File size: 19,272 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
r"""

The following constraints are implemented:



- ``constraints.boolean``

- ``constraints.cat``

- ``constraints.corr_cholesky``

- ``constraints.dependent``

- ``constraints.greater_than(lower_bound)``

- ``constraints.greater_than_eq(lower_bound)``

- ``constraints.independent(constraint, reinterpreted_batch_ndims)``

- ``constraints.integer_interval(lower_bound, upper_bound)``

- ``constraints.interval(lower_bound, upper_bound)``

- ``constraints.less_than(upper_bound)``

- ``constraints.lower_cholesky``

- ``constraints.lower_triangular``

- ``constraints.multinomial``

- ``constraints.nonnegative``

- ``constraints.nonnegative_integer``

- ``constraints.one_hot``

- ``constraints.positive_integer``

- ``constraints.positive``

- ``constraints.positive_semidefinite``

- ``constraints.positive_definite``

- ``constraints.real_vector``

- ``constraints.real``

- ``constraints.simplex``

- ``constraints.symmetric``

- ``constraints.stack``

- ``constraints.square``

- ``constraints.symmetric``

- ``constraints.unit_interval``

"""

import torch

__all__ = [
    "Constraint",
    "boolean",
    "cat",
    "corr_cholesky",
    "dependent",
    "dependent_property",
    "greater_than",
    "greater_than_eq",
    "independent",
    "integer_interval",
    "interval",
    "half_open_interval",
    "is_dependent",
    "less_than",
    "lower_cholesky",
    "lower_triangular",
    "multinomial",
    "nonnegative",
    "nonnegative_integer",
    "one_hot",
    "positive",
    "positive_semidefinite",
    "positive_definite",
    "positive_integer",
    "real",
    "real_vector",
    "simplex",
    "square",
    "stack",
    "symmetric",
    "unit_interval",
]


class Constraint:
    """

    Abstract base class for constraints.



    A constraint object represents a region over which a variable is valid,

    e.g. within which a variable can be optimized.



    Attributes:

        is_discrete (bool): Whether constrained space is discrete.

            Defaults to False.

        event_dim (int): Number of rightmost dimensions that together define

            an event. The :meth:`check` method will remove this many dimensions

            when computing validity.

    """

    is_discrete = False  # Default to continuous.
    event_dim = 0  # Default to univariate.

    def check(self, value):
        """

        Returns a byte tensor of ``sample_shape + batch_shape`` indicating

        whether each event in value satisfies this constraint.

        """
        raise NotImplementedError

    def __repr__(self):
        return self.__class__.__name__[1:] + "()"


class _Dependent(Constraint):
    """

    Placeholder for variables whose support depends on other variables.

    These variables obey no simple coordinate-wise constraints.



    Args:

        is_discrete (bool): Optional value of ``.is_discrete`` in case this

            can be computed statically. If not provided, access to the

            ``.is_discrete`` attribute will raise a NotImplementedError.

        event_dim (int): Optional value of ``.event_dim`` in case this

            can be computed statically. If not provided, access to the

            ``.event_dim`` attribute will raise a NotImplementedError.

    """

    def __init__(self, *, is_discrete=NotImplemented, event_dim=NotImplemented):
        self._is_discrete = is_discrete
        self._event_dim = event_dim
        super().__init__()

    @property
    def is_discrete(self):
        if self._is_discrete is NotImplemented:
            raise NotImplementedError(".is_discrete cannot be determined statically")
        return self._is_discrete

    @property
    def event_dim(self):
        if self._event_dim is NotImplemented:
            raise NotImplementedError(".event_dim cannot be determined statically")
        return self._event_dim

    def __call__(self, *, is_discrete=NotImplemented, event_dim=NotImplemented):
        """

        Support for syntax to customize static attributes::



            constraints.dependent(is_discrete=True, event_dim=1)

        """
        if is_discrete is NotImplemented:
            is_discrete = self._is_discrete
        if event_dim is NotImplemented:
            event_dim = self._event_dim
        return _Dependent(is_discrete=is_discrete, event_dim=event_dim)

    def check(self, x):
        raise ValueError("Cannot determine validity of dependent constraint")


def is_dependent(constraint):
    return isinstance(constraint, _Dependent)


class _DependentProperty(property, _Dependent):
    """

    Decorator that extends @property to act like a `Dependent` constraint when

    called on a class and act like a property when called on an object.



