File size: 33,171 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import argparse
import copy
from collections import defaultdict
from dataclasses import dataclass
from typing import NamedTuple, Sequence, Iterable, Any, List, Dict, Optional, Tuple
import logging

import torch
from torch.fx.passes.graph_manipulation import get_size_of_node
from torch.fx.node import map_arg
from torch.fx._compatibility import compatibility

from .operator_support import (
    get_node_target,
    OperatorSupportBase,
)
from .graph_drawer import FxGraphDrawer
from .shape_prop import ShapeProp
from .split_utils import split_by_tags
from .tools_common import (
    FxNetAccFusionsFinder,
    CALLABLE_NODE_OPS,
    Tensors,
    NodeList,
    NodeSet,
    is_node_output_tensor,
)


__all__ = ['FxNetAccNodesFinder', 'FxNetSplitterInternalError', 'Subgraph', 'SplitResult', 'generate_inputs_for_submodules']
_LOGGER = logging.getLogger(__name__)

DEFAULT_MIN_ACC_MODULE_SIZE = 1
DEFAULT_SKIP_FUSION = False
DEFAULT_ALLOW_NON_TENSOR = False

class _SplitterSettingBase:
    def __init__(

        self,

        min_acc_module_size=DEFAULT_MIN_ACC_MODULE_SIZE,

        skip_fusion=DEFAULT_SKIP_FUSION,

        allow_non_tensor=DEFAULT_ALLOW_NON_TENSOR

    ):
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--min-acc-module-size",
            "--min_acc_module_size",
            required=False,
            type=int,
            help="Minimum size limit of an accelerator subgraph.",
        )
        parser.add_argument(
            "--skip-fusion",
            "--skip_fusion",
            default=False,
            action="store_true",
            help="If true then no fusion groups. Fusion group is used to "
            "enforce no non-tensor data flow between submodules. If we don't "
            "have this constrain, setting this to false is recommended as it "
            "can reduce overhead.",
        )
        parser.add_argument(
            "--allow-non-tensor",
            "--allow_non_tensor",
            default=False,
            action="store_true",
            help="For some backends non-tensor data flow between cpu and them "
            "are not allowed. Therefore, if a node supported by accelerator but "
            "it has non-tensor inputs or outputs to a cpu node we would want to "
            "consider it as a cpu node during splitting. However, for some backends "
            "we might not care about non-tensor data flow and we can set this option "
            "to true to disable the functionality that prevent non-tensor data flow.",
        )
        args, unknown = parser.parse_known_args()

        self.min_acc_module_size: int = args.min_acc_module_size if args.min_acc_module_size else min_acc_module_size
        self.skip_fusion: bool = args.skip_fusion if args.skip_fusion else skip_fusion
        self.allow_non_tensor: bool = args.allow_non_tensor if args.allow_non_tensor else allow_non_tensor


@compatibility(is_backward_compatible=False)
class FxNetAccNodesFinder:
    """

    Finds a set of nodes that can be supported on ACC, excluding nodes that have non-tensor

    input/output to cpu nodes to prevent non-tensor data flow between backends and cpu.



    I.e. if we have a chain:



    ACC_NODE_1 -> ACC_NODE_2 -> ACC_NODE_3 -> CPU_NODE_1



    where every ACC node produces non-tensor output, then they all should be treated as CPU nodes.



    This behavior can be turned off by passing allow_non_tensor=True.

    """

    def __init__(

        self,

        module: torch.fx.GraphModule,

        operator_support: OperatorSupportBase,

        allow_non_tensor: bool,

    ):
        self.module = module
        self.operator_support = operator_support
        self.allow_non_tensor = allow_non_tensor

    def reduce_acc_nodes_non_tensor_input_helper(

        self, cpu_worklist: NodeList

    ):
        """

        Transitively excludes nodes from ACC supported set.

        For every node in the worklist:

        - removes its downstream ACC nodes from ACC supported set,

        - if any downstream ACC node produces non-tensor output,

          then it gets added into the worklist.

        """
        while cpu_worklist:
            node = cpu_worklist.pop(0)

            for user in node.users:
                if user in self.acc_nodes:
                    self.acc_nodes.remove(user)
                    if not is_node_output_tensor(user):
                        cpu_worklist.append(user)

    def reduce_acc_nodes_non_tensor_input(self):
        """

        Excludes nodes from ACC supported set that have direct

        upstream CPU nodes that produce non-tensor outputs.

