File size: 42,179 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
import functools
import math
import numbers
import operator
import weakref
from typing import List

import torch
import torch.nn.functional as F
from torch.distributions import constraints
from torch.distributions.utils import (
    _sum_rightmost,
    broadcast_all,
    lazy_property,
    tril_matrix_to_vec,
    vec_to_tril_matrix,
)
from torch.nn.functional import pad, softplus

__all__ = [
    "AbsTransform",
    "AffineTransform",
    "CatTransform",
    "ComposeTransform",
    "CorrCholeskyTransform",
    "CumulativeDistributionTransform",
    "ExpTransform",
    "IndependentTransform",
    "LowerCholeskyTransform",
    "PositiveDefiniteTransform",
    "PowerTransform",
    "ReshapeTransform",
    "SigmoidTransform",
    "SoftplusTransform",
    "TanhTransform",
    "SoftmaxTransform",
    "StackTransform",
    "StickBreakingTransform",
    "Transform",
    "identity_transform",
]


class Transform:
    """

    Abstract class for invertable transformations with computable log

    det jacobians. They are primarily used in

    :class:`torch.distributions.TransformedDistribution`.



    Caching is useful for transforms whose inverses are either expensive or

    numerically unstable. Note that care must be taken with memoized values

    since the autograd graph may be reversed. For example while the following

    works with or without caching::



        y = t(x)

        t.log_abs_det_jacobian(x, y).backward()  # x will receive gradients.



    However the following will error when caching due to dependency reversal::



        y = t(x)

        z = t.inv(y)

        grad(z.sum(), [y])  # error because z is x



    Derived classes should implement one or both of :meth:`_call` or

    :meth:`_inverse`. Derived classes that set `bijective=True` should also

    implement :meth:`log_abs_det_jacobian`.



    Args:

        cache_size (int): Size of cache. If zero, no caching is done. If one,

            the latest single value is cached. Only 0 and 1 are supported.



    Attributes:

        domain (:class:`~torch.distributions.constraints.Constraint`):

            The constraint representing valid inputs to this transform.

        codomain (:class:`~torch.distributions.constraints.Constraint`):

            The constraint representing valid outputs to this transform

            which are inputs to the inverse transform.

        bijective (bool): Whether this transform is bijective. A transform

            ``t`` is bijective iff ``t.inv(t(x)) == x`` and

            ``t(t.inv(y)) == y`` for every ``x`` in the domain and ``y`` in

            the codomain. Transforms that are not bijective should at least

            maintain the weaker pseudoinverse properties

            ``t(t.inv(t(x)) == t(x)`` and ``t.inv(t(t.inv(y))) == t.inv(y)``.

        sign (int or Tensor): For bijective univariate transforms, this

            should be +1 or -1 depending on whether transform is monotone

            increasing or decreasing.

    """

    bijective = False
    domain: constraints.Constraint
    codomain: constraints.Constraint

    def __init__(self, cache_size=0):
        self._cache_size = cache_size
        self._inv = None
        if cache_size == 0:
            pass  # default behavior
        elif cache_size == 1:
            self._cached_x_y = None, None
        else:
            raise ValueError("cache_size must be 0 or 1")
        super().__init__()

    def __getstate__(self):
        state = self.__dict__.copy()
        state["_inv"] = None
        return state

    @property
    def event_dim(self):
        if self.domain.event_dim == self.codomain.event_dim:
            return self.domain.event_dim
        raise ValueError("Please use either .domain.event_dim or .codomain.event_dim")

    @property
    def inv(self):
        """

        Returns the inverse :class:`Transform` of this transform.

        This should satisfy ``t.inv.inv is t``.

        """
        inv = None
        if self._inv is not None:
            inv = self._inv()
        if inv is None:
            inv = _InverseTransform(self)
            self._inv = weakref.ref(inv)
        return inv

    @property
    def sign(self):
        """

        Returns the sign of the determinant of the Jacobian, if applicable.

        In general this only makes sense for bijective transforms.

        """
        raise NotImplementedError

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        if type(self).__init__ is Transform.__init__:
            return type(self)(cache_size=cache_size)
        raise NotImplementedError(f"{type(self)}.with_cache is not implemented")

    def __eq__(self, other):
        return self is other

    def __ne__(self, other):
        # Necessary for Python2
        return not self.__eq__(other)

    def __call__(self, x):
        """

        Computes the transform `x => y`.

        """
        if self._cache_size == 0:
            return self._call(x)
        x_old, y_old = self._cached_x_y
        if x is x_old:
            return y_old
        y = self._call(x)
        self._cached_x_y = x, y
        return y

    def _inv_call(self, y):
        """

        Inverts the transform `y => x`.

