Spaces:
Running
Running
File size: 132,532 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 |
/*
pybind11/pybind11.h: Main header file of the C++11 python
binding generator library
Copyright (c) 2016 Wenzel Jakob <[email protected]>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/class.h"
#include "detail/init.h"
#include "attr.h"
#include "gil.h"
#include "gil_safe_call_once.h"
#include "options.h"
#include "typing.h"
#include <cstdlib>
#include <cstring>
#include <memory>
#include <new>
#include <string>
#include <utility>
#include <vector>
#if defined(__cpp_lib_launder) && !(defined(_MSC_VER) && (_MSC_VER < 1914))
# define PYBIND11_STD_LAUNDER std::launder
# define PYBIND11_HAS_STD_LAUNDER 1
#else
# define PYBIND11_STD_LAUNDER
# define PYBIND11_HAS_STD_LAUNDER 0
#endif
#if defined(__GNUG__) && !defined(__clang__)
# include <cxxabi.h>
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
/* https://stackoverflow.com/questions/46798456/handling-gccs-noexcept-type-warning
This warning is about ABI compatibility, not code health.
It is only actually needed in a couple places, but apparently GCC 7 "generates this warning if
and only if the first template instantiation ... involves noexcept" [stackoverflow], therefore
it could get triggered from seemingly random places, depending on user code.
No other GCC version generates this warning.
*/
#if defined(__GNUC__) && __GNUC__ == 7
PYBIND11_WARNING_DISABLE_GCC("-Wnoexcept-type")
#endif
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
inline std::string replace_newlines_and_squash(const char *text) {
const char *whitespaces = " \t\n\r\f\v";
std::string result(text);
bool previous_is_whitespace = false;
if (result.size() >= 2) {
// Do not modify string representations
char first_char = result[0];
char last_char = result[result.size() - 1];
if (first_char == last_char && first_char == '\'') {
return result;
}
}
result.clear();
// Replace characters in whitespaces array with spaces and squash consecutive spaces
while (*text != '\0') {
if (std::strchr(whitespaces, *text)) {
if (!previous_is_whitespace) {
result += ' ';
previous_is_whitespace = true;
}
} else {
result += *text;
previous_is_whitespace = false;
}
++text;
}
// Strip leading and trailing whitespaces
const size_t str_begin = result.find_first_not_of(whitespaces);
if (str_begin == std::string::npos) {
return "";
}
const size_t str_end = result.find_last_not_of(whitespaces);
const size_t str_range = str_end - str_begin + 1;
return result.substr(str_begin, str_range);
}
// Apply all the extensions translators from a list
// Return true if one of the translators completed without raising an exception
// itself. Return of false indicates that if there are other translators
// available, they should be tried.
inline bool apply_exception_translators(std::forward_list<ExceptionTranslator> &translators) {
auto last_exception = std::current_exception();
for (auto &translator : translators) {
try {
translator(last_exception);
return true;
} catch (...) {
last_exception = std::current_exception();
}
}
return false;
}
#if defined(_MSC_VER)
# define PYBIND11_COMPAT_STRDUP _strdup
#else
# define PYBIND11_COMPAT_STRDUP strdup
#endif
PYBIND11_NAMESPACE_END(detail)
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
public:
cpp_function() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(std::nullptr_t) {}
cpp_function(std::nullptr_t, const is_setter &) {}
/// Construct a cpp_function from a vanilla function pointer
template <typename Return, typename... Args, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (*f)(Args...), const Extra &...extra) {
initialize(f, f, extra...);
}
/// Construct a cpp_function from a lambda function (possibly with internal state)
template <typename Func,
typename... Extra,
typename = detail::enable_if_t<detail::is_lambda<Func>::value>>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Func &&f, const Extra &...extra) {
initialize(
std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr, extra...);
}
/// Construct a cpp_function from a class method (non-const, no ref-qualifier)
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...), const Extra &...extra) {
initialize(
[f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (non-const, lvalue ref-qualifier)
/// A copy of the overload for non-const functions without explicit ref-qualifier
/// but with an added `&`.
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) &, const Extra &...extra) {
initialize(
[f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (const, no ref-qualifier)
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) const, const Extra &...extra) {
initialize([f](const Class *c,
Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(const Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (const, lvalue ref-qualifier)
/// A copy of the overload for const functions without explicit ref-qualifier
/// but with an added `&`.
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) const &, const Extra &...extra) {
initialize([f](const Class *c,
Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(const Class *, Arg...)) nullptr,
extra...);
}
/// Return the function name
object name() const { return attr("__name__"); }
protected:
struct InitializingFunctionRecordDeleter {
// `destruct(function_record, false)`: `initialize_generic` copies strings and
// takes care of cleaning up in case of exceptions. So pass `false` to `free_strings`.
void operator()(detail::function_record *rec) { destruct(rec, false); }
};
using unique_function_record
= std::unique_ptr<detail::function_record, InitializingFunctionRecordDeleter>;
/// Space optimization: don't inline this frequently instantiated fragment
PYBIND11_NOINLINE unique_function_record make_function_record() {
return unique_function_record(new detail::function_record());
}
/// Special internal constructor for functors, lambda functions, etc.
template <typename Func, typename Return, typename... Args, typename... Extra>
void initialize(Func &&f, Return (*)(Args...), const Extra &...extra) {
using namespace detail;
struct capture {
remove_reference_t<Func> f;
};
/* Store the function including any extra state it might have (e.g. a lambda capture
* object) */
// The unique_ptr makes sure nothing is leaked in case of an exception.
auto unique_rec = make_function_record();
auto *rec = unique_rec.get();
/* Store the capture object directly in the function record if there is enough space */
if (sizeof(capture) <= sizeof(rec->data)) {
/* Without these pragmas, GCC warns that there might not be
enough space to use the placement new operator. However, the
'if' statement above ensures that this is the case. */
PYBIND11_WARNING_PUSH
#if defined(__GNUG__) && __GNUC__ >= 6
PYBIND11_WARNING_DISABLE_GCC("-Wplacement-new")
#endif
new ((capture *) &rec->data) capture{std::forward<Func>(f)};
#if !PYBIND11_HAS_STD_LAUNDER
PYBIND11_WARNING_DISABLE_GCC("-Wstrict-aliasing")
#endif
// UB without std::launder, but without breaking ABI and/or
// a significant refactoring it's "impossible" to solve.
