1, 4)
                        #   assert z._base is x
                        #
                        # So we may have to do *two* views out of the base to
                        # recreate this situation.
                        if safe_is_leaf(t):
                            # Leaf views that track view metadata are created by
                            # creating a view inside a no_grad block
                            with torch.no_grad(), maybe_suppress():
                                r = view_from_base(base, t)
                            # As it's a leaf, we can directly assign requires_grad
                            r.requires_grad = t.requires_grad
                        else:
                            if t._base.requires_grad == t.requires_grad:
                                # Easy case, just run the view op
                                with torch.enable_grad(), maybe_suppress():
                                    r = view_from_base(base, t)

                                # NB: We don't actaully faithfully replicate
                                # autograd connectivity, but that doesn't matter
                                # today. See following for more info:
                                # https://gist.github.com/soulitzer/e03f015b314c3f5fcf80888c69390913
                            else:
                                # Obscure case.  Create a leaf view and give it the
                                # correct requires_grad, then do the final view.
                                # NB: Can't have a non-leaf without requiring grad!
                                assert t.requires_grad
                                with torch.no_grad():
                                    mid = base.view(base.shape)
                                mid.requires_grad = t.requires_grad
                                with torch.enable_grad(), maybe_suppress():
                                    r = view_from_base(mid, t)
                        # The CreationMeta influences whether or not inplace
                        # mutation is an error or not.  So we need to make
                        # sure we properly propagate this as well.
                        torch._C._autograd._set_creation_meta(
                            r, torch._C._autograd._get_creation_meta(t)
                        )
                    finally:
                        torch._C._dispatch_tls_set_dispatch_key_excluded(
                            torch._C.DispatchKey.ADInplaceOrView, old_exclude
                        )

                else:
                    is_leaf = safe_is_leaf(t)

                    (
                        sizes,
                        strides,
                        storage_offset,
                    ) = sym_sizes_strides_storage_offset(t, source, symbolic_context)

                    # If we have a subclass that desugars into dense tensors,
                    # perform our callback on each inner tensor.
                    if is_traceable_wrapper_subclass(t):
                        r = empty_create_subclass(
                            t, outer_size=sizes, outer_stride=strides
                        )
                    else:
                        r = callback(
                            lambda: torch.empty_strided(
                                sizes,
                                strides,
                                dtype=t.dtype,
                                device="meta",
                            )
                        )

                    assert safe_is_leaf(r), "the callback you passed in doesn't detach"
                    if t.requires_grad:
                        r.requires_grad = t.requires_grad
                        if not is_leaf:
                            # Fake up some autograd history.
                            with torch.enable_grad():
                                # preserve_format is the default, but we want to
                                # emphasize how important it is to preserve
                                # format here
                                r = r.clone(memory_format=torch.preserve_format)

                    # Graph-Break for wrapped tensors
                    if not (
                        is_batchedtensor(t) or is_gradtrackingtensor(t)
                    ) and torch._C._functorch.is_functorch_wrapped_tensor(t):
                        return NotImplemented

                    s = t.untyped_storage()
                    swr = StorageWeakRef(s)
                    if swr not in self.storage_memo and (
                        r.is_nested
                        or (
                            r.stride() == strides
                            and r.storage_offset() == storage_offset
                        )
                    ):
                        # You're normal and happy, install the fresh storage into the memo
                        self.storage_memo[swr] = r.untyped_storage()
                    else:
                        # You're in crazy town; somehow you gave us a tensor
                        # that wasn't a view, but had nonzero storage offset,
                        # nontrivial strides (such that clone() couldn't
                        # preserve them), or already aliases with another
                        # tensor's storage.  The most typical way to end
                        # up here is with set_.  So use set_ to bludgeon this
                        # in.
                        r_s = self.meta_storage(s, callback=callback)
                        # NB: In principle, this should always work, but there
                        # is some subtle difference in the autograd metadata
                        # that means we will backprop the set_ call, even if
                        # r is declared as an input to grad.
                        # See https://github.com/pytorch/pytorch/issues/87956
                        # for the reproducer.
                        # NB: The in_kernel_invocation_manager here is necessary
                        # for fake tensor.  If we run the set_ call with fake
                        # tensor on, r will improperly report that it is NOT a
                        # meta tensor but a cpu tensor, and then the set_ call
                        # will fail due to device mismatch.  no_dispatch() is
                        # not enough, because the fake tensor will still claim
                        # to be a CPU tensor and you'll end up in the CPU
                        # kernel.  Arguably this is a hack; a cleaner way to
                        # solve this is to have a FakeStorage concept which
                        # would report it's CPU device--no problem now!  But
                        # this is difficult to do because we don't have storage
                        # subclasses.  Relevant test is
                        # DynamicShapesFunctionTests::test_add_dynamic_shapes in
                        # test/dynamo/test_dynamic_shapes.py
                        maybe_fake_mgr: ContextManager[None] = contextlib.nullcontext()
                        from torch._subclasses.fake_tensor import (
                            in_kernel_invocation_manager,
                            maybe_get_fake_mode,
                        )