        """
        if self._cache_size == 0:
            return self._inverse(y)
        x_old, y_old = self._cached_x_y
        if y is y_old:
            return x_old
        x = self._inverse(y)
        self._cached_x_y = x, y
        return x

    def _call(self, x):
        """

        Abstract method to compute forward transformation.

        """
        raise NotImplementedError

    def _inverse(self, y):
        """

        Abstract method to compute inverse transformation.

        """
        raise NotImplementedError

    def log_abs_det_jacobian(self, x, y):
        """

        Computes the log det jacobian `log |dy/dx|` given input and output.

        """
        raise NotImplementedError

    def __repr__(self):
        return self.__class__.__name__ + "()"

    def forward_shape(self, shape):
        """

        Infers the shape of the forward computation, given the input shape.

        Defaults to preserving shape.

        """
        return shape

    def inverse_shape(self, shape):
        """

        Infers the shapes of the inverse computation, given the output shape.

        Defaults to preserving shape.

        """
        return shape


class _InverseTransform(Transform):
    """

    Inverts a single :class:`Transform`.

    This class is private; please instead use the ``Transform.inv`` property.

    """

    def __init__(self, transform: Transform):
        super().__init__(cache_size=transform._cache_size)
        self._inv: Transform = transform

    @constraints.dependent_property(is_discrete=False)
    def domain(self):
        assert self._inv is not None
        return self._inv.codomain

    @constraints.dependent_property(is_discrete=False)
    def codomain(self):
        assert self._inv is not None
        return self._inv.domain

    @property
    def bijective(self):
        assert self._inv is not None
        return self._inv.bijective

    @property
    def sign(self):
        assert self._inv is not None
        return self._inv.sign

    @property
    def inv(self):
        return self._inv

    def with_cache(self, cache_size=1):
        assert self._inv is not None
        return self.inv.with_cache(cache_size).inv

    def __eq__(self, other):
        if not isinstance(other, _InverseTransform):
            return False
        assert self._inv is not None
        return self._inv == other._inv

    def __repr__(self):
        return f"{self.__class__.__name__}({repr(self._inv)})"

    def __call__(self, x):
        assert self._inv is not None
        return self._inv._inv_call(x)

    def log_abs_det_jacobian(self, x, y):
        assert self._inv is not None
        return -self._inv.log_abs_det_jacobian(y, x)

    def forward_shape(self, shape):
        return self._inv.inverse_shape(shape)

    def inverse_shape(self, shape):
        return self._inv.forward_shape(shape)


class ComposeTransform(Transform):
    """

    Composes multiple transforms in a chain.

    The transforms being composed are responsible for caching.



    Args:

        parts (list of :class:`Transform`): A list of transforms to compose.

        cache_size (int): Size of cache. If zero, no caching is done. If one,

            the latest single value is cached. Only 0 and 1 are supported.

    """

    def __init__(self, parts: List[Transform], cache_size=0):
        if cache_size:
            parts = [part.with_cache(cache_size) for part in parts]
        super().__init__(cache_size=cache_size)
        self.parts = parts

    def __eq__(self, other):
        if not isinstance(other, ComposeTransform):
            return False
        return self.parts == other.parts

    @constraints.dependent_property(is_discrete=False)
    def domain(self):
        if not self.parts:
            return constraints.real
        domain = self.parts[0].domain
        # Adjust event_dim to be maximum among all parts.
        event_dim = self.parts[-1].codomain.event_dim
        for part in reversed(self.parts):
            event_dim += part.domain.event_dim - part.codomain.event_dim
            event_dim = max(event_dim, part.domain.event_dim)
        assert event_dim >= domain.event_dim
        if event_dim > domain.event_dim:
            domain = constraints.independent(domain, event_dim - domain.event_dim)
        return domain

    @constraints.dependent_property(is_discrete=False)
    def codomain(self):
        if not self.parts:
            return constraints.real
        codomain = self.parts[-1].codomain
        # Adjust event_dim to be maximum among all parts.
        event_dim = self.parts[0].domain.event_dim
        for part in self.parts:
            event_dim += part.codomain.event_dim - part.domain.event_dim
            event_dim = max(event_dim, part.codomain.event_dim)
        assert event_dim >= codomain.event_dim
        if event_dim > codomain.event_dim:
            codomain = constraints.independent(codomain, event_dim - codomain.event_dim)
        return codomain

    @lazy_property
    def bijective(self):
        return all(p.bijective for p in self.parts)

    @lazy_property
    def sign(self):
        sign = 1
        for p in self.parts:
            sign = sign * p.sign
        return sign