if (!std::is_trivially_destructible<capture>::value) {
rec->free_data = [](function_record *r) {
auto data = PYBIND11_STD_LAUNDER((capture *) &r->data);
(void) data;
data->~capture();
};
}
PYBIND11_WARNING_POP
} else {
rec->data[0] = new capture{std::forward<Func>(f)};
rec->free_data = [](function_record *r) { delete ((capture *) r->data[0]); };
}
/* Type casters for the function arguments and return value */
using cast_in = argument_loader<Args...>;
using cast_out
= make_caster<conditional_t<std::is_void<Return>::value, void_type, Return>>;
static_assert(
expected_num_args<Extra...>(
sizeof...(Args), cast_in::args_pos >= 0, cast_in::has_kwargs),
"The number of argument annotations does not match the number of function arguments");
/* Dispatch code which converts function arguments and performs the actual function call */
rec->impl = [](function_call &call) -> handle {
cast_in args_converter;
/* Try to cast the function arguments into the C++ domain */
if (!args_converter.load_args(call)) {
return PYBIND11_TRY_NEXT_OVERLOAD;
}
/* Invoke call policy pre-call hook */
process_attributes<Extra...>::precall(call);
/* Get a pointer to the capture object */
const auto *data = (sizeof(capture) <= sizeof(call.func.data) ? &call.func.data
: call.func.data[0]);
auto *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));
/* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */
return_value_policy policy
= return_value_policy_override<Return>::policy(call.func.policy);
/* Function scope guard -- defaults to the compile-to-nothing `void_type` */
using Guard = extract_guard_t<Extra...>;
/* Perform the function call */
handle result;
if (call.func.is_setter) {
(void) std::move(args_converter).template call<Return, Guard>(cap->f);
result = none().release();
} else {
result = cast_out::cast(
std::move(args_converter).template call<Return, Guard>(cap->f),
policy,
call.parent);
}
/* Invoke call policy post-call hook */
process_attributes<Extra...>::postcall(call, result);
return result;
};
rec->nargs_pos = cast_in::args_pos >= 0
? static_cast<std::uint16_t>(cast_in::args_pos)
: sizeof...(Args) - cast_in::has_kwargs; // Will get reduced more if
// we have a kw_only
rec->has_args = cast_in::args_pos >= 0;
rec->has_kwargs = cast_in::has_kwargs;
/* Process any user-provided function attributes */
process_attributes<Extra...>::init(extra..., rec);
{
constexpr bool has_kw_only_args = any_of<std::is_same<kw_only, Extra>...>::value,
has_pos_only_args = any_of<std::is_same<pos_only, Extra>...>::value,
has_arg_annotations = any_of<is_keyword<Extra>...>::value;
static_assert(has_arg_annotations || !has_kw_only_args,
"py::kw_only requires the use of argument annotations");
static_assert(has_arg_annotations || !has_pos_only_args,
"py::pos_only requires the use of argument annotations (for docstrings "
"and aligning the annotations to the argument)");
static_assert(constexpr_sum(is_kw_only<Extra>::value...) <= 1,
"py::kw_only may be specified only once");
static_assert(constexpr_sum(is_pos_only<Extra>::value...) <= 1,
"py::pos_only may be specified only once");
constexpr auto kw_only_pos = constexpr_first<is_kw_only, Extra...>();
constexpr auto pos_only_pos = constexpr_first<is_pos_only, Extra...>();
static_assert(!(has_kw_only_args && has_pos_only_args) || pos_only_pos < kw_only_pos,
"py::pos_only must come before py::kw_only");
}
/* Generate a readable signature describing the function's arguments and return
value types */
static constexpr auto signature
= const_name("(") + cast_in::arg_names + const_name(") -> ") + cast_out::name;
PYBIND11_DESCR_CONSTEXPR auto types = decltype(signature)::types();
/* Register the function with Python from generic (non-templated) code */
// Pass on the ownership over the `unique_rec` to `initialize_generic`. `rec` stays valid.
initialize_generic(std::move(unique_rec), signature.text, types.data(), sizeof...(Args));
/* Stash some additional information used by an important optimization in 'functional.h' */
using FunctionType = Return (*)(Args...);
constexpr bool is_function_ptr
= std::is_convertible<Func, FunctionType>::value && sizeof(capture) == sizeof(void *);
if (is_function_ptr) {
rec->is_stateless = true;
rec->data[1]
= const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType)));
}
}
// Utility class that keeps track of all duplicated strings, and cleans them up in its
// destructor, unless they are released. Basically a RAII-solution to deal with exceptions
// along the way.
class strdup_guard {
public:
strdup_guard() = default;
strdup_guard(const strdup_guard &) = delete;
strdup_guard &operator=(const strdup_guard &) = delete;
~strdup_guard() {
for (auto *s : strings) {
std::free(s);
}
}
char *operator()(const char *s) {
auto *t = PYBIND11_COMPAT_STRDUP(s);
strings.push_back(t);
return t;
}
void release() { strings.clear(); }
private:
std::vector<char *> strings;
};
/// Register a function call with Python (generic non-templated code goes here)
void initialize_generic(unique_function_record &&unique_rec,
const char *text,
const std::type_info *const *types,
size_t args) {
// Do NOT receive `unique_rec` by value. If this function fails to move out the unique_ptr,
// we do not want this to destruct the pointer. `initialize` (the caller) still relies on
// the pointee being alive after this call. Only move out if a `capsule` is going to keep
// it alive.
auto *rec = unique_rec.get();
// Keep track of strdup'ed strings, and clean them up as long as the function's capsule
// has not taken ownership yet (when `unique_rec.release()` is called).
// Note: This cannot easily be fixed by a `unique_ptr` with custom deleter, because the
// strings are only referenced before strdup'ing. So only *after* the following block could
// `destruct` safely be called, but even then, `repr` could still throw in the middle of
// copying all strings.
strdup_guard guarded_strdup;
/* Create copies of all referenced C-style strings */
rec->name = guarded_strdup(rec->name ? rec->name : "");
if (rec->doc) {
rec->doc = guarded_strdup(rec->doc);
}
for (auto &a : rec->args) {
if (a.name) {
a.name = guarded_strdup(a.name);
}
if (a.descr) {
a.descr = guarded_strdup(a.descr);
} else if (a.value) {
a.descr = guarded_strdup(repr(a.value).cast<std::string>().c_str());
}
}
rec->is_constructor = (std::strcmp(rec->name, "__init__") == 0)
|| (std::strcmp(rec->name, "__setstate__") == 0);
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES) && !defined(PYBIND11_DISABLE_NEW_STYLE_INIT_WARNING)
if (rec->is_constructor && !rec->is_new_style_constructor) {
const auto class_name
= detail::get_fully_qualified_tp_name((PyTypeObject *) rec->scope.ptr());
const auto func_name = std::string(rec->name);
PyErr_WarnEx(PyExc_FutureWarning,
("pybind11-bound class '" + class_name
+ "' is using an old-style "
"placement-new '"
+ func_name
+ "' which has been deprecated. See "
"the upgrade guide in pybind11's docs. This message is only visible "
"when compiled in debug mode.")
.c_str(),
0);
}
#endif
/* Generate a proper function signature */
std::string signature;
size_t type_index = 0, arg_index = 0;
bool is_starred = false;
for (const auto *pc = text; *pc != '\0'; ++pc) {
const auto c = *pc;
if (c == '{') {
// Write arg name for everything except *args and **kwargs.
is_starred = *(pc + 1) == '*';
if (is_starred) {
continue;
}
// Separator for keyword-only arguments, placed before the kw
// arguments start (unless we are already putting an *args)
if (!rec->has_args && arg_index == rec->nargs_pos) {
signature += "*, ";
}
if (arg_index < rec->args.size() && rec->args[arg_index].name) {
signature += rec->args[arg_index].name;
} else if (arg_index == 0 && rec->is_method) {
signature += "self";
} else {
signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0));
}
signature += ": ";
} else if (c == '}') {
// Write default value if available.
if (!is_starred && arg_index < rec->args.size() && rec->args[arg_index].descr) {
signature += " = ";
signature += detail::replace_newlines_and_squash(rec->args[arg_index].descr);
}
// Separator for positional-only arguments (placed after the
// argument, rather than before like *
if (rec->nargs_pos_only > 0 && (arg_index + 1) == rec->nargs_pos_only) {
signature += ", /";
}
if (!is_starred) {
arg_index++;
}
} else if (c == '%') {
const std::type_info *t = types[type_index++];
if (!t) {
pybind11_fail("Internal error while parsing type signature (1)");
}
if (auto *tinfo = detail::get_type_info(*t)) {
handle th((PyObject *) tinfo->type);
signature += th.attr("__module__").cast<std::string>() + "."
+ th.attr("__qualname__").cast<std::string>();
} else if (rec->is_new_style_constructor && arg_index == 0) {
// A new-style `__init__` takes `self` as `value_and_holder`.
// Rewrite it to the proper class type.
signature += rec->scope.attr("__module__").cast<std::string>() + "."