        """
        non_tensor_cpu_nodes: NodeList = []

        for node in self.module.graph.nodes:
            if node.op not in CALLABLE_NODE_OPS:
                continue
            if node in self.acc_nodes:
                continue
            if is_node_output_tensor(node):
                continue
            non_tensor_cpu_nodes.append(node)

        self.reduce_acc_nodes_non_tensor_input_helper(non_tensor_cpu_nodes)

    def reduce_acc_nodes_non_tensor_output(self):
        """

        Excludes nodes from ACC supported set that produce non-tensor

        outputs and have downstream CPU nodes.

        """
        while True:
            new_cpu_nodes: NodeList = []

            for acc_node in self.acc_nodes:
                if is_node_output_tensor(acc_node):
                    continue
                for user in acc_node.users:
                    if user not in self.acc_nodes:
                        new_cpu_nodes.append(acc_node)
                        break

            if not new_cpu_nodes:
                break

            for new_cpu_node in new_cpu_nodes:
                self.acc_nodes.remove(new_cpu_node)

            self.reduce_acc_nodes_non_tensor_input_helper(new_cpu_nodes)

    def __call__(self) -> NodeSet:
        submodules = dict(self.module.named_modules())
        self.acc_nodes = {
            n
            for n in self.module.graph.nodes
            if n.op in CALLABLE_NODE_OPS
            and self.operator_support.is_node_supported(submodules, n)
        }

        if not self.allow_non_tensor:
            self.reduce_acc_nodes_non_tensor_input()
            self.reduce_acc_nodes_non_tensor_output()

        return self.acc_nodes

@compatibility(is_backward_compatible=False)
class FxNetSplitterInternalError(Exception):
    pass

@compatibility(is_backward_compatible=False)
@dataclass
class Subgraph:
    is_acc: bool
    nodes: NodeList


@compatibility(is_backward_compatible=False)
class SplitResult(NamedTuple):
    """

    Stores the results of the splitter.



    Attributes:

        split_module: root module after splitting.

        submodule_inputs: a dict that maps submodule name to its inputs.

        non_acc_submodule_prefix: the prefix for non acc submodules. For

            acc submodule the prefix is alwasy "_run_on_acc_".

    """

    split_module: torch.fx.GraphModule
    submodule_inputs: Dict[str, Any]
    non_acc_submodule_prefix: str


@compatibility(is_backward_compatible=False)
def generate_inputs_for_submodules(

    model: torch.nn.Module,

    inputs: Sequence[Any],

    target_submodules: Iterable[str],

    deepcopy: bool = False,

) -> Dict[str, Any]:
    """

    Generate inputs for targeting submdoules in the given model. Note that if two submodules refer to the same obj, this

    function doesn't work.



    Args:

        model: root model.

        inputs: inputs to the root model.

        target_submodules: submodules that we want to generate inputs for.



    Returns:

        A dict that maps from submodule name to its inputs.

    """

    handles = []
    results = {}
    submodule_to_names = {mod: name for name, mod in model.named_modules()}

    def pre_forward(module, module_inputs):
        results[submodule_to_names[module]] = copy.deepcopy(module_inputs) if deepcopy else module_inputs

    for name, mod in model.named_modules():
        if name in target_submodules:
            handles.append(mod.register_forward_pre_hook(pre_forward))

    def clean_up_handles():
        for h in handles:
            h.remove()

    try:
        with torch.no_grad():
            model(*inputs)
    except Exception as e:
        clean_up_handles()
        raise e

    clean_up_handles()
    return results


class _SplitterBase:
    """

    Splits a GraphModule into sub-GraphModules for execution on CPU or the accelerator.

    Output is a GraphModule with supported and unsupported operators grouped into as few sub-GraphModules as possible.

    Assumes that only "call_module", "call_function" and "call_method" from FX IR can potentially be executed on the accelerator.



