File size: 11,008 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import math

import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import _standard_normal, lazy_property

__all__ = ["MultivariateNormal"]


def _batch_mv(bmat, bvec):
    r"""

    Performs a batched matrix-vector product, with compatible but different batch shapes.



    This function takes as input `bmat`, containing :math:`n \times n` matrices, and

    `bvec`, containing length :math:`n` vectors.



    Both `bmat` and `bvec` may have any number of leading dimensions, which correspond

    to a batch shape. They are not necessarily assumed to have the same batch shape,

    just ones which can be broadcasted.

    """
    return torch.matmul(bmat, bvec.unsqueeze(-1)).squeeze(-1)


def _batch_mahalanobis(bL, bx):
    r"""

    Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}`

    for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`.



    Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch

    shape, but `bL` one should be able to broadcasted to `bx` one.

    """
    n = bx.size(-1)
    bx_batch_shape = bx.shape[:-1]

    # Assume that bL.shape = (i, 1, n, n), bx.shape = (..., i, j, n),
    # we are going to make bx have shape (..., 1, j,  i, 1, n) to apply batched tri.solve
    bx_batch_dims = len(bx_batch_shape)
    bL_batch_dims = bL.dim() - 2
    outer_batch_dims = bx_batch_dims - bL_batch_dims
    old_batch_dims = outer_batch_dims + bL_batch_dims
    new_batch_dims = outer_batch_dims + 2 * bL_batch_dims
    # Reshape bx with the shape (..., 1, i, j, 1, n)
    bx_new_shape = bx.shape[:outer_batch_dims]
    for sL, sx in zip(bL.shape[:-2], bx.shape[outer_batch_dims:-1]):
        bx_new_shape += (sx // sL, sL)
    bx_new_shape += (n,)
    bx = bx.reshape(bx_new_shape)
    # Permute bx to make it have shape (..., 1, j, i, 1, n)
    permute_dims = (
        list(range(outer_batch_dims))
        + list(range(outer_batch_dims, new_batch_dims, 2))
        + list(range(outer_batch_dims + 1, new_batch_dims, 2))
        + [new_batch_dims]
    )
    bx = bx.permute(permute_dims)

    flat_L = bL.reshape(-1, n, n)  # shape = b x n x n
    flat_x = bx.reshape(-1, flat_L.size(0), n)  # shape = c x b x n
    flat_x_swap = flat_x.permute(1, 2, 0)  # shape = b x n x c
    M_swap = (
        torch.linalg.solve_triangular(flat_L, flat_x_swap, upper=False).pow(2).sum(-2)
    )  # shape = b x c
    M = M_swap.t()  # shape = c x b

    # Now we revert the above reshape and permute operators.
    permuted_M = M.reshape(bx.shape[:-1])  # shape = (..., 1, j, i, 1)
    permute_inv_dims = list(range(outer_batch_dims))
    for i in range(bL_batch_dims):
        permute_inv_dims += [outer_batch_dims + i, old_batch_dims + i]
    reshaped_M = permuted_M.permute(permute_inv_dims)  # shape = (..., 1, i, j, 1)
    return reshaped_M.reshape(bx_batch_shape)


def _precision_to_scale_tril(P):
    # Ref: https://nbviewer.jupyter.org/gist/fehiepsi/5ef8e09e61604f10607380467eb82006#Precision-to-scale_tril
    Lf = torch.linalg.cholesky(torch.flip(P, (-2, -1)))
    L_inv = torch.transpose(torch.flip(Lf, (-2, -1)), -2, -1)
    Id = torch.eye(P.shape[-1], dtype=P.dtype, device=P.device)
    L = torch.linalg.solve_triangular(L_inv, Id, upper=False)
    return L


class MultivariateNormal(Distribution):
    r"""

    Creates a multivariate normal (also called Gaussian) distribution

    parameterized by a mean vector and a covariance matrix.



    The multivariate normal distribution can be parameterized either

    in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}`

    or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}`

    or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued

    diagonal entries, such that

    :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix

    can be obtained via e.g. Cholesky decomposition of the covariance.



    Example:



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = MultivariateNormal(torch.zeros(2), torch.eye(2))

        >>> m.sample()  # normally distributed with mean=`[0,0]` and covariance_matrix=`I`

        tensor([-0.2102, -0.5429])



    Args:

        loc (Tensor): mean of the distribution

        covariance_matrix (Tensor): positive-definite covariance matrix

        precision_matrix (Tensor): positive-definite precision matrix

        scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal



    Note:

        Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or

        :attr:`scale_tril` can be specified.



