Spaces:
Running
Running
File size: 11,008 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import math
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import _standard_normal, lazy_property
__all__ = ["MultivariateNormal"]
def _batch_mv(bmat, bvec):
r"""
Performs a batched matrix-vector product, with compatible but different batch shapes.
This function takes as input `bmat`, containing :math:`n \times n` matrices, and
`bvec`, containing length :math:`n` vectors.
Both `bmat` and `bvec` may have any number of leading dimensions, which correspond
to a batch shape. They are not necessarily assumed to have the same batch shape,
just ones which can be broadcasted.
"""
return torch.matmul(bmat, bvec.unsqueeze(-1)).squeeze(-1)
def _batch_mahalanobis(bL, bx):
r"""
Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}`
for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`.
Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch
shape, but `bL` one should be able to broadcasted to `bx` one.
"""
n = bx.size(-1)
bx_batch_shape = bx.shape[:-1]
# Assume that bL.shape = (i, 1, n, n), bx.shape = (..., i, j, n),
# we are going to make bx have shape (..., 1, j, i, 1, n) to apply batched tri.solve
bx_batch_dims = len(bx_batch_shape)
bL_batch_dims = bL.dim() - 2
outer_batch_dims = bx_batch_dims - bL_batch_dims
old_batch_dims = outer_batch_dims + bL_batch_dims
new_batch_dims = outer_batch_dims + 2 * bL_batch_dims
# Reshape bx with the shape (..., 1, i, j, 1, n)
bx_new_shape = bx.shape[:outer_batch_dims]
for sL, sx in zip(bL.shape[:-2], bx.shape[outer_batch_dims:-1]):
bx_new_shape += (sx // sL, sL)
bx_new_shape += (n,)
bx = bx.reshape(bx_new_shape)
# Permute bx to make it have shape (..., 1, j, i, 1, n)
permute_dims = (
list(range(outer_batch_dims))
+ list(range(outer_batch_dims, new_batch_dims, 2))
+ list(range(outer_batch_dims + 1, new_batch_dims, 2))
+ [new_batch_dims]
)
bx = bx.permute(permute_dims)
flat_L = bL.reshape(-1, n, n) # shape = b x n x n
flat_x = bx.reshape(-1, flat_L.size(0), n) # shape = c x b x n
flat_x_swap = flat_x.permute(1, 2, 0) # shape = b x n x c
M_swap = (
torch.linalg.solve_triangular(flat_L, flat_x_swap, upper=False).pow(2).sum(-2)
) # shape = b x c
M = M_swap.t() # shape = c x b
# Now we revert the above reshape and permute operators.
permuted_M = M.reshape(bx.shape[:-1]) # shape = (..., 1, j, i, 1)
permute_inv_dims = list(range(outer_batch_dims))
for i in range(bL_batch_dims):
permute_inv_dims += [outer_batch_dims + i, old_batch_dims + i]
reshaped_M = permuted_M.permute(permute_inv_dims) # shape = (..., 1, i, j, 1)
return reshaped_M.reshape(bx_batch_shape)
def _precision_to_scale_tril(P):
# Ref: https://nbviewer.jupyter.org/gist/fehiepsi/5ef8e09e61604f10607380467eb82006#Precision-to-scale_tril
Lf = torch.linalg.cholesky(torch.flip(P, (-2, -1)))
L_inv = torch.transpose(torch.flip(Lf, (-2, -1)), -2, -1)
Id = torch.eye(P.shape[-1], dtype=P.dtype, device=P.device)
L = torch.linalg.solve_triangular(L_inv, Id, upper=False)
return L
class MultivariateNormal(Distribution):
r"""
Creates a multivariate normal (also called Gaussian) distribution
parameterized by a mean vector and a covariance matrix.
The multivariate normal distribution can be parameterized either
in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}`
or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}`
or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued
diagonal entries, such that
:math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix
can be obtained via e.g. Cholesky decomposition of the covariance.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = MultivariateNormal(torch.zeros(2), torch.eye(2))
>>> m.sample() # normally distributed with mean=`[0,0]` and covariance_matrix=`I`
tensor([-0.2102, -0.5429])
Args:
loc (Tensor): mean of the distribution
covariance_matrix (Tensor): positive-definite covariance matrix
precision_matrix (Tensor): positive-definite precision matrix
scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal
Note:
Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or
:attr:`scale_tril` can be specified.