+ rec->scope.attr("__qualname__").cast<std::string>();
} else {
signature += detail::quote_cpp_type_name(detail::clean_type_id(t->name()));
}
} else {
signature += c;
}
}
if (arg_index != args - rec->has_args - rec->has_kwargs || types[type_index] != nullptr) {
pybind11_fail("Internal error while parsing type signature (2)");
}
rec->signature = guarded_strdup(signature.c_str());
rec->args.shrink_to_fit();
rec->nargs = (std::uint16_t) args;
if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr())) {
rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr());
}
detail::function_record *chain = nullptr, *chain_start = rec;
if (rec->sibling) {
if (PyCFunction_Check(rec->sibling.ptr())) {
auto *self = PyCFunction_GET_SELF(rec->sibling.ptr());
if (!isinstance<capsule>(self)) {
chain = nullptr;
} else {
auto rec_capsule = reinterpret_borrow<capsule>(self);
if (detail::is_function_record_capsule(rec_capsule)) {
chain = rec_capsule.get_pointer<detail::function_record>();
/* Never append a method to an overload chain of a parent class;
instead, hide the parent's overloads in this case */
if (!chain->scope.is(rec->scope)) {
chain = nullptr;
}
} else {
chain = nullptr;
}
}
}
// Don't trigger for things like the default __init__, which are wrapper_descriptors
// that we are intentionally replacing
else if (!rec->sibling.is_none() && rec->name[0] != '_') {
pybind11_fail("Cannot overload existing non-function object \""
+ std::string(rec->name) + "\" with a function of the same name");
}
}
if (!chain) {
/* No existing overload was found, create a new function object */
rec->def = new PyMethodDef();
std::memset(rec->def, 0, sizeof(PyMethodDef));
rec->def->ml_name = rec->name;
rec->def->ml_meth
= reinterpret_cast<PyCFunction>(reinterpret_cast<void (*)()>(dispatcher));
rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;
capsule rec_capsule(unique_rec.release(),
detail::get_function_record_capsule_name(),
[](void *ptr) { destruct((detail::function_record *) ptr); });
guarded_strdup.release();
object scope_module;
if (rec->scope) {
if (hasattr(rec->scope, "__module__")) {
scope_module = rec->scope.attr("__module__");
} else if (hasattr(rec->scope, "__name__")) {
scope_module = rec->scope.attr("__name__");
}
}
m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
if (!m_ptr) {
pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
}
} else {
/* Append at the beginning or end of the overload chain */
m_ptr = rec->sibling.ptr();
inc_ref();
if (chain->is_method != rec->is_method) {
pybind11_fail(
"overloading a method with both static and instance methods is not supported; "
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
"#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for more "
"details"
#else
"error while attempting to bind "
+ std::string(rec->is_method ? "instance" : "static") + " method "
+ std::string(pybind11::str(rec->scope.attr("__name__"))) + "."
+ std::string(rec->name) + signature
#endif
);
}
if (rec->prepend) {
// Beginning of chain; we need to replace the capsule's current head-of-the-chain
// pointer with this one, then make this one point to the previous head of the
// chain.
chain_start = rec;
rec->next = chain;
auto rec_capsule
= reinterpret_borrow<capsule>(((PyCFunctionObject *) m_ptr)->m_self);
rec_capsule.set_pointer(unique_rec.release());
guarded_strdup.release();
} else {
// Or end of chain (normal behavior)
chain_start = chain;
while (chain->next) {
chain = chain->next;
}
chain->next = unique_rec.release();
guarded_strdup.release();
}
}
std::string signatures;
int index = 0;
/* Create a nice pydoc rec including all signatures and
docstrings of the functions in the overload chain */
if (chain && options::show_function_signatures()) {
// First a generic signature
signatures += rec->name;
signatures += "(*args, **kwargs)\n";
signatures += "Overloaded function.\n\n";
}
// Then specific overload signatures
bool first_user_def = true;
for (auto *it = chain_start; it != nullptr; it = it->next) {
if (options::show_function_signatures()) {
if (index > 0) {
signatures += '\n';
}
if (chain) {
signatures += std::to_string(++index) + ". ";
}
signatures += rec->name;
signatures += it->signature;
signatures += '\n';
}
if (it->doc && it->doc[0] != '\0' && options::show_user_defined_docstrings()) {
// If we're appending another docstring, and aren't printing function signatures,
// we need to append a newline first:
if (!options::show_function_signatures()) {
if (first_user_def) {
first_user_def = false;
} else {
signatures += '\n';
}
}
if (options::show_function_signatures()) {
signatures += '\n';
}
signatures += it->doc;
if (options::show_function_signatures()) {
signatures += '\n';
}
}
}
/* Install docstring */
auto *func = (PyCFunctionObject *) m_ptr;
std::free(const_cast<char *>(func->m_ml->ml_doc));
// Install docstring if it's non-empty (when at least one option is enabled)
func->m_ml->ml_doc
= signatures.empty() ? nullptr : PYBIND11_COMPAT_STRDUP(signatures.c_str());
if (rec->is_method) {
m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr());
if (!m_ptr) {
pybind11_fail(
"cpp_function::cpp_function(): Could not allocate instance method object");
}
Py_DECREF(func);
}
}
/// When a cpp_function is GCed, release any memory allocated by pybind11
static void destruct(detail::function_record *rec, bool free_strings = true) {
// If on Python 3.9, check the interpreter "MICRO" (patch) version.
// If this is running on 3.9.0, we have to work around a bug.
#if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
static bool is_zero = Py_GetVersion()[4] == '0';
#endif
while (rec) {
detail::function_record *next = rec->next;
if (rec->free_data) {
rec->free_data(rec);
}
// During initialization, these strings might not have been copied yet,
// so they cannot be freed. Once the function has been created, they can.
// Check `make_function_record` for more details.
if (free_strings) {
std::free((char *) rec->name);
std::free((char *) rec->doc);
std::free((char *) rec->signature);
for (auto &arg : rec->args) {
std::free(const_cast<char *>(arg.name));
std::free(const_cast<char *>(arg.descr));
}
}
for (auto &arg : rec->args) {
arg.value.dec_ref();
}
if (rec->def) {
std::free(const_cast<char *>(rec->def->ml_doc));
// Python 3.9.0 decref's these in the wrong order; rec->def
// If loaded on 3.9.0, let these leak (use Python 3.9.1 at runtime to fix)
// See https://github.com/python/cpython/pull/22670
#if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
if (!is_zero) {
delete rec->def;
}
#else
delete rec->def;
#endif
}
delete rec;
rec = next;
}
}
/// Main dispatch logic for calls to functions bound using pybind11
static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) {
using namespace detail;
assert(isinstance<capsule>(self));
/* Iterator over the list of potentially admissible overloads */
const function_record *overloads = reinterpret_cast<function_record *>(
PyCapsule_GetPointer(self, get_function_record_capsule_name())),
*current_overload = overloads;
assert(overloads != nullptr);
/* Need to know how many arguments + keyword arguments there are to pick the right
overload */
const auto n_args_in = (size_t) PyTuple_GET_SIZE(args_in);
handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr,
result = PYBIND11_TRY_NEXT_OVERLOAD;
auto self_value_and_holder = value_and_holder();
if (overloads->is_constructor) {
if (!parent
|| !PyObject_TypeCheck(parent.ptr(), (PyTypeObject *) overloads->scope.ptr())) {
set_error(PyExc_TypeError,
"__init__(self, ...) called with invalid or missing `self` argument");
return nullptr;
}
auto *const tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr());
auto *const pi = reinterpret_cast<instance *>(parent.ptr());
self_value_and_holder = pi->get_value_and_holder(tinfo, true);
// If this value is already registered it must mean __init__ is invoked multiple times;
// we really can't support that in C++, so just ignore the second __init__.
if (self_value_and_holder.instance_registered()) {
return none().release().ptr();
}
}
try {
// We do this in two passes: in the first pass, we load arguments with `convert=false`;
// in the second, we allow conversion (except for arguments with an explicit
// py::arg().noconvert()). This lets us prefer calls without conversion, with
// conversion as a fallback.
std::vector<function_call> second_pass;
// However, if there are no overloads, we can just skip the no-convert pass entirely
const bool overloaded
= current_overload != nullptr && current_overload->next != nullptr;
for (; current_overload != nullptr; current_overload = current_overload->next) {
/* For each overload:
1. Copy all positional arguments we were given, also checking to make sure that
named positional arguments weren't *also* specified via kwarg.
