File size: 1,007 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from torch.distributions import constraints
from torch.distributions.gamma import Gamma

__all__ = ["Chi2"]


class Chi2(Gamma):
    r"""

    Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`.

    This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)``



    Example::



        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = Chi2(torch.tensor([1.0]))

        >>> m.sample()  # Chi2 distributed with shape df=1

        tensor([ 0.1046])



    Args:

        df (float or Tensor): shape parameter of the distribution

    """
    arg_constraints = {"df": constraints.positive}

    def __init__(self, df, validate_args=None):
        super().__init__(0.5 * df, 0.5, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Chi2, _instance)
        return super().expand(batch_shape, new)

    @property
    def df(self):
        return self.concentration * 2