File size: 33,949 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import torch
from torch.fx import Node
from torch.fx._compatibility import compatibility
from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor
from torch.utils._pytree import tree_map_only
from torch.utils import _pytree as pytree
from torch.multiprocessing.reductions import StorageWeakRef

import _operator
from enum import Enum
import itertools
from typing import Set, Dict
from collections import defaultdict

__all__ = ['reinplace']

class _ViewType(Enum):
    NonView = 0
    SingleOutputView = 1
    MultiOutputView = 2

def _is_view_op(tgt):
    if tgt is not None and isinstance(tgt, torch._ops.OpOverload):
        schema = tgt._schema
        if len(schema.arguments) > 0:
            first_arg = schema.arguments[0]
            # check if op is a view
            return first_arg.alias_info is not None and not first_arg.alias_info.is_write

def _get_view_type(tgt) -> _ViewType:
    if tgt is not None and isinstance(tgt, torch._ops.OpOverload):
        schema = tgt._schema
        if len(schema.arguments) > 0:
            first_arg = schema.arguments[0]
            # check if op is a view
            if first_arg.alias_info is not None and not first_arg.alias_info.is_write:
                # check if op is a multi-output view
                if '*' in first_arg.alias_info.after_set:
                    return _ViewType.MultiOutputView
                else:
                    return _ViewType.SingleOutputView
    return _ViewType.NonView


# Stores a bunch of metadata related to functionalization each node.
# Relevant metadata:
# n.meta['fake_result']: FakeTensor (same type as the output of the node, but with FakeTenors instead of Tensors)
#   The fake tensor output from running the current node
# n.meta['view_of']: Node
#   If the current node n is a view of some base tensor, the 'view_of' field tells us which
#   view node was used to generate the current node (a view tensor).
#   This information actually makes `fake_result` redundant, but we can use `fake_result`
#   to sanity check that our aliasing information is correct.
@compatibility(is_backward_compatible=False)
class _FunctionalizationMetadataProp(torch.fx.Interpreter):

    def run_node(self, node: Node):
        self.node_counter += 1
        result = super().run_node(node)
        node.meta['fake_result'] = result
        node.meta['node_idx'] = self.node_counter

        # (1) Update metadata with the list of nodes that are used by this node
        # copy_() doesn't read from its first argument; it writes to it, overwriting previous data.
        # We don't want to treat it as "being used as an input".
        node_args = node.args
        if node.target is torch.ops.aten.copy_.default:
            node_args = node_args[1:]

        # (2) Update metadata to track aliasing information about view tensor nodes.
        if node.op == 'call_function':
            view_type = _get_view_type(node.target)
            if view_type == _ViewType.SingleOutputView:
                assert isinstance(node.args[0], Node)
                node.meta['view_of'] = node.args[0]
            elif view_type == _ViewType.MultiOutputView:
                self.multi_output_view_nodes[node] = node.args[0]

            # Check if we returned a multi-output view,
            # and we're now grabbing the individual views from the output.
            #
            # For multi-output views, we want to map each output view to the base,
            # but this mapping involves two separate nodes in FX IR.
            # e.g. "a, b = x_1.split(...)" becomes:
            #    %split_tensor : [num_users=2] = call_function[target=torch.ops.aten.split.Tensor](args = (%x_1, 2), kwargs = {})
            #    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%split_tensor, 0), kwargs = {})
            #    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%split_tensor, 1), kwargs = {})
            # And we'd like to set:
            #    getitem1.meta['view_of'] = x_1
            elif node.target is _operator.getitem:
                list_arg = node.args[0]
                maybe_base_of_view = self.multi_output_view_nodes.get(list_arg, None)
                if maybe_base_of_view is not None:
                    # Note: we could also track indexing info here for multi-output views.
                    # I don't think this metadata is strictly needed for de-functionalization.
                    assert isinstance(maybe_base_of_view, Node)
                    node.meta['view_of'] = maybe_base_of_view

