File size: 4,730 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import Dict

import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import _sum_rightmost

__all__ = ["Independent"]


class Independent(Distribution):
    r"""

    Reinterprets some of the batch dims of a distribution as event dims.



    This is mainly useful for changing the shape of the result of

    :meth:`log_prob`. For example to create a diagonal Normal distribution with

    the same shape as a Multivariate Normal distribution (so they are

    interchangeable), you can::



        >>> from torch.distributions.multivariate_normal import MultivariateNormal

        >>> from torch.distributions.normal import Normal

        >>> loc = torch.zeros(3)

        >>> scale = torch.ones(3)

        >>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale))

        >>> [mvn.batch_shape, mvn.event_shape]

        [torch.Size([]), torch.Size([3])]

        >>> normal = Normal(loc, scale)

        >>> [normal.batch_shape, normal.event_shape]

        [torch.Size([3]), torch.Size([])]

        >>> diagn = Independent(normal, 1)

        >>> [diagn.batch_shape, diagn.event_shape]

        [torch.Size([]), torch.Size([3])]



    Args:

        base_distribution (torch.distributions.distribution.Distribution): a

            base distribution

        reinterpreted_batch_ndims (int): the number of batch dims to

            reinterpret as event dims

    """
    arg_constraints: Dict[str, constraints.Constraint] = {}

    def __init__(

        self, base_distribution, reinterpreted_batch_ndims, validate_args=None

    ):
        if reinterpreted_batch_ndims > len(base_distribution.batch_shape):
            raise ValueError(
                "Expected reinterpreted_batch_ndims <= len(base_distribution.batch_shape), "
                f"actual {reinterpreted_batch_ndims} vs {len(base_distribution.batch_shape)}"
            )
        shape = base_distribution.batch_shape + base_distribution.event_shape
        event_dim = reinterpreted_batch_ndims + len(base_distribution.event_shape)
        batch_shape = shape[: len(shape) - event_dim]
        event_shape = shape[len(shape) - event_dim :]
        self.base_dist = base_distribution
        self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
        super().__init__(batch_shape, event_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Independent, _instance)
        batch_shape = torch.Size(batch_shape)
        new.base_dist = self.base_dist.expand(
            batch_shape + self.event_shape[: self.reinterpreted_batch_ndims]
        )
        new.reinterpreted_batch_ndims = self.reinterpreted_batch_ndims
        super(Independent, new).__init__(
            batch_shape, self.event_shape, validate_args=False
        )
        new._validate_args = self._validate_args
        return new

    @property
    def has_rsample(self):
        return self.base_dist.has_rsample

    @property
    def has_enumerate_support(self):
        if self.reinterpreted_batch_ndims > 0:
            return False
        return self.base_dist.has_enumerate_support

    @constraints.dependent_property
    def support(self):
        result = self.base_dist.support
        if self.reinterpreted_batch_ndims:
            result = constraints.independent(result, self.reinterpreted_batch_ndims)
        return result

    @property
    def mean(self):
        return self.base_dist.mean

    @property
    def mode(self):
        return self.base_dist.mode

    @property
    def variance(self):
        return self.base_dist.variance

    def sample(self, sample_shape=torch.Size()):
        return self.base_dist.sample(sample_shape)

    def rsample(self, sample_shape=torch.Size()):
        return self.base_dist.rsample(sample_shape)

    def log_prob(self, value):
        log_prob = self.base_dist.log_prob(value)
        return _sum_rightmost(log_prob, self.reinterpreted_batch_ndims)

    def entropy(self):
        entropy = self.base_dist.entropy()
        return _sum_rightmost(entropy, self.reinterpreted_batch_ndims)

    def enumerate_support(self, expand=True):
        if self.reinterpreted_batch_ndims > 0:
            raise NotImplementedError(
                "Enumeration over cartesian product is not implemented"
            )
        return self.base_dist.enumerate_support(expand=expand)

    def __repr__(self):
        return (
            self.__class__.__name__
            + f"({self.base_dist}, {self.reinterpreted_batch_ndims})"
        )