    Example::



        class Uniform(Distribution):

            def __init__(self, low, high):

                self.low = low

                self.high = high

            @constraints.dependent_property(is_discrete=False, event_dim=0)

            def support(self):

                return constraints.interval(self.low, self.high)



    Args:

        fn (Callable): The function to be decorated.

        is_discrete (bool): Optional value of ``.is_discrete`` in case this

            can be computed statically. If not provided, access to the

            ``.is_discrete`` attribute will raise a NotImplementedError.

        event_dim (int): Optional value of ``.event_dim`` in case this

            can be computed statically. If not provided, access to the

            ``.event_dim`` attribute will raise a NotImplementedError.

    """

    def __init__(

        self, fn=None, *, is_discrete=NotImplemented, event_dim=NotImplemented

    ):
        super().__init__(fn)
        self._is_discrete = is_discrete
        self._event_dim = event_dim

    def __call__(self, fn):
        """

        Support for syntax to customize static attributes::



            @constraints.dependent_property(is_discrete=True, event_dim=1)

            def support(self):

                ...

        """
        return _DependentProperty(
            fn, is_discrete=self._is_discrete, event_dim=self._event_dim
        )


class _IndependentConstraint(Constraint):
    """

    Wraps a constraint by aggregating over ``reinterpreted_batch_ndims``-many

    dims in :meth:`check`, so that an event is valid only if all its

    independent entries are valid.

    """

    def __init__(self, base_constraint, reinterpreted_batch_ndims):
        assert isinstance(base_constraint, Constraint)
        assert isinstance(reinterpreted_batch_ndims, int)
        assert reinterpreted_batch_ndims >= 0
        self.base_constraint = base_constraint
        self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
        super().__init__()

    @property
    def is_discrete(self):
        return self.base_constraint.is_discrete

    @property
    def event_dim(self):
        return self.base_constraint.event_dim + self.reinterpreted_batch_ndims

    def check(self, value):
        result = self.base_constraint.check(value)
        if result.dim() < self.reinterpreted_batch_ndims:
            expected = self.base_constraint.event_dim + self.reinterpreted_batch_ndims
            raise ValueError(
                f"Expected value.dim() >= {expected} but got {value.dim()}"
            )
        result = result.reshape(
            result.shape[: result.dim() - self.reinterpreted_batch_ndims] + (-1,)
        )
        result = result.all(-1)
        return result

    def __repr__(self):
        return f"{self.__class__.__name__[1:]}({repr(self.base_constraint)}, {self.reinterpreted_batch_ndims})"


class _Boolean(Constraint):
    """

    Constrain to the two values `{0, 1}`.

    """

    is_discrete = True

    def check(self, value):
        return (value == 0) | (value == 1)


class _OneHot(Constraint):
    """

    Constrain to one-hot vectors.

    """

    is_discrete = True
    event_dim = 1

    def check(self, value):
        is_boolean = (value == 0) | (value == 1)
        is_normalized = value.sum(-1).eq(1)
        return is_boolean.all(-1) & is_normalized


class _IntegerInterval(Constraint):
    """

    Constrain to an integer interval `[lower_bound, upper_bound]`.

    """

    is_discrete = True

    def __init__(self, lower_bound, upper_bound):
        self.lower_bound = lower_bound
        self.upper_bound = upper_bound
        super().__init__()

    def check(self, value):
        return (
            (value % 1 == 0) & (self.lower_bound <= value) & (value <= self.upper_bound)
        )

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += (
            f"(lower_bound={self.lower_bound}, upper_bound={self.upper_bound})"
        )
        return fmt_string


class _IntegerLessThan(Constraint):
    """

    Constrain to an integer interval `(-inf, upper_bound]`.

    """

    is_discrete = True

    def __init__(self, upper_bound):
        self.upper_bound = upper_bound
        super().__init__()

    def check(self, value):
        return (value % 1 == 0) & (value <= self.upper_bound)

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += f"(upper_bound={self.upper_bound})"
        return fmt_string


class _IntegerGreaterThan(Constraint):
    """

    Constrain to an integer interval `[lower_bound, inf)`.

    """

    is_discrete = True

    def __init__(self, lower_bound):
        self.lower_bound = lower_bound
        super().__init__()

    def check(self, value):
        return (value % 1 == 0) & (value >= self.lower_bound)

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += f"(lower_bound={self.lower_bound})"
        return fmt_string


class _Real(Constraint):
    """

    Trivially constrain to the extended real line `[-inf, inf]`.