        if 'view_of' in node.meta:
            # We're linking the current node with its first argument as views.
            # Assert here that this is actually the case, and their storages are the same.
            assert isinstance(node.meta['fake_result'], FakeTensor)
            assert isinstance(node.meta['view_of'].meta['fake_result'], FakeTensor)
            view_storage = StorageWeakRef(node.meta['fake_result']._typed_storage())
            base_storage = StorageWeakRef(node.meta['view_of'].meta['fake_result']._typed_storage())
            assert view_storage == base_storage
        return result



    def propagate(self, *args):
        self.multi_output_view_nodes = {}
        self.node_counter = -1

        with FakeTensorMode() as mode:
            fake_args = [mode.from_tensor(a) for a in args]
            return super().run(*fake_args)

def _schemas_match(functional_schema, inplace_schema):
    names_match = inplace_schema.name.endswith("_") and inplace_schema.name[:-1] == functional_schema.name
    arg_types_match = len(functional_schema.arguments) == len(inplace_schema.arguments) and all(
        a1.type == a2.type for a1, a2 in zip(functional_schema.arguments, inplace_schema.arguments))
    # for the inplace op, its first argument should be mutable
    assert inplace_schema.arguments[0].alias_info is not None and inplace_schema.arguments[0].alias_info.is_write
    # and its remaining arguments shouldn't be.
    assert all(a.alias_info is None for a in inplace_schema.arguments[1:])
    return names_match and arg_types_match

# TODO: this should be beefed up to be able to properly re-inplace with:
# - mutating ops (e.g. _fused_moving_avg_obs_fq_helper)
# - out= ops (e.g. angle -> angle.out)
# TODO: we should also figure this info out using torchgen.
def _maybe_get_inplace_op(op):
    # __module__ seems broken; it returns torch._ops.aten which doesn't exist
    if not isinstance(op, torch._ops.OpOverload):
        return None
    # Some view ops have inplace variants (as_strided_, etc),
    # but we do NOT want the reinplacing pass to directly add these into the program.
    # (they'll require extra special handling, aren't aren't really useful for perf anyway)
    if _is_view_op(op):
        return None
    op_namespace = op.__module__.split(".")[-1]
    op_base_name = op.overloadpacket.__name__
    maybe_namespace_module = getattr(torch.ops, op_namespace)
    maybe_inplace_op = None if maybe_namespace_module is None else getattr(maybe_namespace_module, f'{op_base_name}_', None)
    if maybe_inplace_op is None:
        return None

    inplace_overloads = [
        getattr(maybe_inplace_op, overload_name) for overload_name in maybe_inplace_op.overloads()
    ]
    inplace_overloads_with_matching_schemas = [
        f
        for f in inplace_overloads
        if _schemas_match(op._schema, f._schema)
    ]
    # Just because foo() and foo_() are both existing operators,
    # They aren't guaranteed to have compatible schemas.
    # For example, pow.Scalar(Scalar self, Tensor exponent) has no valid inplace variant,
    # Even though several overloads of pow_ exist.
    if len(inplace_overloads_with_matching_schemas) == 0:
        return None
    assert len(inplace_overloads_with_matching_schemas) == 1
    inplace_op = inplace_overloads_with_matching_schemas[0]
    return inplace_op

_VIEW_INVERSE_MAP = {
    torch.ops.aten.diagonal_scatter.default: torch.ops.aten.diagonal.default,
    torch.ops.aten.select_scatter.default: torch.ops.aten.select.int,
    torch.ops.aten.slice_scatter.default: torch.ops.aten.slice.Tensor,
    torch.ops.aten.as_strided_scatter.default: torch.ops.aten.as_strided.default,
}

# This function, given a set of set of (aliased) tensor nodes,
# Returns any nodes in the graph that *use* any of the aliases, that occur *after* op_index
# in the node ordering.
def _get_all_later_node_usages(tensor_aliases: Set[Node], op_index: int):
    def _add_if_tensor(x, set_):
        if isinstance(x, FakeTensor):
            set_.add(StorageWeakRef(x._typed_storage()))

    nodes_used_after = set()
    for t in tensor_aliases:
        # get all nodes that use the current alias
        usage_nodes = t.users
        for n in usage_nodes:
            # We only care about usages after the current node
            if 'node_idx' not in n.meta or n.meta['node_idx'] <= op_index:
                continue
            # We also don't care about intermediate view ops.
            # They only matter if their output is then used elsewhere
            # (either in an out-of-place op, or as an output to the function).
            if n in tensor_aliases:
                if isinstance(n.target, torch._ops.OpOverload) or n.target == _operator.getitem:
                    continue
            nodes_used_after.add(n)
    return nodes_used_after

