Spaces:
Running
Running
File size: 4,780 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import (
broadcast_all,
lazy_property,
logits_to_probs,
probs_to_logits,
)
from torch.nn.functional import binary_cross_entropy_with_logits
__all__ = ["Geometric"]
class Geometric(Distribution):
r"""
Creates a Geometric distribution parameterized by :attr:`probs`,
where :attr:`probs` is the probability of success of Bernoulli trials.
.. math::
P(X=k) = (1-p)^{k} p, k = 0, 1, ...
.. note::
:func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success
hence draws samples in :math:`\{0, 1, \ldots\}`, whereas
:func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Geometric(torch.tensor([0.3]))
>>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0
tensor([ 2.])
Args:
probs (Number, Tensor): the probability of sampling `1`. Must be in range (0, 1]
logits (Number, Tensor): the log-odds of sampling `1`.
"""
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
support = constraints.nonnegative_integer
def __init__(self, probs=None, logits=None, validate_args=None):
if (probs is None) == (logits is None):
raise ValueError(
"Either `probs` or `logits` must be specified, but not both."
)
if probs is not None:
(self.probs,) = broadcast_all(probs)
else:
(self.logits,) = broadcast_all(logits)
probs_or_logits = probs if probs is not None else logits
if isinstance(probs_or_logits, Number):
batch_shape = torch.Size()
else:
batch_shape = probs_or_logits.size()
super().__init__(batch_shape, validate_args=validate_args)
if self._validate_args and probs is not None:
# Add an extra check beyond unit_interval
value = self.probs
valid = value > 0
if not valid.all():
invalid_value = value.data[~valid]
raise ValueError(
"Expected parameter probs "
f"({type(value).__name__} of shape {tuple(value.shape)}) "
f"of distribution {repr(self)} "
f"to be positive but found invalid values:\n{invalid_value}"
)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Geometric, _instance)
batch_shape = torch.Size(batch_shape)
if "probs" in self.__dict__:
new.probs = self.probs.expand(batch_shape)
if "logits" in self.__dict__:
new.logits = self.logits.expand(batch_shape)
super(Geometric, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
@property
def mean(self):
return 1.0 / self.probs - 1.0
@property
def mode(self):
return torch.zeros_like(self.probs)
@property
def variance(self):
return (1.0 / self.probs - 1.0) / self.probs
@lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
def sample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
tiny = torch.finfo(self.probs.dtype).tiny
with torch.no_grad():
if torch._C._get_tracing_state():
# [JIT WORKAROUND] lack of support for .uniform_()
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
u = u.clamp(min=tiny)
else:
u = self.probs.new(shape).uniform_(tiny, 1)
return (u.log() / (-self.probs).log1p()).floor()
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
value, probs = broadcast_all(value, self.probs)
probs = probs.clone(memory_format=torch.contiguous_format)
probs[(probs == 1) & (value == 0)] = 0
return value * (-probs).log1p() + self.probs.log()
def entropy(self):
return (
binary_cross_entropy_with_logits(self.logits, self.probs, reduction="none")
/ self.probs
)
|