Spaces:
Running
Running
File size: 41,113 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
import dataclasses
import functools
import inspect
import logging
import re
import time
import warnings
from contextlib import contextmanager, nullcontext
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
import torch
import torch._dynamo
import torch.fx
import torch.utils._pytree as pytree
from torch._dynamo.exc import UserError, UserErrorType
from torch._export.non_strict_utils import (
make_constraints,
make_fake_inputs,
make_fake_params_buffers,
)
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_AddRuntimeAssertionsForInlineConstraintsPass,
)
from torch._export.passes.collect_tracepoints_pass import CollectTracepointsPass
from torch._export.passes.lift_constants_pass import (
ConstantAttrMap,
lift_constants_pass,
rewrite_script_object_meta,
)
from torch._export.wrappers import _wrap_submodules
from torch._functorch.aot_autograd import aot_export_module
from torch._guards import detect_fake_mode
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch._utils_internal import log_export_usage
from torch.export.exported_program import OutputKind
from torch.fx.experimental.symbolic_shapes import (
ConstraintViolationError,
free_unbacked_symbols,
GuardOnDataDependentSymNode,
ShapeEnv,
)
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from torch.utils._sympy.value_ranges import ValueRangeError
from ._safeguard import AutogradStateOpsFailSafeguard
from .dynamic_shapes import _process_constraints, Constraint
from .exported_program import (
_disable_prexisiting_fake_mode,
ExportedProgram,
InputKind,
ModuleCallEntry,
ModuleCallSignature,
)
from .graph_signature import (
_sig_to_specs,
ArgumentSpec,
ConstantArgument,
CustomObjArgument,
ExportGraphSignature,
SymIntArgument,
TensorArgument,
)
log = logging.getLogger(__name__)
@dataclasses.dataclass
class ExportDynamoConfig:
"""
Manage Export-specific configurations of Dynamo.
"""
allow_rnn: bool = True
reorderable_logging_functions: Set[Callable] = dataclasses.field(
default_factory=set
)
DEFAULT_EXPORT_DYNAMO_CONFIG = ExportDynamoConfig()
DEFAULT_EXPORT_DYNAMO_CONFIG.reorderable_logging_functions = {
logging.critical,
logging.debug,
logging.error,
logging.exception,
logging.info,
logging.log,
logging.warning,
print,
warnings.warn,
}
@contextmanager
def _ignore_backend_decomps():
orig_mkldnn_flag = torch.backends.mkldnn.set_flags(False)
orig_nnpack_flag = torch.backends.nnpack.set_flags(False)
try:
yield
finally:
torch.backends.mkldnn.set_flags(*orig_mkldnn_flag)
torch.backends.nnpack.set_flags(*orig_nnpack_flag)
def _convert_input_to_fake(gm, args, kwargs):
params_buffers = _get_params_buffers(gm)
fake_inps: List[torch.Tensor] = []
for node in gm.graph.nodes:
if node.op == "placeholder" and "val" in node.meta:
fake_val = node.meta["val"]
if fake_val is not None and isinstance(fake_val, torch.Tensor):
fake_inps.append(fake_val)
if detected_fake_mode := detect_fake_mode(fake_inps):
fake_mode = detected_fake_mode
else:
fake_mode = FakeTensorMode(shape_env=ShapeEnv())
if len(args) == 0 and len(kwargs) == 0:
return (), {}, params_buffers, fake_mode
count = 0
def convert_to_fake(x):
nonlocal count
val = fake_inps[count]
count += 1
return val
fake_args = pytree.tree_map_only(torch.Tensor, convert_to_fake, args)
# TODO properly use the cached fake tensor
fake_kwargs = pytree.tree_map_only(torch.Tensor, fake_mode.from_tensor, kwargs)
fake_params_buffers = pytree.tree_map_only(
torch.Tensor,
functools.partial(fake_mode.from_tensor, static_shapes=True),
params_buffers,
)
return fake_args, fake_kwargs, fake_params_buffers, fake_mode
def _replace_param_buffer_names(param_buffer_table, sig):
for spec in sig.input_specs:
if spec.kind in (
InputKind.PARAMETER,
InputKind.BUFFER,
):
spec.target = param_buffer_table[spec.target]
for spec in sig.output_specs:
if spec.kind in (
OutputKind.BUFFER_MUTATION,
OutputKind.GRADIENT_TO_PARAMETER,
):
spec.target = param_buffer_table[spec.target]
def _convert_to_positional_args(orig_arg_names, args, kwargs):
assert len(orig_arg_names) == len(args) + len(kwargs), (
f"Total number of arg names is expected to be {len(orig_arg_names)} "
f"but got {len(args)} positional args, {len(kwargs)} kwargs."