# Given an op that we're trying to re-inplace, "b = foo(a)",
# And given a {view}_scatter op that shows up later in the graph, "y = {view}_scatter(base, x, args...)"
# Then re-inplacing `foo()` would allow us to remove the `{view}_scatter` op entirely, IF:
# If there are any aliases in the alias_set(a) that satisfy:
# (1) The base of "alias", "alias_base", has the same size/stride/offset metadata as "base"
# (2) The output of running {view}(alias, args...) gives you the same size/stride/offset metadata
#     as "alias"
def _get_view_inverse_node_usages(later_node_usages: Set[Node], self_aliases: Set[Node]) -> Set[Node]:
    def matching_view_metadata(a, b):
        return a.size() == b.size() and \
            a.stride() == b.stride() and \
            a.storage_offset() == b.storage_offset()

    view_inverse_nodes = set()
    # Go through them in node order, so we can see chains of view_scatter ops.
    for n in sorted(later_node_usages, key=lambda x: x.meta['node_idx']):
        if n.target not in _VIEW_INVERSE_MAP:
            continue
        base = n.args[0]
        mutated_view = n.args[1]
        assert isinstance(base, Node)
        assert isinstance(base.meta['fake_result'], FakeTensor)
        assert isinstance(mutated_view, Node)
        assert isinstance(mutated_view.meta['fake_result'], FakeTensor)
        # Check that this view_inverse op actually corresponds to taking doing the inverse
        # of one of our existing self_alias nodes.
        original_view = _VIEW_INVERSE_MAP[n.target]
        for self_alias in self_aliases:
            # We're looking for some alias of the self arg, "alias",
            # that was created from some op `alias = foo(base, args...)`
            # such that the current _scatter op "inverts" that foo call.
            # We can check that by running the original op again, and checking that the strides match.
            if 'view_of' not in self_alias.meta:
                continue
            self_alias_base = self_alias.meta['view_of']
            try:
                # The we're trying to re-use the args from the view_scatter call inside of the corresponding
                # view op, which might throw. This just indicates that view_scatter op isn't a valid inverse
                # of the current alias we're looking at.
                view_replay_metadata = original_view(self_alias_base.meta['fake_result'], *n.args[2:], **n.kwargs)
                expected_metadata = self_alias.meta['fake_result']
                # If the alias and its base both have matching metadata, then this view_scatter op is valid to re-inplace.
                if matching_view_metadata(self_alias_base.meta['fake_result'], base.meta['fake_result']) and \
                        matching_view_metadata(view_replay_metadata, expected_metadata):
                    view_inverse_nodes.add(n)
            except Exception:
                continue

    return view_inverse_nodes


@compatibility(is_backward_compatible=True)
def reinplace(gm, *sample_args):
    """

    Given an fx.GraphModule, modifies it to perform "reinplacing",

    mutating the nodes of the graph.

    We look for out-of-place op call sites like `b = a.add(...)`,

    and convert them to be inplace (`b = a.add_(...)`),

    as long as the input to the current operator ("a") isn't re-used

    anywhere later in the graph.



    This pass currently expects to operate on a **functional, ATen** graph.

    This can be obtained by running `make_fx(functionalize(f))`.



    Sample inputs are needed to determine aliasing relationships of the inputs.

    In general, we can't reinplace node `b = a.add(...)` if "a" aliases any of the

    inputs to the program.



    Given a node "b = foo(a, args...) the algorithm for re-inplacing is as follows:



    (1) Perform some initial checks on the metadata of "a" and "args..."

        that can disqualify them from being reinplaced.



      (1a) Check that the self argument we're attempting to reinplace

           has acceptable dtype/size metadata to reinplace with.



           For example, if we have:

             a = torch.ones(1)

             b = torch.ones(10)

             out = torch.add(a, b)

           We can't turn that into

             a.add_(b)

           Because that would require resizing "a".