    @property
    def inv(self):
        inv = None
        if self._inv is not None:
            inv = self._inv()
        if inv is None:
            inv = ComposeTransform([p.inv for p in reversed(self.parts)])
            self._inv = weakref.ref(inv)
            inv._inv = weakref.ref(self)
        return inv

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return ComposeTransform(self.parts, cache_size=cache_size)

    def __call__(self, x):
        for part in self.parts:
            x = part(x)
        return x

    def log_abs_det_jacobian(self, x, y):
        if not self.parts:
            return torch.zeros_like(x)

        # Compute intermediates. This will be free if parts[:-1] are all cached.
        xs = [x]
        for part in self.parts[:-1]:
            xs.append(part(xs[-1]))
        xs.append(y)

        terms = []
        event_dim = self.domain.event_dim
        for part, x, y in zip(self.parts, xs[:-1], xs[1:]):
            terms.append(
                _sum_rightmost(
                    part.log_abs_det_jacobian(x, y), event_dim - part.domain.event_dim
                )
            )
            event_dim += part.codomain.event_dim - part.domain.event_dim
        return functools.reduce(operator.add, terms)

    def forward_shape(self, shape):
        for part in self.parts:
            shape = part.forward_shape(shape)
        return shape

    def inverse_shape(self, shape):
        for part in reversed(self.parts):
            shape = part.inverse_shape(shape)
        return shape

    def __repr__(self):
        fmt_string = self.__class__.__name__ + "(\n    "
        fmt_string += ",\n    ".join([p.__repr__() for p in self.parts])
        fmt_string += "\n)"
        return fmt_string


identity_transform = ComposeTransform([])


class IndependentTransform(Transform):
    """

    Wrapper around another transform to treat

    ``reinterpreted_batch_ndims``-many extra of the right most dimensions as

    dependent. This has no effect on the forward or backward transforms, but

    does sum out ``reinterpreted_batch_ndims``-many of the rightmost dimensions

    in :meth:`log_abs_det_jacobian`.



    Args:

        base_transform (:class:`Transform`): A base transform.

        reinterpreted_batch_ndims (int): The number of extra rightmost

            dimensions to treat as dependent.

    """

    def __init__(self, base_transform, reinterpreted_batch_ndims, cache_size=0):
        super().__init__(cache_size=cache_size)
        self.base_transform = base_transform.with_cache(cache_size)
        self.reinterpreted_batch_ndims = reinterpreted_batch_ndims

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return IndependentTransform(
            self.base_transform, self.reinterpreted_batch_ndims, cache_size=cache_size
        )

    @constraints.dependent_property(is_discrete=False)
    def domain(self):
        return constraints.independent(
            self.base_transform.domain, self.reinterpreted_batch_ndims
        )

    @constraints.dependent_property(is_discrete=False)
    def codomain(self):
        return constraints.independent(
            self.base_transform.codomain, self.reinterpreted_batch_ndims
        )

    @property
    def bijective(self):
        return self.base_transform.bijective

    @property
    def sign(self):
        return self.base_transform.sign

    def _call(self, x):
        if x.dim() < self.domain.event_dim:
            raise ValueError("Too few dimensions on input")
        return self.base_transform(x)

    def _inverse(self, y):
        if y.dim() < self.codomain.event_dim:
            raise ValueError("Too few dimensions on input")
        return self.base_transform.inv(y)

    def log_abs_det_jacobian(self, x, y):
        result = self.base_transform.log_abs_det_jacobian(x, y)
        result = _sum_rightmost(result, self.reinterpreted_batch_ndims)
        return result

    def __repr__(self):
        return f"{self.__class__.__name__}({repr(self.base_transform)}, {self.reinterpreted_batch_ndims})"

    def forward_shape(self, shape):
        return self.base_transform.forward_shape(shape)

    def inverse_shape(self, shape):
        return self.base_transform.inverse_shape(shape)


class ReshapeTransform(Transform):
    """

    Unit Jacobian transform to reshape the rightmost part of a tensor.



    Note that ``in_shape`` and ``out_shape`` must have the same number of

    elements, just as for :meth:`torch.Tensor.reshape`.



    Arguments:

        in_shape (torch.Size): The input event shape.

        out_shape (torch.Size): The output event shape.