2. If we weren't given enough, try to make up the omitted ones by checking
whether they were provided by a kwarg matching the `py::arg("name")` name. If
so, use it (and remove it from kwargs); if not, see if the function binding
provided a default that we can use.
3. Ensure that either all keyword arguments were "consumed", or that the
function takes a kwargs argument to accept unconsumed kwargs.
4. Any positional arguments still left get put into a tuple (for args), and any
leftover kwargs get put into a dict.
5. Pack everything into a vector; if we have py::args or py::kwargs, they are an
extra tuple or dict at the end of the positional arguments.
6. Call the function call dispatcher (function_record::impl)
If one of these fail, move on to the next overload and keep trying until we get
a result other than PYBIND11_TRY_NEXT_OVERLOAD.
*/
const function_record &func = *current_overload;
size_t num_args = func.nargs; // Number of positional arguments that we need
if (func.has_args) {
--num_args; // (but don't count py::args
}
if (func.has_kwargs) {
--num_args; // or py::kwargs)
}
size_t pos_args = func.nargs_pos;
if (!func.has_args && n_args_in > pos_args) {
continue; // Too many positional arguments for this overload
}
if (n_args_in < pos_args && func.args.size() < pos_args) {
continue; // Not enough positional arguments given, and not enough defaults to
// fill in the blanks
}
function_call call(func, parent);
// Protect std::min with parentheses
size_t args_to_copy = (std::min)(pos_args, n_args_in);
size_t args_copied = 0;
// 0. Inject new-style `self` argument
if (func.is_new_style_constructor) {
// The `value` may have been preallocated by an old-style `__init__`
// if it was a preceding candidate for overload resolution.
if (self_value_and_holder) {
self_value_and_holder.type->dealloc(self_value_and_holder);
}
call.init_self = PyTuple_GET_ITEM(args_in, 0);
call.args.emplace_back(reinterpret_cast<PyObject *>(&self_value_and_holder));
call.args_convert.push_back(false);
++args_copied;
}
// 1. Copy any position arguments given.
bool bad_arg = false;
for (; args_copied < args_to_copy; ++args_copied) {
const argument_record *arg_rec
= args_copied < func.args.size() ? &func.args[args_copied] : nullptr;
if (kwargs_in && arg_rec && arg_rec->name
&& dict_getitemstring(kwargs_in, arg_rec->name)) {
bad_arg = true;
break;
}
handle arg(PyTuple_GET_ITEM(args_in, args_copied));
if (arg_rec && !arg_rec->none && arg.is_none()) {
bad_arg = true;
break;
}
call.args.push_back(arg);
call.args_convert.push_back(arg_rec ? arg_rec->convert : true);
}
if (bad_arg) {
continue; // Maybe it was meant for another overload (issue #688)
}
// Keep track of how many position args we copied out in case we need to come back
// to copy the rest into a py::args argument.
size_t positional_args_copied = args_copied;
// We'll need to copy this if we steal some kwargs for defaults
dict kwargs = reinterpret_borrow<dict>(kwargs_in);
// 1.5. Fill in any missing pos_only args from defaults if they exist
if (args_copied < func.nargs_pos_only) {
for (; args_copied < func.nargs_pos_only; ++args_copied) {
const auto &arg_rec = func.args[args_copied];
handle value;
if (arg_rec.value) {
value = arg_rec.value;
}
if (value) {
call.args.push_back(value);
call.args_convert.push_back(arg_rec.convert);
} else {
break;
}
}
if (args_copied < func.nargs_pos_only) {
continue; // Not enough defaults to fill the positional arguments
}
}
// 2. Check kwargs and, failing that, defaults that may help complete the list
if (args_copied < num_args) {
bool copied_kwargs = false;
for (; args_copied < num_args; ++args_copied) {
const auto &arg_rec = func.args[args_copied];
handle value;
if (kwargs_in && arg_rec.name) {
value = dict_getitemstring(kwargs.ptr(), arg_rec.name);
}
if (value) {
// Consume a kwargs value
if (!copied_kwargs) {
kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr()));
copied_kwargs = true;
}
if (PyDict_DelItemString(kwargs.ptr(), arg_rec.name) == -1) {
throw error_already_set();
}
} else if (arg_rec.value) {
value = arg_rec.value;
}
if (!arg_rec.none && value.is_none()) {
break;
}
if (value) {
// If we're at the py::args index then first insert a stub for it to be
// replaced later
if (func.has_args && call.args.size() == func.nargs_pos) {
call.args.push_back(none());
}
call.args.push_back(value);
call.args_convert.push_back(arg_rec.convert);
} else {
break;
}
}
if (args_copied < num_args) {
continue; // Not enough arguments, defaults, or kwargs to fill the
// positional arguments
}
}
// 3. Check everything was consumed (unless we have a kwargs arg)
if (kwargs && !kwargs.empty() && !func.has_kwargs) {
continue; // Unconsumed kwargs, but no py::kwargs argument to accept them
}
// 4a. If we have a py::args argument, create a new tuple with leftovers
if (func.has_args) {
tuple extra_args;
if (args_to_copy == 0) {
// We didn't copy out any position arguments from the args_in tuple, so we
// can reuse it directly without copying:
extra_args = reinterpret_borrow<tuple>(args_in);
} else if (positional_args_copied >= n_args_in) {
extra_args = tuple(0);
} else {
size_t args_size = n_args_in - positional_args_copied;
extra_args = tuple(args_size);
for (size_t i = 0; i < args_size; ++i) {
extra_args[i] = PyTuple_GET_ITEM(args_in, positional_args_copied + i);
}
}
if (call.args.size() <= func.nargs_pos) {
call.args.push_back(extra_args);
} else {
call.args[func.nargs_pos] = extra_args;
}
call.args_convert.push_back(false);
call.args_ref = std::move(extra_args);
}
// 4b. If we have a py::kwargs, pass on any remaining kwargs
if (func.has_kwargs) {
if (!kwargs.ptr()) {
kwargs = dict(); // If we didn't get one, send an empty one
}
call.args.push_back(kwargs);
call.args_convert.push_back(false);
call.kwargs_ref = std::move(kwargs);
}
// 5. Put everything in a vector. Not technically step 5, we've been building it
// in `call.args` all along.
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) {
pybind11_fail("Internal error: function call dispatcher inserted wrong number "
"of arguments!");
}
#endif
std::vector<bool> second_pass_convert;
if (overloaded) {
// We're in the first no-convert pass, so swap out the conversion flags for a
// set of all-false flags. If the call fails, we'll swap the flags back in for
// the conversion-allowed call below.
second_pass_convert.resize(func.nargs, false);
call.args_convert.swap(second_pass_convert);
}
// 6. Call the function.
try {
loader_life_support guard{};
result = func.impl(call);
} catch (reference_cast_error &) {
result = PYBIND11_TRY_NEXT_OVERLOAD;
}
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) {
break;
}
if (overloaded) {
// The (overloaded) call failed; if the call has at least one argument that
// permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
// then add this call to the list of second pass overloads to try.
for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) {
if (second_pass_convert[i]) {
// Found one: swap the converting flags back in and store the call for
// the second pass.
call.args_convert.swap(second_pass_convert);
second_pass.push_back(std::move(call));
break;
}
}
}
}
if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
// The no-conversion pass finished without success, try again with conversion
// allowed
for (auto &call : second_pass) {
try {
loader_life_support guard{};
result = call.func.impl(call);
} catch (reference_cast_error &) {
result = PYBIND11_TRY_NEXT_OVERLOAD;
}
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) {
// The error reporting logic below expects 'current_overload' to be valid,
// as it would be if we'd encountered this failure in the first-pass loop.
if (!result) {
current_overload = &call.func;
}
break;
}
}
}
} catch (error_already_set &e) {
e.restore();
return nullptr;
#ifdef __GLIBCXX__
} catch (abi::__forced_unwind &) {
throw;
#endif
} catch (...) {
/* When an exception is caught, give each registered exception
translator a chance to translate it to a Python exception. First
all module-local translators will be tried in reverse order of
registration. If none of the module-locale translators handle
the exception (or there are no module-locale translators) then
the global translators will be tried, also in reverse order of
registration.