           Similarly, we can't convert torch.ge(a, b) into a.ge_(b),

           because that would require changing a's dtype (from e.g. float32 to bool).

           Note that in this specific example, we could technically do better..



           If we see the pattern:

             a_1 = a.ge(b)

             a_2 = aten._to_copy(a_1, a.dtype)

           Then we this should be valid to completely re-inplace

           (this is exactly what functionalization will emit when it sees a.ge_(b)).



           This optimization is only really important for user programs

           that directly use inplace comparison ops though.



           We also cannot re-inplace on tensors that have overlapping memory,

           e.g. torch.ones(1).expand(4, 4).add_(1)



      (1b) Check if "a" is an alias of any of the program inputs.



          If it is, skip and move to the next node.

          Inplace'ing an op that would cause it to mutate a program is not sound,

          because that would be a side effect visible to the user.



          NOTE: there's a future optimization that we should make:

          if "a" is a (alias of a)  program input, but later in the program

          there is a node that looks like "a.copy_(...)",

          Then re-inplacing is ok to do - we are temporarily re-using a's buffer,

          which will later be overwritten by the copy_() call.



          This will be an important optimization to have for programs that mutate

          their inputs. It currently isn't implemented though.



      (1c) Check if "a" and "args..." alias



          For example, re-inplacing to create code like the below

          isn't guaranteed to be sound:



            aten.mul_(a, a)



    (2) Check that "a" and all of its outstanding aliases are not used anywhere

        later in the graph. If this is the case, then it's safe to re-inplace

        to "b = foo_(a)".



        There are a few caveats to this, explained in more detail below:

        (a) If "a" is used later as an argument to a view op, that is okay.

            It's only a problem if "a" (or that view) is later passed

            into a normal operator, or if it is returned as the program output.

        (b) If "a" is a repeat argument in `foo()`, then don't reinplace.

            Most ATen kernels don't make any guarantees that this is sound,

            e.g. if you do aten.mul_(a, a).

            So we'll just ban re-inplacing in this case.

            It's only a problem if "a" (or that view) is later passed

        (c) If "a" is used as an input into a view "inverse" / "scatter"

            operator, it is potentially fine to re-inplace

            (and remove that scatter operator from the graph).

            See below for a more detailed example.



        NOTE: there is an optimization in this step that is crucial

        to fully recovering performance from functionalization.



        Given this program:

        def f(x):

            a = torch.ops.aten.add(x, x)

            b = torch.ops.aten.diagonal(a)

            torch.ops.aten.fill_(b, 0)

            return d



        Functionalization will emit the following:

        def f(x):

            a = torch.ops.aten.add(x, x)

            b = torch.ops.aten.diagonal(a, 0, 1)

            b_updated = torch.ops.aten.fill(b, 0)

            a_updated = torch.ops.aten.diagonal_scatter(a, b_updated, 0, 1)

            return a_updated



        Ordinarily, we would not be able to reinplace the fill,

        because "b" aliases with "a" which is used by the diagonal_scatter call.



        "re-inplacing" is on the hook for figuring out that it is ok to

        completely, the expensive diagonal_scatter call, if we re-inplace the add().



        So, for every `alias in alias_set(a)`, instead of checking

        that "alias" is not used anywhere later in the graph,

        we check that

            EITHER:

          (a) alias is not used anywhere later in the graph

            OR:

          (b) alias is used exactly once later on in the graph,

              in the following op:



                out = foo_scatter(alias, x, args...)



              where the following must hold:

                (i) "foo_scatter" is the "inverse" operator for foo.

                    This only applies to "foo" ops that are view operators,

                    which view into a subset of the original tensor's memory.

                    In practice, there are ~4 operators where this applies:

                      diagonal -> diagonal_scatter

                      slice -> slice_scatter

                      select -> select_scatter

                      as_strided -> as_strided_scatter

                (ii) "args..." are the same between the foo() and foo_scatter() calls.



    (3) Perform the actual re-inplacing on foo!



      (3b) is the common case, but special care is needed for {view}_scatter (3a)



      (3a) {view}_scatter ops.