    """

    bijective = True

    def __init__(self, in_shape, out_shape, cache_size=0):
        self.in_shape = torch.Size(in_shape)
        self.out_shape = torch.Size(out_shape)
        if self.in_shape.numel() != self.out_shape.numel():
            raise ValueError("in_shape, out_shape have different numbers of elements")
        super().__init__(cache_size=cache_size)

    @constraints.dependent_property
    def domain(self):
        return constraints.independent(constraints.real, len(self.in_shape))

    @constraints.dependent_property
    def codomain(self):
        return constraints.independent(constraints.real, len(self.out_shape))

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return ReshapeTransform(self.in_shape, self.out_shape, cache_size=cache_size)

    def _call(self, x):
        batch_shape = x.shape[: x.dim() - len(self.in_shape)]
        return x.reshape(batch_shape + self.out_shape)

    def _inverse(self, y):
        batch_shape = y.shape[: y.dim() - len(self.out_shape)]
        return y.reshape(batch_shape + self.in_shape)

    def log_abs_det_jacobian(self, x, y):
        batch_shape = x.shape[: x.dim() - len(self.in_shape)]
        return x.new_zeros(batch_shape)

    def forward_shape(self, shape):
        if len(shape) < len(self.in_shape):
            raise ValueError("Too few dimensions on input")
        cut = len(shape) - len(self.in_shape)
        if shape[cut:] != self.in_shape:
            raise ValueError(
                f"Shape mismatch: expected {shape[cut:]} but got {self.in_shape}"
            )
        return shape[:cut] + self.out_shape

    def inverse_shape(self, shape):
        if len(shape) < len(self.out_shape):
            raise ValueError("Too few dimensions on input")
        cut = len(shape) - len(self.out_shape)
        if shape[cut:] != self.out_shape:
            raise ValueError(
                f"Shape mismatch: expected {shape[cut:]} but got {self.out_shape}"
            )
        return shape[:cut] + self.in_shape


class ExpTransform(Transform):
    r"""

    Transform via the mapping :math:`y = \exp(x)`.

    """
    domain = constraints.real
    codomain = constraints.positive
    bijective = True
    sign = +1

    def __eq__(self, other):
        return isinstance(other, ExpTransform)

    def _call(self, x):
        return x.exp()

    def _inverse(self, y):
        return y.log()

    def log_abs_det_jacobian(self, x, y):
        return x


class PowerTransform(Transform):
    r"""

    Transform via the mapping :math:`y = x^{\text{exponent}}`.

    """
    domain = constraints.positive
    codomain = constraints.positive
    bijective = True

    def __init__(self, exponent, cache_size=0):
        super().__init__(cache_size=cache_size)
        (self.exponent,) = broadcast_all(exponent)

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return PowerTransform(self.exponent, cache_size=cache_size)

    @lazy_property
    def sign(self):
        return self.exponent.sign()

    def __eq__(self, other):
        if not isinstance(other, PowerTransform):
            return False
        return self.exponent.eq(other.exponent).all().item()

    def _call(self, x):
        return x.pow(self.exponent)

    def _inverse(self, y):
        return y.pow(1 / self.exponent)

    def log_abs_det_jacobian(self, x, y):
        return (self.exponent * y / x).abs().log()

    def forward_shape(self, shape):
        return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))

    def inverse_shape(self, shape):
        return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))


def _clipped_sigmoid(x):
    finfo = torch.finfo(x.dtype)
    return torch.clamp(torch.sigmoid(x), min=finfo.tiny, max=1.0 - finfo.eps)


class SigmoidTransform(Transform):
    r"""

    Transform via the mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.

    """
    domain = constraints.real
    codomain = constraints.unit_interval
    bijective = True
    sign = +1

    def __eq__(self, other):
        return isinstance(other, SigmoidTransform)

    def _call(self, x):
        return _clipped_sigmoid(x)

    def _inverse(self, y):
        finfo = torch.finfo(y.dtype)
        y = y.clamp(min=finfo.tiny, max=1.0 - finfo.eps)
        return y.log() - (-y).log1p()

    def log_abs_det_jacobian(self, x, y):
        return -F.softplus(-x) - F.softplus(x)


class SoftplusTransform(Transform):
    r"""

    Transform via the mapping :math:`\text{Softplus}(x) = \log(1 + \exp(x))`.

    The implementation reverts to the linear function when :math:`x > 20`.

    """
    domain = constraints.real
    codomain = constraints.positive
    bijective = True
    sign = +1

    def __eq__(self, other):
        return isinstance(other, SoftplusTransform)

    def _call(self, x):
        return softplus(x)

    def _inverse(self, y):
        return (-y).expm1().neg().log() + y

    def log_abs_det_jacobian(self, x, y):
        return -softplus(-x)


class TanhTransform(Transform):
    r"""

    Transform via the mapping :math:`y = \tanh(x)`.



    It is equivalent to

    ```

    ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])

    ```

    However this might not be numerically stable, thus it is recommended to use `TanhTransform`

    instead.



    Note that one should use `cache_size=1` when it comes to `NaN/Inf` values.