        Using :attr:`scale_tril` will be more efficient: all computations internally

        are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or

        :attr:`precision_matrix` is passed instead, it is only used to compute

        the corresponding lower triangular matrices using a Cholesky decomposition.

    """
    arg_constraints = {
        "loc": constraints.real_vector,
        "covariance_matrix": constraints.positive_definite,
        "precision_matrix": constraints.positive_definite,
        "scale_tril": constraints.lower_cholesky,
    }
    support = constraints.real_vector
    has_rsample = True

    def __init__(

        self,

        loc,

        covariance_matrix=None,

        precision_matrix=None,

        scale_tril=None,

        validate_args=None,

    ):
        if loc.dim() < 1:
            raise ValueError("loc must be at least one-dimensional.")
        if (covariance_matrix is not None) + (scale_tril is not None) + (
            precision_matrix is not None
        ) != 1:
            raise ValueError(
                "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."
            )

        if scale_tril is not None:
            if scale_tril.dim() < 2:
                raise ValueError(
                    "scale_tril matrix must be at least two-dimensional, "
                    "with optional leading batch dimensions"
                )
            batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1])
            self.scale_tril = scale_tril.expand(batch_shape + (-1, -1))
        elif covariance_matrix is not None:
            if covariance_matrix.dim() < 2:
                raise ValueError(
                    "covariance_matrix must be at least two-dimensional, "
                    "with optional leading batch dimensions"
                )
            batch_shape = torch.broadcast_shapes(
                covariance_matrix.shape[:-2], loc.shape[:-1]
            )
            self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1))
        else:
            if precision_matrix.dim() < 2:
                raise ValueError(
                    "precision_matrix must be at least two-dimensional, "
                    "with optional leading batch dimensions"
                )
            batch_shape = torch.broadcast_shapes(
                precision_matrix.shape[:-2], loc.shape[:-1]
            )
            self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1))
        self.loc = loc.expand(batch_shape + (-1,))

        event_shape = self.loc.shape[-1:]
        super().__init__(batch_shape, event_shape, validate_args=validate_args)

        if scale_tril is not None:
            self._unbroadcasted_scale_tril = scale_tril
        elif covariance_matrix is not None:
            self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
        else:  # precision_matrix is not None
            self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(MultivariateNormal, _instance)
        batch_shape = torch.Size(batch_shape)
        loc_shape = batch_shape + self.event_shape
        cov_shape = batch_shape + self.event_shape + self.event_shape
        new.loc = self.loc.expand(loc_shape)
        new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril
        if "covariance_matrix" in self.__dict__:
            new.covariance_matrix = self.covariance_matrix.expand(cov_shape)
        if "scale_tril" in self.__dict__:
            new.scale_tril = self.scale_tril.expand(cov_shape)
        if "precision_matrix" in self.__dict__:
            new.precision_matrix = self.precision_matrix.expand(cov_shape)
        super(MultivariateNormal, new).__init__(
            batch_shape, self.event_shape, validate_args=False
        )
        new._validate_args = self._validate_args
        return new

    @lazy_property
    def scale_tril(self):
        return self._unbroadcasted_scale_tril.expand(
            self._batch_shape + self._event_shape + self._event_shape
        )

    @lazy_property
    def covariance_matrix(self):
        return torch.matmul(
            self._unbroadcasted_scale_tril, self._unbroadcasted_scale_tril.mT
        ).expand(self._batch_shape + self._event_shape + self._event_shape)

    @lazy_property
    def precision_matrix(self):
        return torch.cholesky_inverse(self._unbroadcasted_scale_tril).expand(
            self._batch_shape + self._event_shape + self._event_shape
        )

    @property
    def mean(self):
        return self.loc

    @property
    def mode(self):
        return self.loc

    @property
    def variance(self):
        return (
            self._unbroadcasted_scale_tril.pow(2)
            .sum(-1)
            .expand(self._batch_shape + self._event_shape)
        )

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
        return self.loc + _batch_mv(self._unbroadcasted_scale_tril, eps)

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        diff = value - self.loc
        M = _batch_mahalanobis(self._unbroadcasted_scale_tril, diff)
        half_log_det = (
            self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
        )
        return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + M) - half_log_det

    def entropy(self):
        half_log_det = (
            self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
        )
        H = 0.5 * self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + half_log_det
        if len(self._batch_shape) == 0:
            return H
        else:
            return H.expand(self._batch_shape)