File size: 13,956 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import math
import warnings
from numbers import Number
from typing import Optional, Union

import torch
from torch import nan
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.multivariate_normal import _precision_to_scale_tril
from torch.distributions.utils import lazy_property


__all__ = ["Wishart"]

_log_2 = math.log(2)


def _mvdigamma(x: torch.Tensor, p: int) -> torch.Tensor:
    assert x.gt((p - 1) / 2).all(), "Wrong domain for multivariate digamma function."
    return torch.digamma(
        x.unsqueeze(-1)
        - torch.arange(p, dtype=x.dtype, device=x.device).div(2).expand(x.shape + (-1,))
    ).sum(-1)


def _clamp_above_eps(x: torch.Tensor) -> torch.Tensor:
    # We assume positive input for this function
    return x.clamp(min=torch.finfo(x.dtype).eps)


class Wishart(ExponentialFamily):
    r"""

    Creates a Wishart distribution parameterized by a symmetric positive definite matrix :math:`\Sigma`,

    or its Cholesky decomposition :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`



    Example:

        >>> # xdoctest: +SKIP("FIXME: scale_tril must be at least two-dimensional")

        >>> m = Wishart(torch.Tensor([2]), covariance_matrix=torch.eye(2))

        >>> m.sample()  # Wishart distributed with mean=`df * I` and

        >>>             # variance(x_ij)=`df` for i != j and variance(x_ij)=`2 * df` for i == j



    Args:

        df (float or Tensor): real-valued parameter larger than the (dimension of Square matrix) - 1

        covariance_matrix (Tensor): positive-definite covariance matrix

        precision_matrix (Tensor): positive-definite precision matrix

        scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal

    Note:

        Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or

        :attr:`scale_tril` can be specified.

        Using :attr:`scale_tril` will be more efficient: all computations internally

        are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or

        :attr:`precision_matrix` is passed instead, it is only used to compute

        the corresponding lower triangular matrices using a Cholesky decomposition.

        'torch.distributions.LKJCholesky' is a restricted Wishart distribution.[1]



    **References**



    [1] Wang, Z., Wu, Y. and Chu, H., 2018. `On equivalence of the LKJ distribution and the restricted Wishart distribution`.

    [2] Sawyer, S., 2007. `Wishart Distributions and Inverse-Wishart Sampling`.

    [3] Anderson, T. W., 2003. `An Introduction to Multivariate Statistical Analysis (3rd ed.)`.

    [4] Odell, P. L. & Feiveson, A. H., 1966. `A Numerical Procedure to Generate a SampleCovariance Matrix`. JASA, 61(313):199-203.

    [5] Ku, Y.-C. & Bloomfield, P., 2010. `Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX`.

    """
    arg_constraints = {
        "covariance_matrix": constraints.positive_definite,
        "precision_matrix": constraints.positive_definite,
        "scale_tril": constraints.lower_cholesky,
        "df": constraints.greater_than(0),
    }
    support = constraints.positive_definite
    has_rsample = True
    _mean_carrier_measure = 0

    def __init__(

        self,

        df: Union[torch.Tensor, Number],

        covariance_matrix: Optional[torch.Tensor] = None,

        precision_matrix: Optional[torch.Tensor] = None,

        scale_tril: Optional[torch.Tensor] = None,

        validate_args=None,

    ):
        assert (covariance_matrix is not None) + (scale_tril is not None) + (
            precision_matrix is not None
        ) == 1, "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."

        param = next(
            p
            for p in (covariance_matrix, precision_matrix, scale_tril)
            if p is not None
        )

        if param.dim() < 2:
            raise ValueError(
                "scale_tril must be at least two-dimensional, with optional leading batch dimensions"
            )

        if isinstance(df, Number):
            batch_shape = torch.Size(param.shape[:-2])
            self.df = torch.tensor(df, dtype=param.dtype, device=param.device)
        else:
            batch_shape = torch.broadcast_shapes(param.shape[:-2], df.shape)
            self.df = df.expand(batch_shape)
        event_shape = param.shape[-2:]