)
reordered_kwargs = [kwargs[kw_name] for kw_name in orig_arg_names[len(args) :]]
return (
*args,
*reordered_kwargs,
)
def _normalize_nn_module_stack(gm_torch_level, root_cls):
# Append a root module to every nn_module_stack.
root = "L['self']"
root_key = re.sub(r"[^a-zA-Z0-9]", "_", root)
for gm in gm_torch_level.modules():
if not isinstance(gm, torch.fx.GraphModule):
continue
for node in gm.graph.nodes:
if node.op in ["placeholder", "output"]:
continue
add_root = True
if nn_module_stack := node.meta.get("nn_module_stack", {}):
path, ty = next(iter(nn_module_stack.values()))
# After deserializing the class `ty` might not exist anymore so
# it could be a string
if inspect.isclass(ty) and issubclass(ty, torch.nn.Module):
# TODO Figure out why sometimes we have root sometimes we don't.
if path == root and ty is root_cls:
add_root = False
else:
assert isinstance(ty, str)
if add_root:
def normalize_path(path):
try:
parts = []
class Path:
def __getattr__(self, name):
parts.append(name)
return self
def __getitem__(self, idx):
parts.append(str(idx))
return self
eval(path, {"L": {"self": Path()}})
return ".".join(parts)
except Exception: # TODO(zhxchen17) Remove this.
return path
nn_module_stack = {root_key: (root, root_cls), **nn_module_stack}
node.meta["nn_module_stack"] = {
key: (normalize_path(path), ty)
for key, (path, ty) in nn_module_stack.items()
}
def _get_param_buffer_mapping(
original_module: torch.nn.Module,
traced_module: torch.nn.Module,
) -> Dict[str, str]:
"""
Returns a mapping of parameter/buffer names from the new module to the
original model. This is to help with restoring the FQN for parameter/buffers
of a traced module to what the original module contains.
"""
param_lookup: Dict[int, List[str]] = {}
buffer_lookup: Dict[int, List[str]] = {}
for name, param in original_module.named_parameters(remove_duplicate=False):
param_lookup.setdefault(id(param), []).append(name)
for name, buffer in original_module.named_buffers(remove_duplicate=False):
buffer_lookup.setdefault(id(buffer), []).append(name)
param_buffer_table: Dict[str, str] = {}
for dynamo_name, dynamo_param in traced_module.named_parameters(
remove_duplicate=False
):
assert dynamo_name not in param_buffer_table
if id(dynamo_param) in param_lookup:
param_buffer_table[dynamo_name] = param_lookup[id(dynamo_param)].pop()
for dynamo_name, dynamo_buffer in traced_module.named_buffers(
remove_duplicate=False
):
assert dynamo_name not in param_buffer_table
if id(dynamo_buffer) in buffer_lookup:
param_buffer_table[dynamo_name] = buffer_lookup[id(dynamo_buffer)].pop()
return param_buffer_table
def _remap_constants(
orig_constant_attrs: ConstantAttrMap,
graph_signature: ExportGraphSignature,
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
) -> None:
"""Rewrite the graph signature and constants table to use the FQN from the original module."""
remap_table: Dict[str, str] = {}
for name, value in constants.items():
if value in orig_constant_attrs:
remap_table[name] = orig_constant_attrs[value]
for spec in graph_signature.input_specs:
if spec.kind in (
InputKind.CONSTANT_TENSOR,
InputKind.CUSTOM_OBJ,
):
orig_target = spec.target
assert orig_target is not None
spec.target = remap_table.get(orig_target, orig_target)
constant = constants[orig_target]
del constants[orig_target]
constants[spec.target] = constant
def _restore_state_dict(
original_module: torch.nn.Module, traced_module: torch.fx.GraphModule
) -> None:
"""
Restores the state dict of the traced module to that of the original module.