    """

    def check(self, value):
        return value == value  # False for NANs.


class _GreaterThan(Constraint):
    """

    Constrain to a real half line `(lower_bound, inf]`.

    """

    def __init__(self, lower_bound):
        self.lower_bound = lower_bound
        super().__init__()

    def check(self, value):
        return self.lower_bound < value

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += f"(lower_bound={self.lower_bound})"
        return fmt_string


class _GreaterThanEq(Constraint):
    """

    Constrain to a real half line `[lower_bound, inf)`.

    """

    def __init__(self, lower_bound):
        self.lower_bound = lower_bound
        super().__init__()

    def check(self, value):
        return self.lower_bound <= value

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += f"(lower_bound={self.lower_bound})"
        return fmt_string


class _LessThan(Constraint):
    """

    Constrain to a real half line `[-inf, upper_bound)`.

    """

    def __init__(self, upper_bound):
        self.upper_bound = upper_bound
        super().__init__()

    def check(self, value):
        return value < self.upper_bound

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += f"(upper_bound={self.upper_bound})"
        return fmt_string


class _Interval(Constraint):
    """

    Constrain to a real interval `[lower_bound, upper_bound]`.

    """

    def __init__(self, lower_bound, upper_bound):
        self.lower_bound = lower_bound
        self.upper_bound = upper_bound
        super().__init__()

    def check(self, value):
        return (self.lower_bound <= value) & (value <= self.upper_bound)

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += (
            f"(lower_bound={self.lower_bound}, upper_bound={self.upper_bound})"
        )
        return fmt_string


class _HalfOpenInterval(Constraint):
    """

    Constrain to a real interval `[lower_bound, upper_bound)`.

    """

    def __init__(self, lower_bound, upper_bound):
        self.lower_bound = lower_bound
        self.upper_bound = upper_bound
        super().__init__()

    def check(self, value):
        return (self.lower_bound <= value) & (value < self.upper_bound)

    def __repr__(self):
        fmt_string = self.__class__.__name__[1:]
        fmt_string += (
            f"(lower_bound={self.lower_bound}, upper_bound={self.upper_bound})"
        )
        return fmt_string


class _Simplex(Constraint):
    """

    Constrain to the unit simplex in the innermost (rightmost) dimension.

    Specifically: `x >= 0` and `x.sum(-1) == 1`.

    """

    event_dim = 1

    def check(self, value):
        return torch.all(value >= 0, dim=-1) & ((value.sum(-1) - 1).abs() < 1e-6)


class _Multinomial(Constraint):
    """

    Constrain to nonnegative integer values summing to at most an upper bound.



    Note due to limitations of the Multinomial distribution, this currently

    checks the weaker condition ``value.sum(-1) <= upper_bound``. In the future

    this may be strengthened to ``value.sum(-1) == upper_bound``.

    """

    is_discrete = True
    event_dim = 1

    def __init__(self, upper_bound):
        self.upper_bound = upper_bound

    def check(self, x):
        return (x >= 0).all(dim=-1) & (x.sum(dim=-1) <= self.upper_bound)


class _LowerTriangular(Constraint):
    """

    Constrain to lower-triangular square matrices.

    """

    event_dim = 2

    def check(self, value):
        value_tril = value.tril()
        return (value_tril == value).view(value.shape[:-2] + (-1,)).min(-1)[0]


class _LowerCholesky(Constraint):
    """

    Constrain to lower-triangular square matrices with positive diagonals.

    """

    event_dim = 2

    def check(self, value):
        value_tril = value.tril()
        lower_triangular = (
            (value_tril == value).view(value.shape[:-2] + (-1,)).min(-1)[0]
        )

        positive_diagonal = (value.diagonal(dim1=-2, dim2=-1) > 0).min(-1)[0]
        return lower_triangular & positive_diagonal


class _CorrCholesky(Constraint):
    """

    Constrain to lower-triangular square matrices with positive diagonals and each

    row vector being of unit length.

    """

    event_dim = 2

    def check(self, value):
        tol = (
            torch.finfo(value.dtype).eps * value.size(-1) * 10
        )  # 10 is an adjustable fudge factor
        row_norm = torch.linalg.norm(value.detach(), dim=-1)
        unit_row_norm = (row_norm - 1.0).abs().le(tol).all(dim=-1)
        return _LowerCholesky().check(value) & unit_row_norm


class _Square(Constraint):
    """

    Constrain to square matrices.