        if self.df.le(event_shape[-1] - 1).any():
            raise ValueError(
                f"Value of df={df} expected to be greater than ndim - 1 = {event_shape[-1]-1}."
            )

        if scale_tril is not None:
            self.scale_tril = param.expand(batch_shape + (-1, -1))
        elif covariance_matrix is not None:
            self.covariance_matrix = param.expand(batch_shape + (-1, -1))
        elif precision_matrix is not None:
            self.precision_matrix = param.expand(batch_shape + (-1, -1))

        self.arg_constraints["df"] = constraints.greater_than(event_shape[-1] - 1)
        if self.df.lt(event_shape[-1]).any():
            warnings.warn(
                "Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim."
            )

        super().__init__(batch_shape, event_shape, validate_args=validate_args)
        self._batch_dims = [-(x + 1) for x in range(len(self._batch_shape))]

        if scale_tril is not None:
            self._unbroadcasted_scale_tril = scale_tril
        elif covariance_matrix is not None:
            self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
        else:  # precision_matrix is not None
            self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)

        # Chi2 distribution is needed for Bartlett decomposition sampling
        self._dist_chi2 = torch.distributions.chi2.Chi2(
            df=(
                self.df.unsqueeze(-1)
                - torch.arange(
                    self._event_shape[-1],
                    dtype=self._unbroadcasted_scale_tril.dtype,
                    device=self._unbroadcasted_scale_tril.device,
                ).expand(batch_shape + (-1,))
            )
        )

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Wishart, _instance)
        batch_shape = torch.Size(batch_shape)
        cov_shape = batch_shape + self.event_shape
        new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril.expand(cov_shape)
        new.df = self.df.expand(batch_shape)

        new._batch_dims = [-(x + 1) for x in range(len(batch_shape))]

        if "covariance_matrix" in self.__dict__:
            new.covariance_matrix = self.covariance_matrix.expand(cov_shape)
        if "scale_tril" in self.__dict__:
            new.scale_tril = self.scale_tril.expand(cov_shape)
        if "precision_matrix" in self.__dict__:
            new.precision_matrix = self.precision_matrix.expand(cov_shape)

        # Chi2 distribution is needed for Bartlett decomposition sampling
        new._dist_chi2 = torch.distributions.chi2.Chi2(
            df=(
                new.df.unsqueeze(-1)
                - torch.arange(
                    self.event_shape[-1],
                    dtype=new._unbroadcasted_scale_tril.dtype,
                    device=new._unbroadcasted_scale_tril.device,
                ).expand(batch_shape + (-1,))
            )
        )

        super(Wishart, new).__init__(batch_shape, self.event_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    @lazy_property
    def scale_tril(self):
        return self._unbroadcasted_scale_tril.expand(
            self._batch_shape + self._event_shape
        )

    @lazy_property
    def covariance_matrix(self):
        return (
            self._unbroadcasted_scale_tril
            @ self._unbroadcasted_scale_tril.transpose(-2, -1)
        ).expand(self._batch_shape + self._event_shape)

    @lazy_property
    def precision_matrix(self):
        identity = torch.eye(
            self._event_shape[-1],
            device=self._unbroadcasted_scale_tril.device,
            dtype=self._unbroadcasted_scale_tril.dtype,
        )
        return torch.cholesky_solve(identity, self._unbroadcasted_scale_tril).expand(
            self._batch_shape + self._event_shape
        )

    @property
    def mean(self):
        return self.df.view(self._batch_shape + (1, 1)) * self.covariance_matrix

    @property
    def mode(self):
        factor = self.df - self.covariance_matrix.shape[-1] - 1
        factor[factor <= 0] = nan
        return factor.view(self._batch_shape + (1, 1)) * self.covariance_matrix

    @property
    def variance(self):
        V = self.covariance_matrix  # has shape (batch_shape x event_shape)
        diag_V = V.diagonal(dim1=-2, dim2=-1)
        return self.df.view(self._batch_shape + (1, 1)) * (
            V.pow(2) + torch.einsum("...i,...j->...ij", diag_V, diag_V)
        )

    def _bartlett_sampling(self, sample_shape=torch.Size()):
        p = self._event_shape[-1]  # has singleton shape