    Given the following graph:

          ==> b ==>

        //         \\

       a             d

        \\         //

          ==> c ==>



    class SimpleModule(torch.nn.Module):

        def forward(self, a):

            b = torch.sin(a)

            c = torch.cos(a)

            d = b + c

            return d



    and providing "operator_support" that indicates that 'b' and 'c' can be executed on the accelerator,

    we will get the following split result:



    main:

    def forward(self, a):

        run_on_acc_0_0 = self._run_on_acc_0_0(a)

        getitem = run_on_acc_0_0[0]

        getitem_1 = run_on_acc_0_0[1]

        run_on_cpu_1_1 = self._run_on_cpu_1_1(getitem, getitem_1)

        return run_on_cpu_1_1



    _run_on_acc_0_0:

    def forward(self, a):

        sin_1 = torch.sin(a)

        cos_1 = torch.cos(a)

        return (sin_1, cos_1)



    _run_on_cpu_1_1:

    def forward(self, sin_1, cos_1):

        add_1 = sin_1 + cos_1

        return add_1

    """

    # PCIe bandwidth for the backend, default to 100 GB/s
    PCIe_BW = 100 * 2 ** 30

    def __init__(

        self,

        module: torch.fx.GraphModule,

        sample_input: Sequence[Any],

        operator_support: OperatorSupportBase,

        settings: _SplitterSettingBase,

        non_acc_submodule_name: str = "_run_on_cpu_",

    ):
        """

        Preprocesses graph before splitting:

        - finds nodes supported by ACC,

        - finds fusion groups for ACC nodes having non-tensor IO,

        - builds a graph of direct dependencies,

        - builds a map of fused nodes to their fusions.

        As a result we get self.acc_nodes, self.deps and self.fusions.

        """
        assert isinstance(module, torch.fx.GraphModule)

        self.module = module
        ShapeProp(self.module).propagate(*sample_input)

        self.settings = settings
        self.operator_support = operator_support
        self.sample_input = sample_input
        self.acc_nodes = FxNetAccNodesFinder(self.module, self.operator_support, self.settings.allow_non_tensor)()

        if self.settings.skip_fusion:
            self.fusions = {}
        else:
            self.fusions = FxNetAccFusionsFinder(module, self.acc_nodes)()

        # Modify deps to add more deps for fused nodes
        self.deps = self.find_deps()
        self.update_deps_for_fusions()

        self.non_acc_submodule_name = non_acc_submodule_name
        self._node_submodule_map: Dict[str, str] = {}

    # ===============================================================
    # Helpers for ctor and initial state
    # ===============================================================

    def get_node_submodule_map(self) -> Dict[str, str]:
        """ Returns a map from node name to submodule name, e.g.

            node: main_module_impl_impl_over_arch_unary_multiple_embedding

              _pooling_embedding_pooling_sparse_entity_equivalence_key

              _proxy_embedding_bag

            maps to submodule name of: _run_on_acc_1

        """
        return self._node_submodule_map

    def find_deps(self) -> Dict[torch.fx.Node, NodeSet]:
        """

        Builds a graph of node dependencies. Leaf nodes don't have any

        dependencies and the "output" node doesn't have nodes depending on it.



        Resulting graph has only direct dependencies, i.e. there are no

        transitive dependencies.

        """
        deps: Dict[torch.fx.Node, NodeSet] = defaultdict(set)
        for node in self.module.graph.nodes:
            if node.op not in CALLABLE_NODE_OPS:
                continue

            for user in node.users:
                if user.op != "output":
                    deps[user].add(node)
        return deps

    def update_deps_for_fusions(self):
        """

        Updates graph of dependencies so that:

        - nodes from the same fusion depend on the same set of outer nodes,

        - outer nodes depending on a fusion depend on all nodes in that fusion.

        """
        for node in self.fusions:
            fusion = self.fusions[node]
            for fused_neighbor in fusion:
                self.deps[node].update(self.deps[fused_neighbor] - fusion)

                for user in fused_neighbor.users:
                    if user not in fusion:
                        self.deps[user].add(node)

    # ===============================================================
    # Helpers for preview
    # ===============================================================

    def _lower_model_to_backend(

        self, mod: torch.fx.GraphModule, inputs: Tensors

    ) -> torch.nn.Module:
        """

        Lower the model to a backend.