    """

    event_dim = 2

    def check(self, value):
        return torch.full(
            size=value.shape[:-2],
            fill_value=(value.shape[-2] == value.shape[-1]),
            dtype=torch.bool,
            device=value.device,
        )


class _Symmetric(_Square):
    """

    Constrain to Symmetric square matrices.

    """

    def check(self, value):
        square_check = super().check(value)
        if not square_check.all():
            return square_check
        return torch.isclose(value, value.mT, atol=1e-6).all(-2).all(-1)


class _PositiveSemidefinite(_Symmetric):
    """

    Constrain to positive-semidefinite matrices.

    """

    def check(self, value):
        sym_check = super().check(value)
        if not sym_check.all():
            return sym_check
        return torch.linalg.eigvalsh(value).ge(0).all(-1)


class _PositiveDefinite(_Symmetric):
    """

    Constrain to positive-definite matrices.

    """

    def check(self, value):
        sym_check = super().check(value)
        if not sym_check.all():
            return sym_check
        return torch.linalg.cholesky_ex(value).info.eq(0)


class _Cat(Constraint):
    """

    Constraint functor that applies a sequence of constraints

    `cseq` at the submatrices at dimension `dim`,

    each of size `lengths[dim]`, in a way compatible with :func:`torch.cat`.

    """

    def __init__(self, cseq, dim=0, lengths=None):
        assert all(isinstance(c, Constraint) for c in cseq)
        self.cseq = list(cseq)
        if lengths is None:
            lengths = [1] * len(self.cseq)
        self.lengths = list(lengths)
        assert len(self.lengths) == len(self.cseq)
        self.dim = dim
        super().__init__()

    @property
    def is_discrete(self):
        return any(c.is_discrete for c in self.cseq)

    @property
    def event_dim(self):
        return max(c.event_dim for c in self.cseq)

    def check(self, value):
        assert -value.dim() <= self.dim < value.dim()
        checks = []
        start = 0
        for constr, length in zip(self.cseq, self.lengths):
            v = value.narrow(self.dim, start, length)
            checks.append(constr.check(v))
            start = start + length  # avoid += for jit compat
        return torch.cat(checks, self.dim)


class _Stack(Constraint):
    """

    Constraint functor that applies a sequence of constraints

    `cseq` at the submatrices at dimension `dim`,

    in a way compatible with :func:`torch.stack`.

    """

    def __init__(self, cseq, dim=0):
        assert all(isinstance(c, Constraint) for c in cseq)
        self.cseq = list(cseq)
        self.dim = dim
        super().__init__()

    @property
    def is_discrete(self):
        return any(c.is_discrete for c in self.cseq)

    @property
    def event_dim(self):
        dim = max(c.event_dim for c in self.cseq)
        if self.dim + dim < 0:
            dim += 1
        return dim

    def check(self, value):
        assert -value.dim() <= self.dim < value.dim()
        vs = [value.select(self.dim, i) for i in range(value.size(self.dim))]
        return torch.stack(
            [constr.check(v) for v, constr in zip(vs, self.cseq)], self.dim
        )


# Public interface.
dependent = _Dependent()
dependent_property = _DependentProperty
independent = _IndependentConstraint
boolean = _Boolean()
one_hot = _OneHot()
nonnegative_integer = _IntegerGreaterThan(0)
positive_integer = _IntegerGreaterThan(1)
integer_interval = _IntegerInterval
real = _Real()
real_vector = independent(real, 1)
positive = _GreaterThan(0.0)
nonnegative = _GreaterThanEq(0.0)
greater_than = _GreaterThan
greater_than_eq = _GreaterThanEq
less_than = _LessThan
multinomial = _Multinomial
unit_interval = _Interval(0.0, 1.0)
interval = _Interval
half_open_interval = _HalfOpenInterval
simplex = _Simplex()
lower_triangular = _LowerTriangular()
lower_cholesky = _LowerCholesky()
corr_cholesky = _CorrCholesky()
square = _Square()
symmetric = _Symmetric()
positive_semidefinite = _PositiveSemidefinite()
positive_definite = _PositiveDefinite()
cat = _Cat
stack = _Stack