"""
param_buffer_table = _get_param_buffer_mapping(original_module, traced_module)
# Since the graph module is flattened (no module heirarchy), we
# need to noramlize the module by replacing "." with "_". If we
# don't, it will try to save the weight to a submodule which no
# longer exists.
for name, fqn in param_buffer_table.items():
param_buffer_table[name] = fqn.replace(".", "_")
# Replace state dict attr names with the fqn
for name, fqn in param_buffer_table.items():
if not hasattr(traced_module, name):
continue
attr = getattr(traced_module, name)
if isinstance(attr, torch.Tensor) and not isinstance(attr, torch.nn.Parameter):
traced_module.register_buffer(fqn, attr)
else:
setattr(traced_module, fqn, attr)
delattr(traced_module, name)
# Replace graph getattr nodes with the correct name
for node in traced_module.graph.nodes:
if node.op == "get_attr":
attr_name = node.target
if attr_name in param_buffer_table:
node.target = param_buffer_table[attr_name]
traced_module.recompile()
def _export_to_torch_ir(
f: Callable,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
constraints: Optional[List[Constraint]] = None,
*,
preserve_module_call_signature: Tuple[str, ...] = (),
disable_constraint_solver: bool = False,
restore_fqn: bool = True,
_log_export_usage: bool = True,
) -> torch.fx.GraphModule:
"""
Traces either an nn.Module's forward function or just a callable with PyTorch
operations inside and produce a torch.fx.GraphModule in torch IR.
"""
if _log_export_usage:
log_export_usage(event="export.private_api", flags={"_export_to_torch_ir"})
kwargs = kwargs or {}
if not isinstance(args, tuple):
raise UserError(
UserErrorType.INVALID_INPUT,
f"Expecting `args` to be a tuple of example positional inputs, got {type(args)}",
)
with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)):
try:
module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}
with _wrap_submodules(
f, preserve_module_call_signature, module_call_specs
), _ignore_backend_decomps():
gm_torch_level, _ = torch._dynamo.export(
f,
constraints=constraints, # type: ignore[arg-type]
assume_static_by_default=True,
tracing_mode="symbolic",
disable_constraint_solver=disable_constraint_solver,
_log_export_usage=_log_export_usage,
)(
*args,
**kwargs,
)
except (ConstraintViolationError, ValueRangeError) as e:
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: TRY200
except GuardOnDataDependentSymNode as e:
raise UserError( # noqa: TRY200
UserErrorType.ANTI_PATTERN,
f"Consider annotating your code using torch._constrain_as_*(). {str(e)}",
case_name="constrain_as_size_example",
)
gm_torch_level.meta["module_call_specs"] = module_call_specs
if isinstance(f, torch.nn.Module) and restore_fqn:
_restore_state_dict(f, gm_torch_level)
return gm_torch_level
def _gather_constant_attrs(m: torch.nn.Module) -> ConstantAttrMap:
"""Search the module hierarchy, gathering up all tensor and ScriptObject constants.
Returns a dictionary mapping hash(value) to the name of the constant. We
have to abuse `hash` here unfortunately, see: [ScriptObject hash].
"""
constants = ConstantAttrMap()
buffers_parameters = set(m.buffers())
buffers_parameters.update(m.parameters())
def inner(m: torch.nn.Module, prefix_atoms: List[str], constants):
for k, v in m.__dict__.items():
if isinstance(v, (torch.Tensor, torch.ScriptObject)):
if v in buffers_parameters:
# filter out buffers and parameters, leaving only constants
continue
fqn = ".".join(prefix_atoms + [k])
if v in constants:
raise ValueError(
f"Duplicate reference to constant attribute found: '{constants[v]}' and '{fqn}'."