                        mb_fake_mode = maybe_get_fake_mode(r)
                        if mb_fake_mode is not None:
                            maybe_fake_mgr = in_kernel_invocation_manager(mb_fake_mode)
                        with maybe_fake_mgr, torch.no_grad():
                            r.set_(r_s, storage_offset, sizes, strides)

                if safe_grad(t) is not None:
                    from torch._dynamo.source import AttrSource

                    # TODO: Use a valid grad-specific symbolic context instead of recycling
                    # the one from t. This isn't correct if e.g. t._is_view() != t.grad._is_view().
                    r.grad = self.meta_tensor(
                        safe_grad(t),
                        shape_env,
                        callback,
                        source=AttrSource(source, "grad"),
                        symbolic_context=symbolic_context,
                    )
                torch._C._set_conj(r, t.is_conj())
                torch._C._set_neg(r, t.is_neg())
            # This can be skipped if necessary for performance reasons
            assert_metadata_eq(assert_eq, t, r, skip_symbolic=True)
            self.set_tensor_memo(t, r)

        return self.get_tensor_memo(t)

    def __call__(

        self,

        t,

        shape_env=None,

        *,

        callback=lambda t: t(),

        source=None,

        symbolic_context=None,

    ):
        # TODO: zero tensors?  We appear to have eliminated them by
        # excluding complex for now

        if isinstance(t, torch.Tensor) or is_traceable_wrapper_subclass(t):
            if t.device.type != "xla" and any(
                [
                    t.is_quantized,
                    t._is_view() and t._base is not None and t._base.is_sparse,
                    torch._is_functional_tensor(t),
                    t.device.type in ("lazy"),
                    # We need a way to test if a tensor is batched but there
                    # is no official APi to do it
                    # torch._C._is_batched(t),
                ]
            ):
                # TODO: sparse should support meta
                # NB technically to('meta') does work but our logging
                # instrumentation will see the meta conversions and the
                # tests all break so we just exclude this.  In any case
                # the to conversion isn't really right anyhow.

                if torch._is_functional_tensor(t) and t.device.type != "lazy":
                    if t._is_view():
                        raise RuntimeError(
                            "Cannot safely fakify a view because this process drops the view information right now."
                        )

                    st = peek_interpreter_stack()
                    assert (
                        st is None or st.key() == TransformType.Functionalize
                    ), "Expect st to be either None or have Functionalize transform key."
                    if st is None:
                        # the case of AOTAutograd
                        torch._sync(t)
                        unwrap_t = torch._from_functional_tensor(t)
                        with torch._dispatch.python.suspend_functionalization():
                            fake_t = self.meta_tensor(
                                unwrap_t,
                                shape_env=shape_env,
                                callback=callback,
                                source=source,
                                symbolic_context=symbolic_context,
                            )
                        out = torch._to_functional_tensor(fake_t)
                        torch._mirror_autograd_meta_to(fake_t, out)
                        return out
                    else:
                        # torch.func.functionalize
                        reapply_views = torch._C._functionalization_reapply_views_tls()
                        unwrap_t = _unwrap_functional_tensor(t, reapply_views)
                        pop_st_ctx = (
                            torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack()
                        )
                        with pop_st_ctx:
                            fake_t = self.meta_tensor(
                                unwrap_t,
                                shape_env=shape_env,
                                callback=callback,
                                source=source,
                                symbolic_context=symbolic_context,
                            )
                        return _wrap_functional_tensor(fake_t, current_level())
                self.miss += 1
                return NotImplemented
            else:
                self.hit += 1

                disable_functorch = torch._C._DisableFuncTorch
                with disable_functorch():
                    r = self.meta_tensor(
                        t,
                        shape_env=shape_env,
                        callback=callback,
                        source=source,
                        symbolic_context=symbolic_context,
                    )
                if type(t) is torch.nn.Parameter:
                    # NB: Cannot directly use Parameter constructor
                    # because that would force a detach, not desirable
                    r._is_param = True
                return r
        elif torch.overrides.is_tensor_like(t):
            self.miss += 1
            return NotImplemented
        else:
            # non-Tensor types don't count as hit or miss
            return t


import torch._prims_common as utils