        """

        return mod

    def _find_culprit(

        self, mod: torch.fx.GraphModule, inputs: Tensors

    ) -> str:
        """

        When an error occurs during lowering or running the lowered mod, we use this

        function to find culprits in the `mod` that causes the error.

        """

        return "Unable to find a culprit because _find_culprit() function is not implemented."

    def _draw_graph_based_on_node_support(

        self, mod: torch.fx.GraphModule, supported_nodes: NodeList

    ):
        color_map = {
            "default": "AliceBlue",
            "supported": "chartreuse1",
            "unsupported": "crimson",
        }

        class CustomDrawer(FxGraphDrawer):
            def _get_node_style(self, node):
                template = super()._get_node_style(node)
                if node in supported_nodes:
                    template["fillcolor"] = color_map["supported"]
                elif node.op in CALLABLE_NODE_OPS:
                    template["fillcolor"] = color_map["unsupported"]
                else:
                    template["fillcolor"] = color_map["default"]

                return template

        drawer = CustomDrawer(mod, "node_support", ignore_getattr=True)
        dot_graph = drawer.get_main_dot_graph()
        dot_graph.write_raw("node_support.dot")

    def node_support_preview(self, dump_graph: bool = False):
        submodules = dict(self.module.named_modules())

        supported_nodes: NodeList = []
        supported_node_types = defaultdict(set)
        unsupported_node_types = defaultdict(set)

        def get_dtype(arg):
            tensor_meta = arg.meta.get("tensor_meta")
            return getattr(tensor_meta, "dtype", None)

        for node in self.module.graph.nodes:
            if node.op not in CALLABLE_NODE_OPS:
                continue

            target = get_node_target(submodules, node)

            # Store dtype of arg in node.args. If arg doesn't have dtype, i.e. not a tensor, we'll store None.
            arg_dtypes = [
                get_dtype(arg) if isinstance(arg, torch.fx.Node) else None
                for arg in node.args
            ]

            # Find last non-None element. If all elements are None, return max_len.
            last_index = len(arg_dtypes) - next(
                (
                    i
                    for i, dtype in enumerate(reversed(arg_dtypes))
                    if dtype is not None
                ),
                len(arg_dtypes),
            )

            # Strip None elements at the end.
            arg_dtypes_tuple = tuple(arg_dtypes[:last_index])
            kwarg_dtypes_tuple = tuple(
                (k, get_dtype(arg))
                for k, arg in node.kwargs.items()
                if isinstance(arg, torch.fx.Node)
            )

            if self.operator_support.is_node_supported(submodules, node):
                supported_nodes.append(node)
                supported_node_types[target].add((arg_dtypes_tuple, kwarg_dtypes_tuple))
            else:
                unsupported_node_types[target].add((arg_dtypes_tuple, kwarg_dtypes_tuple))

        if dump_graph:
            self._draw_graph_based_on_node_support(self.module, supported_nodes)

        reports = "\nSupported node types in the model:\n"
        for t, dtypes in supported_node_types.items():
            for arg_dtypes_tuple, kwarg_dtypes_tuple in dtypes:
                reports += f"{t}: ({arg_dtypes_tuple}, {dict(kwarg_dtypes_tuple)})\n"

        reports += "\nUnsupported node types in the model:\n"
        for t, dtypes in unsupported_node_types.items():
            for arg_dtypes_tuple, kwarg_dtypes_tuple in dtypes:
                reports += f"{t}: ({arg_dtypes_tuple}, {dict(kwarg_dtypes_tuple)})\n"

        print(reports)

        # Return reports for testing purpose
        return reports

    def split_preview(self, dump_graph: bool = False):
        reports = ""
        subgraphs = self.put_nodes_into_subgraphs()
        acc_subgraphs_num = len([g for g in subgraphs if g.is_acc])
        cpu_subgraphs_num = len(subgraphs) - acc_subgraphs_num
        reports += f"Before removing small acc subgraphs, total {len(subgraphs)} subgraphs are created:"
        reports += f" {acc_subgraphs_num} acc subgraphs and {cpu_subgraphs_num} cpu subgraphs.\n"

        subgraphs = self.remove_small_acc_subgraphs(subgraphs)
        acc_subgraphs_num = len([g for g in subgraphs if g.is_acc])
        cpu_subgraphs_num = len(subgraphs) - acc_subgraphs_num
        reports += f"After removing small acc subgraphs, total {len(subgraphs)} subgraphs are created:"
        reports += f" {acc_subgraphs_num} acc subgraphs and {cpu_subgraphs_num} cpu subgraphs.\n"