)
constants[v] = fqn
for k, v in m.named_children():
inner(v, prefix_atoms + [k], constants)
inner(m, [], constants)
return constants
def _export_non_strict(
mod: torch.nn.Module,
fake_args,
fake_kwargs,
fake_params_buffers,
constant_attrs: ConstantAttrMap,
*,
transform=lambda x: x, # TODO(zhxchen17) Revisit if this is needed later.
pre_dispatch=False,
):
# [NOTE] If the user is exporting under training mode, we want to detect if there is any
# state change in the autograd global state and error. If the user is exporting under inference
# mode, we don't care.
is_grad_enabled = torch._C.is_grad_enabled()
grad_safe_guard = (
AutogradStateOpsFailSafeguard() if is_grad_enabled else nullcontext()
)
@contextmanager
def _compiling_state_context():
old_value = torch.compiler._is_compiling_flag
try:
torch.compiler._is_compiling_flag = True
yield
finally:
torch.compiler._is_compiling_flag = old_value
# This _reparametrize_module makes sure inputs and module.params/buffers have the same fake_mode,
# otherwise aot_export_module will error out because it sees a mix of fake_modes.
# And we want aot_export_module to use the fake_tensor mode in dynamo to keep the pipeline easy to reason about.
with torch.nn.utils.stateless._reparametrize_module(
mod, fake_params_buffers
), grad_safe_guard, _ignore_backend_decomps(), _compiling_state_context(): # type: ignore[attr-defined]
gm, graph_signature = transform(aot_export_module)(
mod,
fake_args,
trace_joint=False,
pre_dispatch=pre_dispatch,
kwargs=fake_kwargs,
)
# TODO unfortunately preserving graph-level metadata is not
# working well with aot_export. So we manually copy it.
# (The node-level meta is addressed above.)
if isinstance(mod, torch.fx.GraphModule) and hasattr(mod, "meta"):
gm.meta.update(mod.meta)
if pre_dispatch:
from torch._export.passes.replace_set_grad_with_hop_pass import (
replace_set_grad_with_hop_pass,
)
gm = replace_set_grad_with_hop_pass(gm)
# NOTE: aot_export adds symint metadata for placeholders with int values;
# since these become specialized, we replace such metadata with the original values
flat_args = pytree.tree_leaves((fake_args, fake_kwargs))
index = 0
total_non_user_inputs = (
len(graph_signature.parameters)
+ len(graph_signature.buffers)
+ len(graph_signature.input_tokens)
)
for node in gm.graph.nodes:
if node.op == "placeholder":
if index >= total_non_user_inputs:
user_arg = flat_args[index - total_non_user_inputs]
if not isinstance(user_arg, torch.Tensor):
node.meta["val"] = user_arg
index += 1
is_joint = graph_signature.backward_signature is not None
def make_argument_spec(node) -> ArgumentSpec:
if isinstance(node, (int, bool, float, type(None))):
# For const outputs we just directly return this
return ConstantArgument(value=node)
assert (
"val" in node.meta
), f"{node} is not a constant or a node with a 'val' metadata field"
val = node.meta["val"]
if isinstance(val, FakeTensor):
return TensorArgument(name=node.name)
elif isinstance(val, torch.SymInt):
return SymIntArgument(name=node.name)
elif isinstance(val, torch.ScriptObject):
return CustomObjArgument(
name=node.name, class_fqn=val._type().qualified_name() # type: ignore[attr-defined]
)
else:
# TODO: this branch is likely wrong, all permissible ConstantArgument type
# should have been handled already
return ConstantArgument(value=val)
input_specs, output_specs = _sig_to_specs(
user_inputs=set(graph_signature.user_inputs),
inputs_to_parameters=graph_signature.inputs_to_parameters, # type: ignore[arg-type]
inputs_to_buffers=graph_signature.inputs_to_buffers, # type: ignore[arg-type]
user_outputs=set(graph_signature.user_outputs), # type: ignore[arg-type]
buffer_mutations=graph_signature.buffers_to_mutate, # type: ignore[arg-type]
user_input_mutations=graph_signature.user_inputs_to_mutate, # type: ignore[arg-type]
grad_params=graph_signature.backward_signature.gradients_to_parameters if is_joint else {}, # type: ignore[arg-type, union-attr]