    """
    domain = constraints.real
    codomain = constraints.interval(-1.0, 1.0)
    bijective = True
    sign = +1

    def __eq__(self, other):
        return isinstance(other, TanhTransform)

    def _call(self, x):
        return x.tanh()

    def _inverse(self, y):
        # We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
        # one should use `cache_size=1` instead
        return torch.atanh(y)

    def log_abs_det_jacobian(self, x, y):
        # We use a formula that is more numerically stable, see details in the following link
        # https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
        return 2.0 * (math.log(2.0) - x - softplus(-2.0 * x))


class AbsTransform(Transform):
    r"""

    Transform via the mapping :math:`y = |x|`.

    """
    domain = constraints.real
    codomain = constraints.positive

    def __eq__(self, other):
        return isinstance(other, AbsTransform)

    def _call(self, x):
        return x.abs()

    def _inverse(self, y):
        return y


class AffineTransform(Transform):
    r"""

    Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`.



    Args:

        loc (Tensor or float): Location parameter.

        scale (Tensor or float): Scale parameter.

        event_dim (int): Optional size of `event_shape`. This should be zero

            for univariate random variables, 1 for distributions over vectors,

            2 for distributions over matrices, etc.

    """
    bijective = True

    def __init__(self, loc, scale, event_dim=0, cache_size=0):
        super().__init__(cache_size=cache_size)
        self.loc = loc
        self.scale = scale
        self._event_dim = event_dim

    @property
    def event_dim(self):
        return self._event_dim

    @constraints.dependent_property(is_discrete=False)
    def domain(self):
        if self.event_dim == 0:
            return constraints.real
        return constraints.independent(constraints.real, self.event_dim)

    @constraints.dependent_property(is_discrete=False)
    def codomain(self):
        if self.event_dim == 0:
            return constraints.real
        return constraints.independent(constraints.real, self.event_dim)

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return AffineTransform(
            self.loc, self.scale, self.event_dim, cache_size=cache_size
        )

    def __eq__(self, other):
        if not isinstance(other, AffineTransform):
            return False

        if isinstance(self.loc, numbers.Number) and isinstance(
            other.loc, numbers.Number
        ):
            if self.loc != other.loc:
                return False
        else:
            if not (self.loc == other.loc).all().item():
                return False

        if isinstance(self.scale, numbers.Number) and isinstance(
            other.scale, numbers.Number
        ):
            if self.scale != other.scale:
                return False
        else:
            if not (self.scale == other.scale).all().item():
                return False

        return True

    @property
    def sign(self):
        if isinstance(self.scale, numbers.Real):
            return 1 if float(self.scale) > 0 else -1 if float(self.scale) < 0 else 0
        return self.scale.sign()

    def _call(self, x):
        return self.loc + self.scale * x

    def _inverse(self, y):
        return (y - self.loc) / self.scale

    def log_abs_det_jacobian(self, x, y):
        shape = x.shape
        scale = self.scale
        if isinstance(scale, numbers.Real):
            result = torch.full_like(x, math.log(abs(scale)))
        else:
            result = torch.abs(scale).log()
        if self.event_dim:
            result_size = result.size()[: -self.event_dim] + (-1,)
            result = result.view(result_size).sum(-1)
            shape = shape[: -self.event_dim]
        return result.expand(shape)

    def forward_shape(self, shape):
        return torch.broadcast_shapes(
            shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
        )

    def inverse_shape(self, shape):
        return torch.broadcast_shapes(
            shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
        )


class CorrCholeskyTransform(Transform):
    r"""

    Transforms an uncontrained real vector :math:`x` with length :math:`D*(D-1)/2` into the

    Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower

    triangular matrix with positive diagonals and unit Euclidean norm for each row.

    The transform is processed as follows:



        1. First we convert x into a lower triangular matrix in row order.

        2. For each row :math:`X_i` of the lower triangular part, we apply a *signed* version of

           class :class:`StickBreakingTransform` to transform :math:`X_i` into a

           unit Euclidean length vector using the following steps:

           - Scales into the interval :math:`(-1, 1)` domain: :math:`r_i = \tanh(X_i)`.

           - Transforms into an unsigned domain: :math:`z_i = r_i^2`.

           - Applies :math:`s_i = StickBreakingTransform(z_i)`.

           - Transforms back into signed domain: :math:`y_i = sign(r_i) * \sqrt{s_i}`.