A translator may choose to do one of the following:
- catch the exception and call py::set_error()
to set a standard (or custom) Python exception, or
- do nothing and let the exception fall through to the next translator, or
- delegate translation to the next translator by throwing a new type of exception.
*/
auto &local_exception_translators
= get_local_internals().registered_exception_translators;
if (detail::apply_exception_translators(local_exception_translators)) {
return nullptr;
}
auto &exception_translators = get_internals().registered_exception_translators;
if (detail::apply_exception_translators(exception_translators)) {
return nullptr;
}
set_error(PyExc_SystemError, "Exception escaped from default exception translator!");
return nullptr;
}
auto append_note_if_missing_header_is_suspected = [](std::string &msg) {
if (msg.find("std::") != std::string::npos) {
msg += "\n\n"
"Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,\n"
"<pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic\n"
"conversions are optional and require extra headers to be included\n"
"when compiling your pybind11 module.";
}
};
if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
if (overloads->is_operator) {
return handle(Py_NotImplemented).inc_ref().ptr();
}
std::string msg = std::string(overloads->name) + "(): incompatible "
+ std::string(overloads->is_constructor ? "constructor" : "function")
+ " arguments. The following argument types are supported:\n";
int ctr = 0;
for (const function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
msg += " " + std::to_string(++ctr) + ". ";
bool wrote_sig = false;
if (overloads->is_constructor) {
// For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as
// `Object(arg0, ...)`
std::string sig = it2->signature;
size_t start = sig.find('(') + 7; // skip "(self: "
if (start < sig.size()) {
// End at the , for the next argument
size_t end = sig.find(", "), next = end + 2;
size_t ret = sig.rfind(" -> ");
// Or the ), if there is no comma:
if (end >= sig.size()) {
next = end = sig.find(')');
}
if (start < end && next < sig.size()) {
msg.append(sig, start, end - start);
msg += '(';
msg.append(sig, next, ret - next);
wrote_sig = true;
}
}
}
if (!wrote_sig) {
msg += it2->signature;
}
msg += '\n';
}
msg += "\nInvoked with: ";
auto args_ = reinterpret_borrow<tuple>(args_in);
bool some_args = false;
for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
if (!some_args) {
some_args = true;
} else {
msg += ", ";
}
try {
msg += pybind11::repr(args_[ti]);
} catch (const error_already_set &) {
msg += "<repr raised Error>";
}
}
if (kwargs_in) {
auto kwargs = reinterpret_borrow<dict>(kwargs_in);
if (!kwargs.empty()) {
if (some_args) {
msg += "; ";
}
msg += "kwargs: ";
bool first = true;
for (const auto &kwarg : kwargs) {
if (first) {
first = false;
} else {
msg += ", ";
}
msg += pybind11::str("{}=").format(kwarg.first);
try {
msg += pybind11::repr(kwarg.second);
} catch (const error_already_set &) {
msg += "<repr raised Error>";
}
}
}
}
append_note_if_missing_header_is_suspected(msg);
// Attach additional error info to the exception if supported
if (PyErr_Occurred()) {
// #HelpAppreciated: unit test coverage for this branch.
raise_from(PyExc_TypeError, msg.c_str());
return nullptr;
}
set_error(PyExc_TypeError, msg.c_str());
return nullptr;
}
if (!result) {
std::string msg = "Unable to convert function return value to a "
"Python type! The signature was\n\t";
assert(current_overload != nullptr);
msg += current_overload->signature;
append_note_if_missing_header_is_suspected(msg);
// Attach additional error info to the exception if supported
if (PyErr_Occurred()) {
raise_from(PyExc_TypeError, msg.c_str());
return nullptr;
}
set_error(PyExc_TypeError, msg.c_str());
return nullptr;
}
if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) {
auto *pi = reinterpret_cast<instance *>(parent.ptr());
self_value_and_holder.type->init_instance(pi, nullptr);
}
return result.ptr();
}
};
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
struct handle_type_name<cpp_function> {
static constexpr auto name = const_name("Callable");
};
PYBIND11_NAMESPACE_END(detail)
/// Wrapper for Python extension modules
class module_ : public object {
public:
PYBIND11_OBJECT_DEFAULT(module_, object, PyModule_Check)
/// Create a new top-level Python module with the given name and docstring
PYBIND11_DEPRECATED("Use PYBIND11_MODULE or module_::create_extension_module instead")
explicit module_(const char *name, const char *doc = nullptr) {
*this = create_extension_module(name, doc, new PyModuleDef());
}
/** \rst
Create Python binding for a new function within the module scope. ``Func``
can be a plain C++ function, a function pointer, or a lambda function. For
details on the ``Extra&& ... extra`` argument, see section :ref:`extras`.
\endrst */
template <typename Func, typename... Extra>
module_ &def(const char *name_, Func &&f, const Extra &...extra) {
cpp_function func(std::forward<Func>(f),
name(name_),
scope(*this),
sibling(getattr(*this, name_, none())),
extra...);
// NB: allow overwriting here because cpp_function sets up a chain with the intention of
// overwriting (and has already checked internally that it isn't overwriting
// non-functions).
add_object(name_, func, true /* overwrite */);
return *this;
}
/** \rst
Create and return a new Python submodule with the given name and docstring.
This also works recursively, i.e.
.. code-block:: cpp
py::module_ m("example", "pybind11 example plugin");
py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
\endrst */
module_ def_submodule(const char *name, const char *doc = nullptr) {
const char *this_name = PyModule_GetName(m_ptr);
if (this_name == nullptr) {
throw error_already_set();
}
std::string full_name = std::string(this_name) + '.' + name;
handle submodule = PyImport_AddModule(full_name.c_str());
if (!submodule) {
throw error_already_set();
}
auto result = reinterpret_borrow<module_>(submodule);
if (doc && options::show_user_defined_docstrings()) {
result.attr("__doc__") = pybind11::str(doc);
}
attr(name) = result;
return result;
}
/// Import and return a module or throws `error_already_set`.
static module_ import(const char *name) {
PyObject *obj = PyImport_ImportModule(name);
if (!obj) {
throw error_already_set();
}
return reinterpret_steal<module_>(obj);
}
/// Reload the module or throws `error_already_set`.
void reload() {
PyObject *obj = PyImport_ReloadModule(ptr());
if (!obj) {
throw error_already_set();
}
*this = reinterpret_steal<module_>(obj);
}
/** \rst
Adds an object to the module using the given name. Throws if an object with the given name
already exists.
``overwrite`` should almost always be false: attempting to overwrite objects that pybind11
has established will, in most cases, break things.
\endrst */
PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) {
if (!overwrite && hasattr(*this, name)) {
pybind11_fail(
"Error during initialization: multiple incompatible definitions with name \""
+ std::string(name) + "\"");
}
PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */);
}
using module_def = PyModuleDef; // TODO: Can this be removed (it was needed only for Python 2)?
/** \rst
Create a new top-level module that can be used as the main module of a C extension.
``def`` should point to a statically allocated module_def.
\endrst */
static module_ create_extension_module(const char *name, const char *doc, module_def *def) {
// module_def is PyModuleDef
// Placement new (not an allocation).
def = new (def)
PyModuleDef{/* m_base */ PyModuleDef_HEAD_INIT,
/* m_name */ name,
/* m_doc */ options::show_user_defined_docstrings() ? doc : nullptr,
/* m_size */ -1,
/* m_methods */ nullptr,
/* m_slots */ nullptr,
/* m_traverse */ nullptr,
/* m_clear */ nullptr,
/* m_free */ nullptr};
auto *m = PyModule_Create(def);
if (m == nullptr) {
if (PyErr_Occurred()) {
throw error_already_set();
}
pybind11_fail("Internal error in module_::create_extension_module()");
}
// TODO: Should be reinterpret_steal for Python 3, but Python also steals it again when
// returned from PyInit_...