grad_user_inputs=graph_signature.backward_signature.gradients_to_user_inputs if is_joint else {}, # type: ignore[arg-type, union-attr]
loss_output=graph_signature.backward_signature.loss_output if is_joint else None, # type: ignore[arg-type, union-attr]
inputs=[
make_argument_spec(node)
for node in gm.graph.nodes
if node.op == "placeholder"
],
outputs=[
make_argument_spec(node)
for node in pytree.tree_leaves(next(iter(reversed(gm.graph.nodes))).args)
],
input_tokens=graph_signature.input_tokens,
output_tokens=graph_signature.output_tokens,
)
export_graph_signature = ExportGraphSignature(
input_specs=input_specs, output_specs=output_specs
)
constants = rewrite_script_object_meta(gm)
constants.update(lift_constants_pass(gm, export_graph_signature, constant_attrs))
@dataclasses.dataclass
class _ExportedProgramNonStrict:
gm: torch.fx.GraphModule
sig: ExportGraphSignature
constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]
return _ExportedProgramNonStrict(
gm,
export_graph_signature,
constants,
)
def _get_params_buffers(mod: torch.nn.Module) -> Dict[str, torch.Tensor]:
params_buffers: Dict[str, torch.Tensor] = {}
for name, param in mod.named_parameters(remove_duplicate=False):
params_buffers[name] = param
for name, buffer in mod.named_buffers(remove_duplicate=False):
params_buffers[name] = buffer
return params_buffers
def _rewrite_dynamo_tensor_constants(
orig_mod_buffers: Set[torch.Tensor],
traced_mod_buffers: Dict[str, torch.Tensor],
graph_signature: ExportGraphSignature,
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
):
"""Dynamo erroneously marks tensor attributes on modules as a buffers.
Rewrite them to be tensor constants.
"""
for spec in graph_signature.input_specs:
if spec.kind == InputKind.BUFFER:
assert spec.target is not None
value = traced_mod_buffers[spec.target]
if value not in orig_mod_buffers:
# This was a tensor constant erroneously marked as a buffer.
# Convert it int oa constant in the graph signature, and add its
# value to the constants table.
spec.kind = InputKind.CONSTANT_TENSOR
constants[spec.target] = value
def _rewrite_non_persistent_buffers(
orig_mod: torch.nn.Module,
graph_signature: ExportGraphSignature,
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
):
"""Dynamo erroneously drops the persistent flag on buffers.
Rewrite non-persistent buffers to reflect the original module.
"""
state_dict = orig_mod.state_dict()
for spec in graph_signature.input_specs:
if spec.kind == InputKind.BUFFER:
assert spec.target is not None
if spec.target not in state_dict:
assert spec.target not in constants
spec.persistent = False
constants[spec.target] = orig_mod.get_buffer(spec.target)
def get_ep_stats(ep: ExportedProgram) -> Dict[str, Any]:
op_count = 0
op_set = set()
for m in ep.graph_module.modules():
if not isinstance(m, torch.fx.GraphModule):
continue
for node in m.graph.nodes:
if node.op != "call_function":
continue
op_count += 1
assert hasattr(node.target, "__module__")
assert hasattr(node.target, "__name__")
op_set.add(f"{node.target.__module__}.{node.target.__name__}")
return {"op_count": op_count, "op_set": op_set}
_EXPORT_FLAGS: Optional[Set[str]] = None
def _log_export_wrapper(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
global _EXPORT_FLAGS
try:
start = time.time()
ep = fn(*args, **kwargs)
end = time.time()
log_export_usage(
event="export.time",
metrics=end - start,
flags=_EXPORT_FLAGS,
**get_ep_stats(ep),
)
except Exception as e:
t = type(e)
error_type = t.__module__ + "." + t.__qualname__
log_export_usage(
event="export.error",
type=error_type,
message=str(e),
flags=_EXPORT_FLAGS,
)
raise e
finally:
_EXPORT_FLAGS = None
return ep
return wrapper
@_log_export_wrapper
@_disable_prexisiting_fake_mode
def _export(
mod: torch.nn.Module,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
*,
strict: bool = True,
preserve_module_call_signature: Tuple[str, ...] = (),
pre_dispatch: bool = False,
) -> ExportedProgram:
"""
Traces either an nn.Module's forward function or just a callable with PyTorch
operations inside and produce a ExportedProgram.