    """
    domain = constraints.real_vector
    codomain = constraints.corr_cholesky
    bijective = True

    def _call(self, x):
        x = torch.tanh(x)
        eps = torch.finfo(x.dtype).eps
        x = x.clamp(min=-1 + eps, max=1 - eps)
        r = vec_to_tril_matrix(x, diag=-1)
        # apply stick-breaking on the squared values
        # Note that y = sign(r) * sqrt(z * z1m_cumprod)
        #             = (sign(r) * sqrt(z)) * sqrt(z1m_cumprod) = r * sqrt(z1m_cumprod)
        z = r**2
        z1m_cumprod_sqrt = (1 - z).sqrt().cumprod(-1)
        # Diagonal elements must be 1.
        r = r + torch.eye(r.shape[-1], dtype=r.dtype, device=r.device)
        y = r * pad(z1m_cumprod_sqrt[..., :-1], [1, 0], value=1)
        return y

    def _inverse(self, y):
        # inverse stick-breaking
        # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
        y_cumsum = 1 - torch.cumsum(y * y, dim=-1)
        y_cumsum_shifted = pad(y_cumsum[..., :-1], [1, 0], value=1)
        y_vec = tril_matrix_to_vec(y, diag=-1)
        y_cumsum_vec = tril_matrix_to_vec(y_cumsum_shifted, diag=-1)
        t = y_vec / (y_cumsum_vec).sqrt()
        # inverse of tanh
        x = (t.log1p() - t.neg().log1p()) / 2
        return x

    def log_abs_det_jacobian(self, x, y, intermediates=None):
        # Because domain and codomain are two spaces with different dimensions, determinant of
        # Jacobian is not well-defined. We return `log_abs_det_jacobian` of `x` and the
        # flattened lower triangular part of `y`.

        # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
        y1m_cumsum = 1 - (y * y).cumsum(dim=-1)
        # by taking diagonal=-2, we don't need to shift z_cumprod to the right
        # also works for 2 x 2 matrix
        y1m_cumsum_tril = tril_matrix_to_vec(y1m_cumsum, diag=-2)
        stick_breaking_logdet = 0.5 * (y1m_cumsum_tril).log().sum(-1)
        tanh_logdet = -2 * (x + softplus(-2 * x) - math.log(2.0)).sum(dim=-1)
        return stick_breaking_logdet + tanh_logdet

    def forward_shape(self, shape):
        # Reshape from (..., N) to (..., D, D).
        if len(shape) < 1:
            raise ValueError("Too few dimensions on input")
        N = shape[-1]
        D = round((0.25 + 2 * N) ** 0.5 + 0.5)
        if D * (D - 1) // 2 != N:
            raise ValueError("Input is not a flattend lower-diagonal number")
        return shape[:-1] + (D, D)

    def inverse_shape(self, shape):
        # Reshape from (..., D, D) to (..., N).
        if len(shape) < 2:
            raise ValueError("Too few dimensions on input")
        if shape[-2] != shape[-1]:
            raise ValueError("Input is not square")
        D = shape[-1]
        N = D * (D - 1) // 2
        return shape[:-2] + (N,)


class SoftmaxTransform(Transform):
    r"""

    Transform from unconstrained space to the simplex via :math:`y = \exp(x)` then

    normalizing.



    This is not bijective and cannot be used for HMC. However this acts mostly

    coordinate-wise (except for the final normalization), and thus is

    appropriate for coordinate-wise optimization algorithms.

    """
    domain = constraints.real_vector
    codomain = constraints.simplex

    def __eq__(self, other):
        return isinstance(other, SoftmaxTransform)

    def _call(self, x):
        logprobs = x
        probs = (logprobs - logprobs.max(-1, True)[0]).exp()
        return probs / probs.sum(-1, True)

    def _inverse(self, y):
        probs = y
        return probs.log()

    def forward_shape(self, shape):
        if len(shape) < 1:
            raise ValueError("Too few dimensions on input")
        return shape

    def inverse_shape(self, shape):
        if len(shape) < 1:
            raise ValueError("Too few dimensions on input")
        return shape


class StickBreakingTransform(Transform):
    """

    Transform from unconstrained space to the simplex of one additional

    dimension via a stick-breaking process.



    This transform arises as an iterated sigmoid transform in a stick-breaking

    construction of the `Dirichlet` distribution: the first logit is

    transformed via sigmoid to the first probability and the probability of

    everything else, and then the process recurses.



    This is bijective and appropriate for use in HMC; however it mixes

    coordinates together and is less appropriate for optimization.