        # Implemented Sampling using Bartlett decomposition
        noise = _clamp_above_eps(
            self._dist_chi2.rsample(sample_shape).sqrt()
        ).diag_embed(dim1=-2, dim2=-1)

        i, j = torch.tril_indices(p, p, offset=-1)
        noise[..., i, j] = torch.randn(
            torch.Size(sample_shape) + self._batch_shape + (int(p * (p - 1) / 2),),
            dtype=noise.dtype,
            device=noise.device,
        )
        chol = self._unbroadcasted_scale_tril @ noise
        return chol @ chol.transpose(-2, -1)

    def rsample(self, sample_shape=torch.Size(), max_try_correction=None):
        r"""

        .. warning::

            In some cases, sampling algorithm based on Bartlett decomposition may return singular matrix samples.

            Several tries to correct singular samples are performed by default, but it may end up returning

            singular matrix samples. Singular samples may return `-inf` values in `.log_prob()`.

            In those cases, the user should validate the samples and either fix the value of `df`

            or adjust `max_try_correction` value for argument in `.rsample` accordingly.

        """

        if max_try_correction is None:
            max_try_correction = 3 if torch._C._get_tracing_state() else 10

        sample_shape = torch.Size(sample_shape)
        sample = self._bartlett_sampling(sample_shape)

        # Below part is to improve numerical stability temporally and should be removed in the future
        is_singular = self.support.check(sample)
        if self._batch_shape:
            is_singular = is_singular.amax(self._batch_dims)

        if torch._C._get_tracing_state():
            # Less optimized version for JIT
            for _ in range(max_try_correction):
                sample_new = self._bartlett_sampling(sample_shape)
                sample = torch.where(is_singular, sample_new, sample)

                is_singular = ~self.support.check(sample)
                if self._batch_shape:
                    is_singular = is_singular.amax(self._batch_dims)

        else:
            # More optimized version with data-dependent control flow.
            if is_singular.any():
                warnings.warn("Singular sample detected.")

                for _ in range(max_try_correction):
                    sample_new = self._bartlett_sampling(is_singular[is_singular].shape)
                    sample[is_singular] = sample_new

                    is_singular_new = ~self.support.check(sample_new)
                    if self._batch_shape:
                        is_singular_new = is_singular_new.amax(self._batch_dims)
                    is_singular[is_singular.clone()] = is_singular_new

                    if not is_singular.any():
                        break

        return sample

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        nu = self.df  # has shape (batch_shape)
        p = self._event_shape[-1]  # has singleton shape
        return (
            -nu
            * (
                p * _log_2 / 2
                + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1)
                .log()
                .sum(-1)
            )
            - torch.mvlgamma(nu / 2, p=p)
            + (nu - p - 1) / 2 * torch.linalg.slogdet(value).logabsdet
            - torch.cholesky_solve(value, self._unbroadcasted_scale_tril)
            .diagonal(dim1=-2, dim2=-1)
            .sum(dim=-1)
            / 2
        )

    def entropy(self):
        nu = self.df  # has shape (batch_shape)
        p = self._event_shape[-1]  # has singleton shape
        V = self.covariance_matrix  # has shape (batch_shape x event_shape)
        return (
            (p + 1)
            * (
                p * _log_2 / 2
                + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1)
                .log()
                .sum(-1)
            )
            + torch.mvlgamma(nu / 2, p=p)
            - (nu - p - 1) / 2 * _mvdigamma(nu / 2, p=p)
            + nu * p / 2
        )

    @property
    def _natural_params(self):
        nu = self.df  # has shape (batch_shape)
        p = self._event_shape[-1]  # has singleton shape
        return -self.precision_matrix / 2, (nu - p - 1) / 2

    def _log_normalizer(self, x, y):
        p = self._event_shape[-1]
        return (y + (p + 1) / 2) * (
            -torch.linalg.slogdet(-2 * x).logabsdet + _log_2 * p
        ) + torch.mvlgamma(y + (p + 1) / 2, p=p)