Args:
f: the `nn.Module` to trace.
args: example positional inputs.
kwargs: optional example keyword inputs.
dynamic_shapes:
An optional argument where the type should either be:
1) a dict from argument names of ``f`` to their dynamic shape specifications,
2) a tuple that specifies dynamic shape specifications for each input in original order.
If you are specifying dynamism on keyword args, you will need to pass them in the order that
is defined in the original function signature.
The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
preserve_module_call_signature: A list of submodule paths for which the original
calling conventions are preserved as metadata.
Returns:
An ExportedProgram containing the traced method.
"""
from .dynamic_shapes import _process_dynamic_shapes
global _EXPORT_FLAGS
flags = set()
flags.add("strict" if strict else "non_strict")
flags.add("pre_dispatch" if pre_dispatch else "aot_dispatch")
log_export_usage(event="export.enter", flags=flags)
_EXPORT_FLAGS = flags
constraints = _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) or []
kwargs = kwargs or {}
constant_attrs = _gather_constant_attrs(mod)
flat_args, orig_in_spec = pytree.tree_flatten((args, kwargs))
if not strict:
out_spec = None
module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}
def strip_root(x):
if isinstance(x, str) and x.startswith("_export_root"):
stripped = x[len("_export_root") :]
return stripped[1:] if stripped.startswith(".") else stripped
return x
def fixup_key(x):
return "L__self__" + strip_root(x)
def _tuplify_outputs(aot_export):
def _aot_export_non_strict(mod, args, kwargs=None, **flags):
kwargs = kwargs or {}
class Wrapper(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self._export_root = mod
def forward(self, *args, **kwargs):
nonlocal out_spec
if isinstance(self._export_root, torch.fx.GraphModule):
with torch.fx.traceback.preserve_node_meta():
tree_out = torch.fx.Interpreter(self._export_root).run(
*args, **kwargs
)
else:
tree_out = self._export_root(*args, **kwargs)
flat_outs, out_spec = pytree.tree_flatten(tree_out)
return tuple(flat_outs)
wrapped_mod = Wrapper(mod)
# Patch export_root to the signatures so that wrapper module correctly populates the
# in/out spec
new_preserved_call_signatures = [
"_export_root." + i for i in preserve_module_call_signature
]
with _wrap_submodules(
wrapped_mod, new_preserved_call_signatures, module_call_specs
):
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
sig.parameters = pytree.tree_map(strip_root, sig.parameters)
sig.buffers = pytree.tree_map(strip_root, sig.buffers)
sig.inputs_to_buffers = pytree.tree_map(
strip_root, sig.inputs_to_buffers
)
sig.inputs_to_parameters = pytree.tree_map(
strip_root, sig.inputs_to_parameters
)
sig.buffers_to_mutate = pytree.tree_map(
strip_root, sig.buffers_to_mutate
)
for node in gm.graph.nodes:
if "nn_module_stack" in node.meta:
nn_module_stack = node.meta["nn_module_stack"]
node.meta["nn_module_stack"] = {
fixup_key(key): val
for key, val in pytree.tree_map(
strip_root, nn_module_stack
).items()
}
return gm, sig
return _aot_export_non_strict
(
fake_mode,
fake_args,
fake_kwargs,
equalities_inputs,
original_signature,
) = make_fake_inputs(mod, args, kwargs, constraints)
fake_params_buffers = make_fake_params_buffers(
fake_mode, _get_params_buffers(mod)
)
with fake_mode:
ep_non_strict = _export_non_strict(
mod,
fake_args,
fake_kwargs,
fake_params_buffers,
constant_attrs,
pre_dispatch=pre_dispatch,
transform=_tuplify_outputs,
)
try:
range_constraints = make_constraints(
fake_mode,
equalities_inputs,
original_signature,
ep_non_strict.gm,
)
except (ConstraintViolationError, ValueRangeError) as e:
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: TRY200
assert out_spec is not None