    """

    domain = constraints.real_vector
    codomain = constraints.simplex
    bijective = True

    def __eq__(self, other):
        return isinstance(other, StickBreakingTransform)

    def _call(self, x):
        offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
        z = _clipped_sigmoid(x - offset.log())
        z_cumprod = (1 - z).cumprod(-1)
        y = pad(z, [0, 1], value=1) * pad(z_cumprod, [1, 0], value=1)
        return y

    def _inverse(self, y):
        y_crop = y[..., :-1]
        offset = y.shape[-1] - y.new_ones(y_crop.shape[-1]).cumsum(-1)
        sf = 1 - y_crop.cumsum(-1)
        # we clamp to make sure that sf is positive which sometimes does not
        # happen when y[-1] ~ 0 or y[:-1].sum() ~ 1
        sf = torch.clamp(sf, min=torch.finfo(y.dtype).tiny)
        x = y_crop.log() - sf.log() + offset.log()
        return x

    def log_abs_det_jacobian(self, x, y):
        offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
        x = x - offset.log()
        # use the identity 1 - sigmoid(x) = exp(-x) * sigmoid(x)
        detJ = (-x + F.logsigmoid(x) + y[..., :-1].log()).sum(-1)
        return detJ

    def forward_shape(self, shape):
        if len(shape) < 1:
            raise ValueError("Too few dimensions on input")
        return shape[:-1] + (shape[-1] + 1,)

    def inverse_shape(self, shape):
        if len(shape) < 1:
            raise ValueError("Too few dimensions on input")
        return shape[:-1] + (shape[-1] - 1,)


class LowerCholeskyTransform(Transform):
    """

    Transform from unconstrained matrices to lower-triangular matrices with

    nonnegative diagonal entries.



    This is useful for parameterizing positive definite matrices in terms of

    their Cholesky factorization.

    """

    domain = constraints.independent(constraints.real, 2)
    codomain = constraints.lower_cholesky

    def __eq__(self, other):
        return isinstance(other, LowerCholeskyTransform)

    def _call(self, x):
        return x.tril(-1) + x.diagonal(dim1=-2, dim2=-1).exp().diag_embed()

    def _inverse(self, y):
        return y.tril(-1) + y.diagonal(dim1=-2, dim2=-1).log().diag_embed()


class PositiveDefiniteTransform(Transform):
    """

    Transform from unconstrained matrices to positive-definite matrices.

    """

    domain = constraints.independent(constraints.real, 2)
    codomain = constraints.positive_definite  # type: ignore[assignment]

    def __eq__(self, other):
        return isinstance(other, PositiveDefiniteTransform)

    def _call(self, x):
        x = LowerCholeskyTransform()(x)
        return x @ x.mT

    def _inverse(self, y):
        y = torch.linalg.cholesky(y)
        return LowerCholeskyTransform().inv(y)


class CatTransform(Transform):
    """

    Transform functor that applies a sequence of transforms `tseq`

    component-wise to each submatrix at `dim`, of length `lengths[dim]`,

    in a way compatible with :func:`torch.cat`.



    Example::



       x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0)

       x = torch.cat([x0, x0], dim=0)

       t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10])

       t = CatTransform([t0, t0], dim=0, lengths=[20, 20])

       y = t(x)

    """

    transforms: List[Transform]

    def __init__(self, tseq, dim=0, lengths=None, cache_size=0):
        assert all(isinstance(t, Transform) for t in tseq)
        if cache_size:
            tseq = [t.with_cache(cache_size) for t in tseq]
        super().__init__(cache_size=cache_size)
        self.transforms = list(tseq)
        if lengths is None:
            lengths = [1] * len(self.transforms)
        self.lengths = list(lengths)
        assert len(self.lengths) == len(self.transforms)
        self.dim = dim

    @lazy_property
    def event_dim(self):
        return max(t.event_dim for t in self.transforms)

    @lazy_property
    def length(self):
        return sum(self.lengths)

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return CatTransform(self.transforms, self.dim, self.lengths, cache_size)

    def _call(self, x):
        assert -x.dim() <= self.dim < x.dim()
        assert x.size(self.dim) == self.length
        yslices = []
        start = 0
        for trans, length in zip(self.transforms, self.lengths):
            xslice = x.narrow(self.dim, start, length)
            yslices.append(trans(xslice))
            start = start + length  # avoid += for jit compat
        return torch.cat(yslices, dim=self.dim)

    def _inverse(self, y):
        assert -y.dim() <= self.dim < y.dim()
        assert y.size(self.dim) == self.length
        xslices = []
        start = 0
        for trans, length in zip(self.transforms, self.lengths):
            yslice = y.narrow(self.dim, start, length)
            xslices.append(trans.inv(yslice))
            start = start + length  # avoid += for jit compat
        return torch.cat(xslices, dim=self.dim)