// For Python 2, reinterpret_borrow was correct.
return reinterpret_borrow<module_>(m);
}
};
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
struct handle_type_name<module_> {
static constexpr auto name = const_name("module");
};
PYBIND11_NAMESPACE_END(detail)
// When inside a namespace (or anywhere as long as it's not the first item on a line),
// C++20 allows "module" to be used. This is provided for backward compatibility, and for
// simplicity, if someone wants to use py::module for example, that is perfectly safe.
using module = module_;
/// \ingroup python_builtins
/// Return a dictionary representing the global variables in the current execution frame,
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded).
inline dict globals() {
PyObject *p = PyEval_GetGlobals();
return reinterpret_borrow<dict>(p ? p : module_::import("__main__").attr("__dict__").ptr());
}
template <typename... Args, typename = detail::enable_if_t<args_are_all_keyword_or_ds<Args...>()>>
PYBIND11_DEPRECATED("make_simple_namespace should be replaced with "
"py::module_::import(\"types\").attr(\"SimpleNamespace\") ")
object make_simple_namespace(Args &&...args_) {
return module_::import("types").attr("SimpleNamespace")(std::forward<Args>(args_)...);
}
PYBIND11_NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
public:
PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
void initialize(const type_record &rec) {
if (rec.scope && hasattr(rec.scope, "__dict__")
&& rec.scope.attr("__dict__").contains(rec.name)) {
pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name)
+ "\": an object with that name is already defined");
}
if ((rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type))
!= nullptr) {
pybind11_fail("generic_type: type \"" + std::string(rec.name)
+ "\" is already registered!");
}
m_ptr = make_new_python_type(rec);
/* Register supplemental type information in C++ dict */
auto *tinfo = new detail::type_info();
tinfo->type = (PyTypeObject *) m_ptr;
tinfo->cpptype = rec.type;
tinfo->type_size = rec.type_size;
tinfo->type_align = rec.type_align;
tinfo->operator_new = rec.operator_new;
tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size);
tinfo->init_instance = rec.init_instance;
tinfo->dealloc = rec.dealloc;
tinfo->simple_type = true;
tinfo->simple_ancestors = true;
tinfo->default_holder = rec.default_holder;
tinfo->module_local = rec.module_local;
auto &internals = get_internals();
auto tindex = std::type_index(*rec.type);
tinfo->direct_conversions = &internals.direct_conversions[tindex];
if (rec.module_local) {
get_local_internals().registered_types_cpp[tindex] = tinfo;
} else {
internals.registered_types_cpp[tindex] = tinfo;
}
internals.registered_types_py[(PyTypeObject *) m_ptr] = {tinfo};
if (rec.bases.size() > 1 || rec.multiple_inheritance) {
mark_parents_nonsimple(tinfo->type);
tinfo->simple_ancestors = false;
} else if (rec.bases.size() == 1) {
auto *parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr());
assert(parent_tinfo != nullptr);
bool parent_simple_ancestors = parent_tinfo->simple_ancestors;
tinfo->simple_ancestors = parent_simple_ancestors;
// The parent can no longer be a simple type if it has MI and has a child
parent_tinfo->simple_type = parent_tinfo->simple_type && parent_simple_ancestors;
}
if (rec.module_local) {
// Stash the local typeinfo and loader so that external modules can access it.
tinfo->module_local_load = &type_caster_generic::local_load;
setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo));
}
}
/// Helper function which tags all parents of a type using mult. inheritance
void mark_parents_nonsimple(PyTypeObject *value) {
auto t = reinterpret_borrow<tuple>(value->tp_bases);
for (handle h : t) {
auto *tinfo2 = get_type_info((PyTypeObject *) h.ptr());
if (tinfo2) {
tinfo2->simple_type = false;
}
mark_parents_nonsimple((PyTypeObject *) h.ptr());
}
}
void install_buffer_funcs(buffer_info *(*get_buffer)(PyObject *, void *),
void *get_buffer_data) {
auto *type = (PyHeapTypeObject *) m_ptr;
auto *tinfo = detail::get_type_info(&type->ht_type);
if (!type->ht_type.tp_as_buffer) {
pybind11_fail("To be able to register buffer protocol support for the type '"
+ get_fully_qualified_tp_name(tinfo->type)
+ "' the associated class<>(..) invocation must "
"include the pybind11::buffer_protocol() annotation!");
}
tinfo->get_buffer = get_buffer;
tinfo->get_buffer_data = get_buffer_data;
}
// rec_func must be set for either fget or fset.
void def_property_static_impl(const char *name,
handle fget,
handle fset,
detail::function_record *rec_func) {
const auto is_static = (rec_func != nullptr) && !(rec_func->is_method && rec_func->scope);
const auto has_doc = (rec_func != nullptr) && (rec_func->doc != nullptr)
&& pybind11::options::show_user_defined_docstrings();
auto property = handle(
(PyObject *) (is_static ? get_internals().static_property_type : &PyProperty_Type));
attr(name) = property(fget.ptr() ? fget : none(),
fset.ptr() ? fset : none(),
/*deleter*/ none(),
pybind11::str(has_doc ? rec_func->doc : ""));
}
};
/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T,
typename = void_t<decltype(static_cast<void *(*) (size_t)>(T::operator new))>>
void set_operator_new(type_record *r) {
r->operator_new = &T::operator new;
}
template <typename>
void set_operator_new(...) {}
template <typename T, typename SFINAE = void>
struct has_operator_delete : std::false_type {};
template <typename T>
struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>>
: std::true_type {};
template <typename T, typename SFINAE = void>
struct has_operator_delete_size : std::false_type {};
template <typename T>
struct has_operator_delete_size<
T,
void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>> : std::true_type {
};
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0>
void call_operator_delete(T *p, size_t, size_t) {
T::operator delete(p);
}
template <typename T,
enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int>
= 0>
void call_operator_delete(T *p, size_t s, size_t) {
T::operator delete(p, s);
}
inline void call_operator_delete(void *p, size_t s, size_t a) {
(void) s;
(void) a;
#if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
if (a > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
# ifdef __cpp_sized_deallocation
::operator delete(p, s, std::align_val_t(a));
# else
::operator delete(p, std::align_val_t(a));
# endif
return;
}
#endif
#ifdef __cpp_sized_deallocation
::operator delete(p, s);
#else
::operator delete(p);
#endif
}
inline void add_class_method(object &cls, const char *name_, const cpp_function &cf) {
cls.attr(cf.name()) = cf;
if (std::strcmp(name_, "__eq__") == 0 && !cls.attr("__dict__").contains("__hash__")) {
cls.attr("__hash__") = none();
}
}
PYBIND11_NAMESPACE_END(detail)
/// Given a pointer to a member function, cast it to its `Derived` version.