gm = ep_non_strict.gm
module_call_signatures = {
strip_root(fqn): ModuleCallSignature(inputs=[], outputs=[], **specs)
for fqn, specs in module_call_specs.items()
}
if len(preserve_module_call_signature) > 0:
for node in gm.graph.nodes:
if node.target == torch.ops.higher_order._export_tracepoint:
if "path" in node.kwargs:
path = strip_root(node.kwargs["path"])
with gm.graph.inserting_before(node):
new_node = gm.graph.create_node(
"call_function",
torch.ops.higher_order._export_tracepoint,
args=node.args,
kwargs={
"path": path,
"kind": node.kwargs["kind"],
},
)
node.replace_all_uses_with(new_node)
gm.graph.erase_node(node)
res = CollectTracepointsPass(module_call_signatures, ep_non_strict.sig)(gm)
assert res is not None
gm = res.graph_module
_rewrite_non_persistent_buffers(mod, ep_non_strict.sig, ep_non_strict.constants)
return ExportedProgram(
root=gm,
graph=gm.graph,
graph_signature=ep_non_strict.sig,
state_dict=mod.state_dict(keep_vars=True),
range_constraints=range_constraints,
module_call_graph=[
ModuleCallEntry(
"",
ModuleCallSignature(
inputs=[], outputs=[], in_spec=orig_in_spec, out_spec=out_spec
),
)
]
+ [
ModuleCallEntry(fqn, sig) for fqn, sig in module_call_signatures.items()
],
example_inputs=(args, kwargs),
constants=ep_non_strict.constants,
)
gm_torch_level = _export_to_torch_ir(
mod,
args,
kwargs,
constraints,
preserve_module_call_signature=preserve_module_call_signature,
restore_fqn=False, # don't need to restore because we will do it later
_log_export_usage=False,
)
# We detect the fake_mode by looking at gm_torch_level's placeholders, this is the fake_mode created in dynamo.
(
fake_args,
fake_kwargs,
fake_params_buffers,
dynamo_fake_mode,
) = _convert_input_to_fake(gm_torch_level, args, kwargs)
# First, we want to pass through the graph to try populating
# val field for getattr if there is anything missing.
# This can happen when quantization adds extra params and forgets
# to update "val"
for node in gm_torch_level.graph.nodes:
if node.op == "get_attr" and "val" not in node.meta:
attr = getattr(gm_torch_level, node.target)
# Checks if it is not a HigherOrderOp branch or a module
if not isinstance(attr, torch.nn.Module):
assert (
dynamo_fake_mode is not None
), "Cannot find dynamo_fake_mode. This could be due to the exported graph module have no placeholders."
node.meta["val"] = dynamo_fake_mode.from_tensor(
attr, static_shapes=True
)
# When aot_export lifts the params, we lose the nn_module_stack
# and source_fn from the param nodes as they are treated as fresh inputs
# Therefore, we manually extract them before calling into aot_export
params_buffers_to_node_meta = {}
for node in gm_torch_level.graph.nodes:
target = node.target
meta = node.meta
if node.op == "call_module":
submodule = getattr(gm_torch_level, target)
if isinstance(submodule, torch.nn.Module):
for name, _ in submodule.named_parameters(
recurse=True, remove_duplicate=False
):
params_buffers_to_node_meta[target + "." + name] = meta
for name, _ in submodule.named_buffers(
recurse=True, remove_duplicate=False
):
params_buffers_to_node_meta[target + "." + name] = meta
if node.op == "get_attr":
submodule = getattr(gm_torch_level, target)
if not isinstance(submodule, torch.fx.GraphModule):
params_buffers_to_node_meta[target] = meta
# If the call_function uses param as input, we also need to update params' meta
# with this call_function node's meta.
# This is basically the same flow as torch.fx.traceback.preserve_meta()
if node.op == "call_function" and not isinstance(
node.target, torch._ops.HigherOrderOperator
):
for arg in node._input_nodes:
if arg.op == "get_attr":
for entry in torch.fx.proxy._COPY_META_FIELDS:
if entry in meta:
params_buffers_to_node_meta[arg.target][entry] = meta[entry]