Using :attr:`scale_tril` will be more efficient: all computations internally
are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or
:attr:`precision_matrix` is passed instead, it is only used to compute
the corresponding lower triangular matrices using a Cholesky decomposition.
"""
arg_constraints = {
"loc": constraints.real_vector,
"covariance_matrix": constraints.positive_definite,
"precision_matrix": constraints.positive_definite,
"scale_tril": constraints.lower_cholesky,
}
support = constraints.real_vector
has_rsample = True
def __init__(
self,
loc,
covariance_matrix=None,
precision_matrix=None,
scale_tril=None,
validate_args=None,
):
if loc.dim() < 1:
raise ValueError("loc must be at least one-dimensional.")
if (covariance_matrix is not None) + (scale_tril is not None) + (
precision_matrix is not None
) != 1:
raise ValueError(
"Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."
)
if scale_tril is not None:
if scale_tril.dim() < 2:
raise ValueError(
"scale_tril matrix must be at least two-dimensional, "
"with optional leading batch dimensions"
)
batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1])
self.scale_tril = scale_tril.expand(batch_shape + (-1, -1))
elif covariance_matrix is not None:
if covariance_matrix.dim() < 2:
raise ValueError(
"covariance_matrix must be at least two-dimensional, "
"with optional leading batch dimensions"
)
batch_shape = torch.broadcast_shapes(
covariance_matrix.shape[:-2], loc.shape[:-1]
)
self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1))
else:
if precision_matrix.dim() < 2:
raise ValueError(
"precision_matrix must be at least two-dimensional, "
"with optional leading batch dimensions"
)
batch_shape = torch.broadcast_shapes(
precision_matrix.shape[:-2], loc.shape[:-1]
)
self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1))
self.loc = loc.expand(batch_shape + (-1,))
event_shape = self.loc.shape[-1:]
super().__init__(batch_shape, event_shape, validate_args=validate_args)
if scale_tril is not None:
self._unbroadcasted_scale_tril = scale_tril
elif covariance_matrix is not None:
self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
else: # precision_matrix is not None
self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(MultivariateNormal, _instance)
batch_shape = torch.Size(batch_shape)
loc_shape = batch_shape + self.event_shape
cov_shape = batch_shape + self.event_shape + self.event_shape
new.loc = self.loc.expand(loc_shape)
new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril
if "covariance_matrix" in self.__dict__:
new.covariance_matrix = self.covariance_matrix.expand(cov_shape)
if "scale_tril" in self.__dict__:
new.scale_tril = self.scale_tril.expand(cov_shape)
if "precision_matrix" in self.__dict__:
new.precision_matrix = self.precision_matrix.expand(cov_shape)
super(MultivariateNormal, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
@lazy_property
def scale_tril(self):
return self._unbroadcasted_scale_tril.expand(
self._batch_shape + self._event_shape + self._event_shape
)
@lazy_property
def covariance_matrix(self):
return torch.matmul(
self._unbroadcasted_scale_tril, self._unbroadcasted_scale_tril.mT
).expand(self._batch_shape + self._event_shape + self._event_shape)
@lazy_property
def precision_matrix(self):
return torch.cholesky_inverse(self._unbroadcasted_scale_tril).expand(
self._batch_shape + self._event_shape + self._event_shape
)
@property
def mean(self):
return self.loc
@property
def mode(self):
return self.loc
@property
def variance(self):
return (
self._unbroadcasted_scale_tril.pow(2)
.sum(-1)
.expand(self._batch_shape + self._event_shape)
)
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
return self.loc + _batch_mv(self._unbroadcasted_scale_tril, eps)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
diff = value - self.loc
M = _batch_mahalanobis(self._unbroadcasted_scale_tril, diff)
half_log_det = (
self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
)
return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + M) - half_log_det
def entropy(self):
half_log_det = (
self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
)
H = 0.5 * self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + half_log_det
if len(self._batch_shape) == 0:
return H
else:
return H.expand(self._batch_shape)
|