    def log_abs_det_jacobian(self, x, y):
        assert -x.dim() <= self.dim < x.dim()
        assert x.size(self.dim) == self.length
        assert -y.dim() <= self.dim < y.dim()
        assert y.size(self.dim) == self.length
        logdetjacs = []
        start = 0
        for trans, length in zip(self.transforms, self.lengths):
            xslice = x.narrow(self.dim, start, length)
            yslice = y.narrow(self.dim, start, length)
            logdetjac = trans.log_abs_det_jacobian(xslice, yslice)
            if trans.event_dim < self.event_dim:
                logdetjac = _sum_rightmost(logdetjac, self.event_dim - trans.event_dim)
            logdetjacs.append(logdetjac)
            start = start + length  # avoid += for jit compat
        # Decide whether to concatenate or sum.
        dim = self.dim
        if dim >= 0:
            dim = dim - x.dim()
        dim = dim + self.event_dim
        if dim < 0:
            return torch.cat(logdetjacs, dim=dim)
        else:
            return sum(logdetjacs)

    @property
    def bijective(self):
        return all(t.bijective for t in self.transforms)

    @constraints.dependent_property
    def domain(self):
        return constraints.cat(
            [t.domain for t in self.transforms], self.dim, self.lengths
        )

    @constraints.dependent_property
    def codomain(self):
        return constraints.cat(
            [t.codomain for t in self.transforms], self.dim, self.lengths
        )


class StackTransform(Transform):
    """

    Transform functor that applies a sequence of transforms `tseq`

    component-wise to each submatrix at `dim`

    in a way compatible with :func:`torch.stack`.



    Example::



       x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1)

       t = StackTransform([ExpTransform(), identity_transform], dim=1)

       y = t(x)

    """

    transforms: List[Transform]

    def __init__(self, tseq, dim=0, cache_size=0):
        assert all(isinstance(t, Transform) for t in tseq)
        if cache_size:
            tseq = [t.with_cache(cache_size) for t in tseq]
        super().__init__(cache_size=cache_size)
        self.transforms = list(tseq)
        self.dim = dim

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return StackTransform(self.transforms, self.dim, cache_size)

    def _slice(self, z):
        return [z.select(self.dim, i) for i in range(z.size(self.dim))]

    def _call(self, x):
        assert -x.dim() <= self.dim < x.dim()
        assert x.size(self.dim) == len(self.transforms)
        yslices = []
        for xslice, trans in zip(self._slice(x), self.transforms):
            yslices.append(trans(xslice))
        return torch.stack(yslices, dim=self.dim)

    def _inverse(self, y):
        assert -y.dim() <= self.dim < y.dim()
        assert y.size(self.dim) == len(self.transforms)
        xslices = []
        for yslice, trans in zip(self._slice(y), self.transforms):
            xslices.append(trans.inv(yslice))
        return torch.stack(xslices, dim=self.dim)

    def log_abs_det_jacobian(self, x, y):
        assert -x.dim() <= self.dim < x.dim()
        assert x.size(self.dim) == len(self.transforms)
        assert -y.dim() <= self.dim < y.dim()
        assert y.size(self.dim) == len(self.transforms)
        logdetjacs = []
        yslices = self._slice(y)
        xslices = self._slice(x)
        for xslice, yslice, trans in zip(xslices, yslices, self.transforms):
            logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice))
        return torch.stack(logdetjacs, dim=self.dim)

    @property
    def bijective(self):
        return all(t.bijective for t in self.transforms)

    @constraints.dependent_property
    def domain(self):
        return constraints.stack([t.domain for t in self.transforms], self.dim)

    @constraints.dependent_property
    def codomain(self):
        return constraints.stack([t.codomain for t in self.transforms], self.dim)


class CumulativeDistributionTransform(Transform):
    """

    Transform via the cumulative distribution function of a probability distribution.



    Args:

        distribution (Distribution): Distribution whose cumulative distribution function to use for

            the transformation.



    Example::



        # Construct a Gaussian copula from a multivariate normal.

        base_dist = MultivariateNormal(

            loc=torch.zeros(2),

            scale_tril=LKJCholesky(2).sample(),

        )

        transform = CumulativeDistributionTransform(Normal(0, 1))

        copula = TransformedDistribution(base_dist, [transform])

    """

    bijective = True
    codomain = constraints.unit_interval
    sign = +1

    def __init__(self, distribution, cache_size=0):
        super().__init__(cache_size=cache_size)
        self.distribution = distribution

    @property
    def domain(self):
        return self.distribution.support

    def _call(self, x):
        return self.distribution.cdf(x)

    def _inverse(self, y):
        return self.distribution.icdf(y)

    def log_abs_det_jacobian(self, x, y):
        return self.distribution.log_prob(x)

    def with_cache(self, cache_size=1):
        if self._cache_size == cache_size:
            return self
        return CumulativeDistributionTransform(self.distribution, cache_size=cache_size)