# Fix the graph output signature to be tuple if scalar
out_spec = orig_out_spec = gm_torch_level._out_spec
assert out_spec is not None
# aot_export expect the return type to always be a tuple.
if out_spec.type not in (list, tuple):
out_spec = pytree.TreeSpec(tuple, None, [out_spec])
orig_arg_names = gm_torch_level.graph._codegen.pytree_info.orig_args # type: ignore[attr-defined]
gm_torch_level.graph._codegen = _PyTreeCodeGen(
_PyTreeInfo(
orig_arg_names,
gm_torch_level._in_spec,
out_spec,
)
)
gm_torch_level.recompile()
_normalize_nn_module_stack(gm_torch_level, type(mod))
# NOTE: graph module expects only positional args
ep_non_strict = _export_non_strict(
gm_torch_level,
_convert_to_positional_args(orig_arg_names, fake_args, fake_kwargs),
{},
fake_params_buffers,
constant_attrs,
pre_dispatch=pre_dispatch,
)
gm = ep_non_strict.gm
export_graph_signature = ep_non_strict.sig
constants = ep_non_strict.constants
# After aot_export, set the param/buffer metadata back into placeholders
# Technically, users can still construct this data from param names
# without relying on this metadata
for node in gm.graph.nodes:
if node.op == "placeholder":
if node.target in export_graph_signature.inputs_to_parameters:
param_name = export_graph_signature.inputs_to_parameters[node.target]
if param_name in params_buffers_to_node_meta:
for k, v in params_buffers_to_node_meta[param_name].items():
node.meta[k] = v
if node.target in export_graph_signature.inputs_to_buffers:
buffer_name = export_graph_signature.inputs_to_buffers[node.target]
if buffer_name in params_buffers_to_node_meta:
for k, v in params_buffers_to_node_meta[buffer_name].items():
node.meta[k] = v
# The unbacked symint symbols are updated in aot_export
# so we serialize them here instead of inside dynamo
gm.meta["inline_constraints"] = {
k: v
for k, v in dynamo_fake_mode.shape_env.var_to_range.items()
if free_unbacked_symbols(k)
}
num_lifted = next(
(
i
for i, s in enumerate(export_graph_signature.input_specs)
if s.kind == InputKind.USER_INPUT
),
len(export_graph_signature.input_specs),
)
range_constraints = _process_constraints(
dynamo_fake_mode,
gm,
num_lifted,
flat_args,
)
# Do some cleanups on the graph module to restore the state dict to the
# expected form. Each of these steps should probably get fixed upstream.
# 1. Remove tensor constants that were added as buffers.
_rewrite_dynamo_tensor_constants(
orig_mod_buffers=set(mod.buffers()),
traced_mod_buffers=dict(gm_torch_level.named_buffers()),
graph_signature=ep_non_strict.sig,
constants=ep_non_strict.constants,
)
# 2. Restore FQN of param/buffers
param_buffer_table: Dict[str, str] = _get_param_buffer_mapping(mod, gm_torch_level)
_replace_param_buffer_names(param_buffer_table, export_graph_signature)
# 3. Remove non-persistent buffers from the graph signature
_rewrite_non_persistent_buffers(mod, ep_non_strict.sig, ep_non_strict.constants)
# 4. Rewrite constants to have the same FQN as the original module.
_remap_constants(constant_attrs, export_graph_signature, constants)
module_call_signatures = {
fqn: ModuleCallSignature(inputs=[], outputs=[], **specs)
for fqn, specs in gm_torch_level.meta["module_call_specs"].items()
}
if len(preserve_module_call_signature) > 0:
res = CollectTracepointsPass(module_call_signatures, export_graph_signature)(gm)
assert res is not None
gm = res.graph_module
assert orig_out_spec is not None
exported_program = ExportedProgram(
root=gm,
graph=gm.graph,
graph_signature=export_graph_signature,
state_dict=mod.state_dict(keep_vars=True),
range_constraints=range_constraints,
module_call_graph=[
ModuleCallEntry(
"",
ModuleCallSignature(
inputs=[], outputs=[], in_spec=orig_in_spec, out_spec=orig_out_spec
),
)
]
+ [ModuleCallEntry(fqn, sig) for fqn, sig in module_call_signatures.items()],
example_inputs=(args, kwargs),
constants=constants,
)
log.debug("Exported program from AOTAutograd:\n%s", exported_program)
if len(range_constraints) > 0:
exported_program = exported_program._transform_do_not_use(
_AddRuntimeAssertionsForInlineConstraintsPass(range_constraints)
)
return exported_program
|