        Consider this program:

          a = torch.zeros(2, 2)

          b = torch.ones(2)

          a[0] = b



        Post functionalization, that will look like:

          a = torch.zeros(2)

          b = torch.ones(1)

          a_updated = torch.select_scatter(a, b, 0, 0)



        In this case though, there is no "functional" op to re-inplace!

        Instead, we'd like to directly remove toe select_scatter call.

        We already know from (3) that this is valid,

        because "a" has no later usages in the graph.



        We perform the re-inplacing on the {view}_scatter op like so

        Before:

          a_updated = torch.select_scatter(a, b, args...)

        After:

          a_slice = a.select(a, args...)

          a_slice.copy_(b)



      (3b) Otherwise, replace the functional op with its inplace variant.

        Before:

          b = foo(a, args...)

        After:

          a.foo_(args...)



    (4) Finally, after converting either:

          Before:

            b = foo(a)

          After:

            foo_(a)

        or

          Before:

            b = {slice}_scatter(a, mutated_slice, args...)

          After:

            slice = {slice}(a, args...)

            slice.copy_(mutated_slice)



        We now need to find all later nodes that use "b" as an argument

        and update them to take in "a" instead.



        Note that for the majority of inplace ops, this isn't actually necessary

        (because most inplace ops return "self" as their output).

        This isn't generally true for all mutable ops though, which is why

        we need to actually replace all of the arguments.



        We also need to update our metadata of Dict[StorageWeakRef, Set[Node]],

        That maps a given tensor storage to the set of all nodes that take in that storage

        as an input.

        Specifically, re-inplacing `b = foo(a)` causes "a" and "b"'s sets to get fused

        together.



    (5) Any "view_inverse/scatter" nodes that were identified as "it's ok to ignore them"

        during step (3) get manually deleted from the graph.

        Their outputs are no longer used, so technically standard DCE would be able

        to do this, but we can no longer run FX's DCE pass now that we have mutable

        ops in the graph.

    """
    _FunctionalizationMetadataProp(gm).propagate(*sample_args)

    # Useful debug printing
    # def _print(x):
    # if isinstance(x, FakeTensor):
    # print(f'fake_result: {StorageWeakRef(x._typed_storage()).cdata}')

    # for n in gm.graph.nodes:
    # print(n.format_node())
    # if hasattr(n, 'meta'):
    # print(f'node_idx: {n.meta["node_idx"]}')
    # if 'fake_result' in n.meta:
    # tree_map(_print, n.meta['fake_result'])
    # if 'view_of' in n.meta:
    # print(f'view_of: {str(n.meta["view_of"])}')
    # print()

    # We need to know which nodes correspond to inputs (or their aliases)
    # so we know not to re-inplace them.
    # NOTE: later, we'll need to add an optimization for fully recovering performance
    # on programs that mutate inputs.
    input_storages = {
        StorageWeakRef(
            node.meta['fake_result']._typed_storage()
        ) for node in gm.graph.nodes if node.op == 'placeholder'}


    # We also need to know for a given node, what are all of its aliasing nodes.
    storage_to_nodes: Dict[StorageWeakRef, Set[Node]] = defaultdict(set)
    for n in gm.graph.nodes:
        if 'fake_result' in n.meta:
            # Tree-mapping because some ops can return lists of tensors.
            def _add_to_map(x):
                if isinstance(x, FakeTensor):
                    storage_to_nodes[StorageWeakRef(x._typed_storage())].add(n)
            pytree.tree_map_(_add_to_map, n.meta['fake_result'])

    # inplace-ify functional ops, subject to the constraints written below.
    all_later_view_inverse_nodes_to_delete = set()
    for idx, node in enumerate(gm.graph.nodes):
        if node.op == 'call_function':

            # Today, the re-inplace pass on directly acts on:
            # - functional ops with an inplace variant
            # - {view}_scatter ops that can be potentially removed from the graph.
            # Both of these ops take in tensor first args, so filtering on this condition
            # makes the later code simpler.
            # We should revisit this at some point though, particularly when we also want
            # the reinplacer to be able to handle out= and mutable operators
            # and tensorlist first args (like `_foreach_` ops).
            if not isinstance(node.target, torch._ops.OpOverload):
                continue
            if len(node.target._schema.arguments) < 1:
                continue
            if type(node.target._schema.arguments[0].type) != torch.TensorType:
                continue