/// Forward everything else unchanged.
template <typename /*Derived*/, typename F>
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) {
return std::forward<F>(f);
}
template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) {
static_assert(
detail::is_accessible_base_of<Class, Derived>::value,
"Cannot bind an inaccessible base class method; use a lambda definition instead");
return pmf;
}
template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const {
static_assert(
detail::is_accessible_base_of<Class, Derived>::value,
"Cannot bind an inaccessible base class method; use a lambda definition instead");
return pmf;
}
template <typename type_, typename... options>
class class_ : public detail::generic_type {
template <typename T>
using is_holder = detail::is_holder_type<type_, T>;
template <typename T>
using is_subtype = detail::is_strict_base_of<type_, T>;
template <typename T>
using is_base = detail::is_strict_base_of<T, type_>;
// struct instead of using here to help MSVC:
template <typename T>
struct is_valid_class_option : detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};
public:
using type = type_;
using type_alias = detail::exactly_one_t<is_subtype, void, options...>;
constexpr static bool has_alias = !std::is_void<type_alias>::value;
using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>;
static_assert(detail::all_of<is_valid_class_option<options>...>::value,
"Unknown/invalid class_ template parameters provided");
static_assert(!has_alias || std::is_polymorphic<type>::value,
"Cannot use an alias class with a non-polymorphic type");
PYBIND11_OBJECT(class_, generic_type, PyType_Check)
template <typename... Extra>
class_(handle scope, const char *name, const Extra &...extra) {
using namespace detail;
// MI can only be specified via class_ template options, not constructor parameters
static_assert(
none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
(constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
constexpr_sum(is_base<options>::value...) == 0 && // no template option bases
// no multiple_inheritance attr
none_of<std::is_same<multiple_inheritance, Extra>...>::value),
"Error: multiple inheritance bases must be specified via class_ template options");
type_record record;
record.scope = scope;
record.name = name;
record.type = &typeid(type);
record.type_size = sizeof(conditional_t<has_alias, type_alias, type>);
record.type_align = alignof(conditional_t<has_alias, type_alias, type> &);
record.holder_size = sizeof(holder_type);
record.init_instance = init_instance;
record.dealloc = dealloc;
record.default_holder = detail::is_instantiation<std::unique_ptr, holder_type>::value;
set_operator_new<type>(&record);
/* Register base classes specified via template arguments to class_, if any */
PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record));
/* Process optional arguments, if any */
process_attributes<Extra...>::init(extra..., &record);
generic_type::initialize(record);
if (has_alias) {
auto &instances = record.module_local ? get_local_internals().registered_types_cpp
: get_internals().registered_types_cpp;
instances[std::type_index(typeid(type_alias))]
= instances[std::type_index(typeid(type))];
}
}
template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0>
static void add_base(detail::type_record &rec) {
rec.add_base(typeid(Base), [](void *src) -> void * {
return static_cast<Base *>(reinterpret_cast<type *>(src));
});
}
template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0>
static void add_base(detail::type_record &) {}
template <typename Func, typename... Extra>
class_ &def(const char *name_, Func &&f, const Extra &...extra) {
cpp_function cf(method_adaptor<type>(std::forward<Func>(f)),
name(name_),
is_method(*this),
sibling(getattr(*this, name_, none())),
extra...);
add_class_method(*this, name_, cf);
return *this;
}
template <typename Func, typename... Extra>
class_ &def_static(const char *name_, Func &&f, const Extra &...extra) {
static_assert(!std::is_member_function_pointer<Func>::value,
"def_static(...) called with a non-static member function pointer");
cpp_function cf(std::forward<Func>(f),
name(name_),
scope(*this),
sibling(getattr(*this, name_, none())),
extra...);
auto cf_name = cf.name();
attr(std::move(cf_name)) = staticmethod(std::move(cf));
return *this;
}
template <typename T, typename... Extra, detail::enable_if_t<T::op_enable_if_hook, int> = 0>
class_ &def(const T &op, const Extra &...extra) {
op.execute(*this, extra...);
return *this;
}
template <typename T, typename... Extra, detail::enable_if_t<T::op_enable_if_hook, int> = 0>
class_ &def_cast(const T &op, const Extra &...extra) {
op.execute_cast(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::initimpl::constructor<Args...> &init, const Extra &...extra) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init);
init.execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::initimpl::alias_constructor<Args...> &init, const Extra &...extra) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init);
init.execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(detail::initimpl::factory<Args...> &&init, const Extra &...extra) {
std::move(init).execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(detail::initimpl::pickle_factory<Args...> &&pf, const Extra &...extra) {
std::move(pf).execute(*this, extra...);
return *this;
}
template <typename Func>
class_ &def_buffer(Func &&func) {
struct capture {
Func func;
};
auto *ptr = new capture{std::forward<Func>(func)};
install_buffer_funcs(
[](PyObject *obj, void *ptr) -> buffer_info * {
detail::make_caster<type> caster;
if (!caster.load(obj, false)) {
return nullptr;
}
return new buffer_info(((capture *) ptr)->func(std::move(caster)));
},
ptr);
weakref(m_ptr, cpp_function([ptr](handle wr) {
delete ptr;
wr.dec_ref();
}))
.release();
return *this;
}
template <typename Return, typename Class, typename... Args>
class_ &def_buffer(Return (Class::*func)(Args...)) {
return def_buffer([func](type &obj) { return (obj.*func)(); });
}
template <typename Return, typename Class, typename... Args>
class_ &def_buffer(Return (Class::*func)(Args...) const) {
return def_buffer([func](const type &obj) { return (obj.*func)(); });
}
template <typename C, typename D, typename... Extra>
class_ &def_readwrite(const char *name, D C::*pm, const Extra &...extra) {
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value,
"def_readwrite() requires a class member (or base class member)");
cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this)),
fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this));
def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readonly(const char *name, const D C::*pm, const Extra &...extra) {
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value,
"def_readonly() requires a class member (or base class member)");
cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this));
def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readwrite_static(const char *name, D *pm, const Extra &...extra) {
cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this)),
fset([pm](const object &, const D &value) { *pm = value; }, scope(*this));
def_property_static(name, fget, fset, return_value_policy::reference, extra...);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readonly_static(const char *name, const D *pm, const Extra &...extra) {
cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this));
def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
return *this;
}
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename... Extra>
class_ &def_property_readonly(const char *name, const Getter &fget, const Extra &...extra) {
return def_property_readonly(name,
cpp_function(method_adaptor<type>(fget)),
return_value_policy::reference_internal,
extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &
def_property_readonly(const char *name, const cpp_function &fget, const Extra &...extra) {
return def_property(name, fget, nullptr, extra...);
}
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra>
class_ &
def_property_readonly_static(const char *name, const Getter &fget, const Extra &...extra) {
return def_property_readonly_static(
name, cpp_function(fget), return_value_policy::reference, extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property_readonly_static(const char *name,
const cpp_function &fget,
const Extra &...extra) {
return def_property_static(name, fget, nullptr, extra...);
}
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename Setter, typename... Extra>
class_ &
def_property(const char *name, const Getter &fget, const Setter &fset, const Extra &...extra) {
return def_property(
name, fget, cpp_function(method_adaptor<type>(fset), is_setter()), extra...);
}
template <typename Getter, typename... Extra>
class_ &def_property(const char *name,
const Getter &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property(name,
cpp_function(method_adaptor<type>(fget)),
fset,
return_value_policy::reference_internal,
extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property(const char *name,
const cpp_function &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property_static(name, fget, fset, is_method(*this), extra...);
}
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra>
class_ &def_property_static(const char *name,
const Getter &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property_static(
name, cpp_function(fget), fset, return_value_policy::reference, extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property_static(const char *name,
const cpp_function &fget,
const cpp_function &fset,
const Extra &...extra) {
static_assert(0 == detail::constexpr_sum(std::is_base_of<arg, Extra>::value...),
"Argument annotations are not allowed for properties");
auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
auto *rec_active = rec_fget;
if (rec_fget) {
char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific
documentation string */
detail::process_attributes<Extra...>::init(extra..., rec_fget);
if (rec_fget->doc && rec_fget->doc != doc_prev) {
std::free(doc_prev);
rec_fget->doc = PYBIND11_COMPAT_STRDUP(rec_fget->doc);
}
}
if (rec_fset) {
char *doc_prev = rec_fset->doc;
detail::process_attributes<Extra...>::init(extra..., rec_fset);
if (rec_fset->doc && rec_fset->doc != doc_prev) {
std::free(doc_prev);
rec_fset->doc = PYBIND11_COMPAT_STRDUP(rec_fset->doc);
}
if (!rec_active) {
rec_active = rec_fset;
}
}
def_property_static_impl(name, fget, fset, rec_active);
return *this;
}
private:
/// Initialize holder object, variant 1: object derives from enable_shared_from_this
template <typename T>
static void init_holder(detail::instance *inst,
detail::value_and_holder &v_h,
const holder_type * /* unused */,
const std::enable_shared_from_this<T> * /* dummy */) {
auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>(
detail::try_get_shared_from_this(v_h.value_ptr<type>()));
if (sh) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(sh));
v_h.set_holder_constructed();
}
if (!v_h.holder_constructed() && inst->owned) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
v_h.set_holder_constructed();
}
}
static void init_holder_from_existing(const detail::value_and_holder &v_h,
const holder_type *holder_ptr,
std::true_type /*is_copy_constructible*/) {
new (std::addressof(v_h.holder<holder_type>()))
holder_type(*reinterpret_cast<const holder_type *>(holder_ptr));
}
static void init_holder_from_existing(const detail::value_and_holder &v_h,
const holder_type *holder_ptr,
std::false_type /*is_copy_constructible*/) {
new (std::addressof(v_h.holder<holder_type>()))
holder_type(std::move(*const_cast<holder_type *>(holder_ptr)));
}
/// Initialize holder object, variant 2: try to construct from existing holder object, if
/// possible
static void init_holder(detail::instance *inst,
detail::value_and_holder &v_h,
const holder_type *holder_ptr,
const void * /* dummy -- not enable_shared_from_this<T>) */) {
if (holder_ptr) {
init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>());
v_h.set_holder_constructed();
} else if (detail::always_construct_holder<holder_type>::value || inst->owned) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
v_h.set_holder_constructed();
}
}
/// Performs instance initialization including constructing a holder and registering the known
/// instance. Should be called as soon as the `type` value_ptr is set for an instance. Takes
/// an optional pointer to an existing holder to use; if not specified and the instance is
/// `.owned`, a new holder will be constructed to manage the value pointer.
