File size: 2,415 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from torch.distributions.distribution import Distribution

__all__ = ["ExponentialFamily"]


class ExponentialFamily(Distribution):
    r"""

    ExponentialFamily is the abstract base class for probability distributions belonging to an

    exponential family, whose probability mass/density function has the form is defined below



    .. math::



        p_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x))



    where :math:`\theta` denotes the natural parameters, :math:`t(x)` denotes the sufficient statistic,

    :math:`F(\theta)` is the log normalizer function for a given family and :math:`k(x)` is the carrier

    measure.



    Note:

        This class is an intermediary between the `Distribution` class and distributions which belong

        to an exponential family mainly to check the correctness of the `.entropy()` and analytic KL

        divergence methods. We use this class to compute the entropy and KL divergence using the AD

        framework and Bregman divergences (courtesy of: Frank Nielsen and Richard Nock, Entropies and

        Cross-entropies of Exponential Families).

    """

    @property
    def _natural_params(self):
        """

        Abstract method for natural parameters. Returns a tuple of Tensors based

        on the distribution

        """
        raise NotImplementedError

    def _log_normalizer(self, *natural_params):
        """

        Abstract method for log normalizer function. Returns a log normalizer based on

        the distribution and input

        """
        raise NotImplementedError

    @property
    def _mean_carrier_measure(self):
        """

        Abstract method for expected carrier measure, which is required for computing

        entropy.

        """
        raise NotImplementedError

    def entropy(self):
        """

        Method to compute the entropy using Bregman divergence of the log normalizer.

        """
        result = -self._mean_carrier_measure
        nparams = [p.detach().requires_grad_() for p in self._natural_params]
        lg_normal = self._log_normalizer(*nparams)
        gradients = torch.autograd.grad(lg_normal.sum(), nparams, create_graph=True)
        result += lg_normal
        for np, g in zip(nparams, gradients):
            result -= (np * g).reshape(self._batch_shape + (-1,)).sum(-1)
        return result