            # Step 1a: Check that the self argument we're attempting to reinplace
            # has the same size/stride as the output.
            # For example, we shouldn't try to reinplace torch.add(scalar_tensor, larger_tensor)
            # As it would require resizing scalar_tensor.
            # (We could potentially swizzle this into larger_tensor.add_(scalar_tensor),
            # this is probably an optimization to revisit later).
            self_arg = node.args[0]
            self_flattened = pytree.tree_leaves(self_arg.meta['fake_result'])
            node_flattened = pytree.tree_leaves(node.meta['fake_result'])
            self_has_wrong_metadata = False
            if len(self_flattened) == len(node_flattened):
                for self_meta, node_meta in zip(self_flattened, node_flattened):
                    if self_meta.numel() != node_meta.numel():
                        self_has_wrong_metadata = True
                    if self_meta.dtype != node_meta.dtype:
                        self_has_wrong_metadata = True
                    # We also cannot re-inplace on tensors that have internal memory overlap.
                    # e.g. torch.ones(1).expand(4, 4).add_(1)
                    if torch._debug_has_internal_overlap(self_meta) == 1:
                        self_has_wrong_metadata = True
            # Here, we (optimistically) assume that a.resize(b) is valid to re-inplace,
            # Since users should never really be calling the functional "torch.ops.aten.resize"
            # op directly in their programs.
            if self_has_wrong_metadata and node.target != torch.ops.aten.resize.default:
                continue

            # Step 1b: ensure that the op we're trying to re-inplace isn't a program input
            self_arg_name = self_arg.name
            self_arg_storage = StorageWeakRef(self_arg.meta['fake_result']._typed_storage())
            if self_arg_storage in input_storages:
                # TODO: later, add the optimization for handling `copy_()` calls in the graph.
                continue
            if len([x for x in node.args if x is self_arg]) > 1:
                # Step 1c:
                # Calling stuff like aten.mul_(a, a) isn't guaranteed to be sound,
                # so we prevent re-inplacing in this case.
                continue

            self_arg_storage = StorageWeakRef(self_arg.meta['fake_result']._typed_storage())
            self_aliases = storage_to_nodes[self_arg_storage]

            # First, we find all later usages of any of the aliases of self_arg.
            later_node_usages = _get_all_later_node_usages(self_aliases, node.meta['node_idx'])
            # Then, we check if any of those later usages are actually view_scatter ops
            # that are safe to fully remove.
            later_view_inverse_node_usages = _get_view_inverse_node_usages(later_node_usages, self_aliases)

            # Step 2: Check to see if the input to the op is re-used later in the graph.
            # If not (same goes for its aliases), then this op is safe to re-in place.
            # This is a slightly roundabout way to check that there are no later usages of the current self argument.
            # (later_view_inverse_node_usages corresponds to "view_scatter" nodes that we are allowed to delete)
            can_reinplace = len(later_node_usages - later_view_inverse_node_usages) == 0
            if not can_reinplace:
                continue

            # Step 3a: Special handling for when we see *_scatter operators.
            # When we see an operator like `b = torch.slice_scatter(a, ...)`,
            # instead of trying to "inplace" it into a.slice_scatter_(..._),
            # we would prefer to remove it from the graph entirely,
            # and instead copy_() the slice directly into the larger tensor.
            # See the description of the algorithm for a full example.
            if node.target in _VIEW_INVERSE_MAP and node not in all_later_view_inverse_nodes_to_delete:
                view_op = _VIEW_INVERSE_MAP[node.target]
                # Before:
                #   base_updated = torch.ops.aten.slice_scatter.default(base, mutated_slice, args...)
                # After:
                #   slice = torch.ops.aten.slice.default(base, args...)
                #   slice.copy_(mutated_slice)
                with gm.graph.inserting_before(node):
                    mutated_slice_node = node.args[1]
                    remaining_slice_args = node.args[2:]
                    slice_node = gm.graph.create_node(
                        'call_function', view_op, (self_arg,) + tuple(remaining_slice_args), node.kwargs)
                    copy_node = gm.graph.create_node(
                        'call_function', torch.ops.aten.copy_.default, (slice_node, mutated_slice_node,), {})
                # Add the slice_scatter node to our "nodes to delete" list.
                all_later_view_inverse_nodes_to_delete.add(node)


            else:
                # Step 3b: Check to see if this operator has an inplace variant.
                maybe_inplace_op = _maybe_get_inplace_op(node.target)
                if maybe_inplace_op is None:
                    continue
                # And if so, replace it with its inplace variant.
                node.target = maybe_inplace_op