        for i, subgraph in enumerate(subgraphs):
            reports += f"_run_on_acc_{i}: " if subgraph.is_acc else f"{self.non_acc_submodule_name}{i}: "
            reports += f"{len(subgraph.nodes)} node(s)\n"

        self.tag(subgraphs)
        split_mod = self.split(remove_tag=True)
        split_mod.eval()

        if dump_graph:
            drawer = FxGraphDrawer(
                split_mod, "preview", ignore_getattr=True
            )
            dot_graphs = drawer.get_all_dot_graphs()
            for name, dot_graph in dot_graphs.items():
                dot_graph.write_raw(f"{name}.dot")

        max_qps: float = self.PCIe_BW
        bottleneck_module = ""

        for node in split_mod.graph.nodes:
            if node.op == "call_module" and "acc" in node.target:
                reports += f"\nProcessing acc submodule {node.target}\n"

                submod = getattr(split_mod, node.target)

                def get_submod_inputs(main_mod, submod, example_inputs):
                    sub_inputs = None

                    def get_inputs(self, inputs):
                        nonlocal sub_inputs
                        sub_inputs = inputs

                    handle = submod.register_forward_pre_hook(get_inputs)
                    main_mod(*example_inputs)
                    handle.remove()
                    return sub_inputs

                submod_inputs = get_submod_inputs(
                    split_mod, submod, self.sample_input
                )
                ShapeProp(submod).propagate(*submod_inputs)

                total_input_bytes = 0
                total_output_bytes = 0

                reports += "Checking inputs...\n"
                for n in submod.graph.nodes:
                    if n.op == "placeholder":
                        if not is_node_output_tensor(n):
                            reports += f"Input {n.name} is not a tensor, this might cause problems during lowering!\n"
                        else:
                            total_input_bytes += get_size_of_node(submod, n)[0]
                    if n.op == "output":
                        output_node = n

                reports += "Checking outputs...\n"

                def get_bytes(node: torch.fx.Node):
                    nonlocal total_output_bytes
                    nonlocal reports
                    if not is_node_output_tensor(node):
                        reports += f"Output {node.name} is not a tensor, this might cause problems during lowering!\n"
                    else:
                        total_output_bytes += get_size_of_node(submod, node)[0]

                map_arg(output_node.args, get_bytes)  # type: ignore[possibly-undefined]
                qps = self.PCIe_BW / max(total_input_bytes, total_output_bytes)
                reports += f"Total input size in bytes is {total_input_bytes}, total output size in bytes is {total_output_bytes},"
                reports += f" theoretical max qps (bounds by PCIe bandwidth) for this submodule is {qps}.\n"

                if qps < max_qps:
                    max_qps = qps
                    bottleneck_module = node.target

                try:
                    lowered_submod = self._lower_model_to_backend(submod, submod_inputs)
                except RuntimeError:
                    reports += "Run into an error during lowering!\n"
                    reports += self._find_culprit(submod, submod_inputs)
                    continue

                try:
                    lowered_submod(*submod_inputs)
                except RuntimeError:
                    reports += "Run into an error during inference!\n"
                    reports += self._find_culprit(submod, submod_inputs)
                else:
                    reports += "Lowering and running succeed!\n"

        reports += f"\nTheoretical max qps (bounds by PCIe bandwidth) for this model is {max_qps},"
        reports += f" bottleneck is submodule {bottleneck_module}."
        print(reports)

        # return the reports for testing purposes
        return reports

    # ===============================================================
    # Helpers for extend_acc_subgraph() method
    # ===============================================================

    def find_reverse_deps(

        self, tag_id: Optional[int] = None

    ) -> Dict[torch.fx.Node, NodeSet]:
        """

        Builds reversed topological node dependencies, if tag_id is specified,

        we ignore nodes that are in later subgraph i.e. nodes have greater tag_id.