            # At this point, 'storage_to_nodes' will be stale.
            # Now that we're inplacing `b = foo(a)`, we need to effectively
            # union together the dict values for b and a's storage.
            # Hmm... morally I think we also want to keep the `fake_result` metadata
            # up to date here, but I'm not sure how easy it is to do.
            # Maybe it's fine to wait until the end of the pass to update it.
            curr_node_storage = StorageWeakRef(node.meta['fake_result']._typed_storage())
            storage_to_nodes[self_arg_storage].update(storage_to_nodes[curr_node_storage])
            storage_to_nodes[curr_node_storage].update(storage_to_nodes[self_arg_storage])

            # Need to remember the view_scatter view nodes we found so we can remove them alter.
            all_later_view_inverse_nodes_to_delete.update(later_view_inverse_node_usages)

            # Step 4:
            # Now that we've replaced b = a.foo() with a.foo_(),
            # We need to replace any later usages of "b" with "a"
            for old in itertools.chain([node], later_view_inverse_node_usages):
                new = old.args[0]
                nodes_to_update = [n for n in old.users if n.meta['node_idx'] > node.meta['node_idx']]
                for node_to_update in nodes_to_update:
                    new_args = []
                    args = node_to_update.args

                    def replace_arg(a):
                        if a == old:
                            return new
                        return a

                    # First, replace usages of "b" with "a"
                    node_to_update.args = tree_map_only(Node, replace_arg, node_to_update.args)
                    node_to_update.kwargs = tree_map_only(Node, replace_arg, node_to_update.kwargs)

                    # Second, update our storage_to_nodes data structure.
                    old_flattened_res = pytree.tree_leaves(old.meta['fake_result'])
                    node_flattened_res = pytree.tree_leaves(node_to_update.meta['fake_result'])

                    old_res_storage = {
                        StorageWeakRef(
                            x._typed_storage()
                        ) for x in old_flattened_res if isinstance(x, FakeTensor)}
                    node_res_storage = {
                        StorageWeakRef(
                            x._typed_storage()
                        ) for x in node_flattened_res if isinstance(x, FakeTensor)}

                    # This will happen if we're updating a view op, e.g.
                    # e.g. replacing
                    #     x = view(old)
                    #     x = view(new)
                    # When that happens, we need to make sure to keep our
                    # storage mapping up to date.
                    #
                    # We're checking for len(...) == 1 here because all view ops are guaranteed to return either a single tensor,
                    # or multiple tensors that all share the same storage.
                    # We can't just check equality because we might encounter FX nodes that return zero tensor outputs.
                    if len(old_res_storage) == 1 and len(node_res_storage) == 1 and old_res_storage == node_res_storage:
                        new_flattened_res = pytree.tree_leaves(new.meta['fake_result'])
                        new_res_storage = {
                            StorageWeakRef(
                                x._typed_storage()
                            ) for x in new_flattened_res if isinstance(x, FakeTensor)}
                        assert len(new_res_storage) == 1
                        (old_ref,) = old_res_storage
                        (new_ref,) = new_res_storage
                        (node_ref,) = node_res_storage
                        # Technically, "old_ref" and all its aliases will remain
                        # in our mapping.
                        # That should be fine though, since we deleted "old"
                        # from the graph at this point.
                        storage_to_nodes[node_ref].update(storage_to_nodes[new_ref])
                        storage_to_nodes[new_ref].update(storage_to_nodes[node_ref])

    # Step 4: delete any _scatter nodes that we de-functionalized
    # Need to take care not to delete any of these nodes until after *all* modifications
    # to the graph are finished.
    for to_delete in all_later_view_inverse_nodes_to_delete:
        gm.graph.erase_node(to_delete)


    gm.recompile()
    return gm