        """
        result: Dict[torch.fx.Node, NodeSet] = defaultdict(set)

        for node in self.module.graph.nodes:
            if node.op not in CALLABLE_NODE_OPS:
                continue

            for user in node.users:
                if user.op not in CALLABLE_NODE_OPS:
                    continue

                if tag_id is None or (int(user.tag.split("_")[-1]) < tag_id):
                    result[node].add(user)

        return result

    def update_reverse_deps_for_fusions(

        self, deps: Dict[torch.fx.Node, NodeSet]

    ):
        processed_node = set()

        for node, fusion in self.fusions.items():
            if node in processed_node:
                continue

            new_dep = set()

            # Create a new dependency set which include all the
            # dependencies of the nodes in the fusion group
            for n in fusion:
                new_dep.update(deps[n])

            # Exclude nodes in the fusion
            new_dep.difference_update(fusion)

            # Update dependency
            for n in fusion:
                deps[n] = new_dep

                for arg in n.all_input_nodes:
                    if arg not in fusion:
                        deps[arg].update(fusion)

                processed_node.add(n)

    def find_parent_nodes_of_subgraph(self, tag: str) -> NodeSet:
        """

        Finds parent nodes of the `tag` subgraph.



        Traverse the inputs of nodes in the subgraph, if input doesn't belong to the subgraph

        and is not a placeholder, we consider it as the parent node of the subgraph.

        """
        parent_nodes = set()

        for node in self.module.graph.nodes:
            if node.op in CALLABLE_NODE_OPS and node.tag == tag:
                for arg in node.all_input_nodes:
                    if arg.op in CALLABLE_NODE_OPS and arg.tag != tag:
                        parent_nodes.add(arg)

        return parent_nodes

    def extend_acc_subgraph(self, tag: str):
        """

        Extend the acc subgraph with `tag` going the reversed topological direction.

        """
        # Dict that maps node to its users and ignore users that
        # are in the subgraph that has greater tag
        deps = self.find_reverse_deps(tag_id=int(tag.split("_")[-1]))
        self.update_reverse_deps_for_fusions(deps)

        # Parent nodes of the subgraph
        parent_nodes = self.find_parent_nodes_of_subgraph(tag)

        visited_nodes: NodeSet = set()

        while parent_nodes:
            node = None

            # Find a acc node that depends on visited nodes only
            for n in parent_nodes:
                if deps[n] <= visited_nodes and n in self.acc_nodes:
                    node = n
                    break

            if node is None:
                break

            # Put the node into `tag` subgraph
            node.tag = tag  # type: ignore[attr-defined]
            parent_nodes.remove(node)
            visited_nodes.add(node)

            # If node is in a fusion group, add all fusion buddies to parent nodes
            if node in self.fusions:
                for fusion_node in self.fusions[node]:
                    if fusion_node not in visited_nodes:
                        parent_nodes.add(fusion_node)

            # Add inputs of the node to parent nodes
            for arg in node.all_input_nodes:
                if arg.op in CALLABLE_NODE_OPS and arg not in visited_nodes:
                    parent_nodes.add(arg)

    # ===============================================================
    # Helpers for split() method
    # ===============================================================

    def starter_nodes(self) -> Tuple[NodeSet, NodeSet]:
        """

        Finds nodes that consume module inputs or get_attr nodes.

        """
        starter_cpu_nodes: NodeSet = set()
        starter_acc_nodes: NodeSet = set()
        for node in self.module.graph.nodes:
            if node.op not in {"placeholder", "get_attr"}:
                continue
            for user in node.users:
                if user in self.acc_nodes:
                    starter_acc_nodes.add(user)
                else:
                    starter_cpu_nodes.add(user)
        return starter_cpu_nodes, starter_acc_nodes

    def put_nodes_into_subgraphs(self) -> List[Subgraph]:
        # We start graph traversal from leaf nodes
        current_cpu_nodes, current_acc_nodes = self.starter_nodes()
        visited_nodes: NodeSet = set()

        # Determine which subgraph to start from based on which subgraph has
        # 0-dep node
        acc_subgraph: bool = not any(len(self.deps[n]) == 0 for n in current_cpu_nodes)

        current_subgraph_nodes: NodeList = []

        # Result accumulator
        subgraphs: List[Subgraph] = []
        while current_cpu_nodes or current_acc_nodes:
            # Find the first node that should belong to the current subgraph and has all dependencies resolved
            current_nodes = current_acc_nodes if acc_subgraph else current_cpu_nodes
            node = next(
                (n for n in current_nodes if self.deps[n] <= visited_nodes),
                None,
            )

            # If nothing was found, then it's time to flip the mode and start a new subgraph
            if node is None:
                if not current_subgraph_nodes:
                    raise FxNetSplitterInternalError("Subgraph can't be empty")

                subgraphs.append(
                    Subgraph(is_acc=acc_subgraph, nodes=current_subgraph_nodes)
                )
                acc_subgraph = not acc_subgraph
                current_subgraph_nodes = []
                continue

            current_nodes.remove(node)
            visited_nodes.add(node)
            current_subgraph_nodes.append(node)

            # Add fusion buddies
            if node in self.fusions:
                if node in self.acc_nodes:
                    current_acc_nodes.update(self.fusions[node] - visited_nodes)
                else:
                    current_cpu_nodes.update(self.fusions[node] - visited_nodes)

            # Put depending nodes into the queue
            for user in node.users:
                if user.op not in CALLABLE_NODE_OPS:
                    continue

                # Add downstream nodes
                if user in self.acc_nodes:
                    current_acc_nodes.add(user)
                else:
                    current_cpu_nodes.add(user)

        # Check if the last subgraph was not created
        if current_subgraph_nodes:
            subgraphs.append(
                Subgraph(is_acc=acc_subgraph, nodes=current_subgraph_nodes)
            )

        if not subgraphs:
            raise FxNetSplitterInternalError("Couldn't create subgraphs")

        return subgraphs

    def remove_small_acc_subgraphs(self, subgraphs: List[Subgraph]) -> List[Subgraph]:
        """

        This pass finds ACC submodules with less than specified size and merges

        them with adjacent CPU submodules.

        """
        result: List[Subgraph] = []
        for subgraph in subgraphs:
            if subgraph.is_acc:
                if len(subgraph.nodes) >= self.settings.min_acc_module_size:
                    result.append(subgraph)
                else:
                    print(
                        "Eliminating acc subgraph because it's smaller than the threshold: "
                        f"{len(subgraph.nodes)} < {self.settings.min_acc_module_size}"
                    )
                    if result:
                        result[-1].nodes.extend(subgraph.nodes)
                    else:
                        subgraph.is_acc = False
                        result.append(subgraph)
            else:
                if result and not result[-1].is_acc:
                    result[-1].nodes.extend(subgraph.nodes)
                else:
                    result.append(subgraph)
        return result

    def tag(self, subgraphs: List[Subgraph]):
        self.tags: List[str] = []
        for subgraph in subgraphs:
            tag = f"_run_on_acc_{len(self.tags)}" if subgraph.is_acc else f"{self.non_acc_submodule_name}{len(self.tags)}"
            self.tags.append(tag)
            for node in subgraph.nodes:
                if hasattr(node, "tag"):
                    raise FxNetSplitterInternalError(f"Node {node} was already tagged")

                node.tag = tag  # type: ignore[attr-defined]
                self._node_submodule_map[node.name] = tag

    def split(self, remove_tag: bool = False) -> torch.fx.GraphModule:
        split_module = split_by_tags(self.module, self.tags)
        if remove_tag:
            for node in self.module.graph.nodes:
                if hasattr(node, "tag"):
                    del node.tag
        return split_module

    def __call__(self) -> torch.fx.GraphModule:
        subgraphs = self.put_nodes_into_subgraphs()
        subgraphs = self.remove_small_acc_subgraphs(subgraphs)
        acc_subgraphs_count = len([s for s in subgraphs if s.is_acc])
        non_acc_subgraphs_count = len(subgraphs) - acc_subgraphs_count
        print(f"Got {acc_subgraphs_count} acc subgraphs and {non_acc_subgraphs_count} non-acc subgraphs")
        self.tag(subgraphs)
        return self.split()

    def generate_split_results(self) -> SplitResult:
        split_module = self()
        submodule_names = []
        for name, mod in split_module.named_children():
            submodule_names.append(name)
        submodule_inputs = generate_inputs_for_submodules(split_module, self.sample_input, submodule_names)
        return SplitResult(split_module, submodule_inputs, self.non_acc_submodule_name)