static void init_instance(detail::instance *inst, const void *holder_ptr) {
auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type)));
if (!v_h.instance_registered()) {
register_instance(inst, v_h.value_ptr(), v_h.type);
v_h.set_instance_registered();
}
init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>());
}
/// Deallocates an instance; via holder, if constructed; otherwise via operator delete.
static void dealloc(detail::value_and_holder &v_h) {
// We could be deallocating because we are cleaning up after a Python exception.
// If so, the Python error indicator will be set. We need to clear that before
// running the destructor, in case the destructor code calls more Python.
// If we don't, the Python API will exit with an exception, and pybind11 will
// throw error_already_set from the C++ destructor which is forbidden and triggers
// std::terminate().
error_scope scope;
if (v_h.holder_constructed()) {
v_h.holder<holder_type>().~holder_type();
v_h.set_holder_constructed(false);
} else {
detail::call_operator_delete(
v_h.value_ptr<type>(), v_h.type->type_size, v_h.type->type_align);
}
v_h.value_ptr() = nullptr;
}
static detail::function_record *get_function_record(handle h) {
h = detail::get_function(h);
if (!h) {
return nullptr;
}
handle func_self = PyCFunction_GET_SELF(h.ptr());
if (!func_self) {
throw error_already_set();
}
if (!isinstance<capsule>(func_self)) {
return nullptr;
}
auto cap = reinterpret_borrow<capsule>(func_self);
if (!detail::is_function_record_capsule(cap)) {
return nullptr;
}
return cap.get_pointer<detail::function_record>();
}
};
/// Binds an existing constructor taking arguments Args...
template <typename... Args>
detail::initimpl::constructor<Args...> init() {
return {};
}
/// Like `init<Args...>()`, but the instance is always constructed through the alias class (even
/// when not inheriting on the Python side).
template <typename... Args>
detail::initimpl::alias_constructor<Args...> init_alias() {
return {};
}
/// Binds a factory function as a constructor
template <typename Func, typename Ret = detail::initimpl::factory<Func>>
Ret init(Func &&f) {
return {std::forward<Func>(f)};
}
/// Dual-argument factory function: the first function is called when no alias is needed, the
/// second when an alias is needed (i.e. due to python-side inheritance). Arguments must be
/// identical.
template <typename CFunc, typename AFunc, typename Ret = detail::initimpl::factory<CFunc, AFunc>>
Ret init(CFunc &&c, AFunc &&a) {
return {std::forward<CFunc>(c), std::forward<AFunc>(a)};
}
/// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type
/// returned by `__getstate__` is the same as the argument accepted by `__setstate__`.
template <typename GetState, typename SetState>
detail::initimpl::pickle_factory<GetState, SetState> pickle(GetState &&g, SetState &&s) {
return {std::forward<GetState>(g), std::forward<SetState>(s)};
}
PYBIND11_NAMESPACE_BEGIN(detail)
inline str enum_name(handle arg) {
dict entries = arg.get_type().attr("__entries");
for (auto kv : entries) {
if (handle(kv.second[int_(0)]).equal(arg)) {
return pybind11::str(kv.first);
}
}
return "???";
}
struct enum_base {
enum_base(const handle &base, const handle &parent) : m_base(base), m_parent(parent) {}
PYBIND11_NOINLINE void init(bool is_arithmetic, bool is_convertible) {
m_base.attr("__entries") = dict();
auto property = handle((PyObject *) &PyProperty_Type);
auto static_property = handle((PyObject *) get_internals().static_property_type);
m_base.attr("__repr__") = cpp_function(
[](const object &arg) -> str {
handle type = type::handle_of(arg);
object type_name = type.attr("__name__");
return pybind11::str("<{}.{}: {}>")
.format(std::move(type_name), enum_name(arg), int_(arg));
},
name("__repr__"),
is_method(m_base));
m_base.attr("name") = property(cpp_function(&enum_name, name("name"), is_method(m_base)));
m_base.attr("__str__") = cpp_function(
[](handle arg) -> str {
object type_name = type::handle_of(arg).attr("__name__");
return pybind11::str("{}.{}").format(std::move(type_name), enum_name(arg));
},
name("__str__"),
is_method(m_base));
if (options::show_enum_members_docstring()) {
m_base.attr("__doc__") = static_property(
cpp_function(
[](handle arg) -> std::string {
std::string docstring;
dict entries = arg.attr("__entries");
if (((PyTypeObject *) arg.ptr())->tp_doc) {
docstring += std::string(
reinterpret_cast<PyTypeObject *>(arg.ptr())->tp_doc);
docstring += "\n\n";
}
docstring += "Members:";
for (auto kv : entries) {
auto key = std::string(pybind11::str(kv.first));
auto comment = kv.second[int_(1)];
docstring += "\n\n ";
docstring += key;
if (!comment.is_none()) {
docstring += " : ";
docstring += pybind11::str(comment).cast<std::string>();
}
}
return docstring;
},
name("__doc__")),
none(),
none(),
"");
}
m_base.attr("__members__") = static_property(cpp_function(
[](handle arg) -> dict {
dict entries = arg.attr("__entries"),
m;
for (auto kv : entries) {
m[kv.first] = kv.second[int_(0)];
}
return m;
},
name("__members__")),
none(),
none(),
"");
#define PYBIND11_ENUM_OP_STRICT(op, expr, strict_behavior) \
m_base.attr(op) = cpp_function( \
[](const object &a, const object &b) { \
if (!type::handle_of(a).is(type::handle_of(b))) \
strict_behavior; /* NOLINT(bugprone-macro-parentheses) */ \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
#define PYBIND11_ENUM_OP_CONV(op, expr) \
m_base.attr(op) = cpp_function( \
[](const object &a_, const object &b_) { \
int_ a(a_), b(b_); \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
#define PYBIND11_ENUM_OP_CONV_LHS(op, expr) \
m_base.attr(op) = cpp_function( \
[](const object &a_, const object &b) { \
int_ a(a_); \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
if (is_convertible) {
PYBIND11_ENUM_OP_CONV_LHS("__eq__", !b.is_none() && a.equal(b));
PYBIND11_ENUM_OP_CONV_LHS("__ne__", b.is_none() || !a.equal(b));
if (is_arithmetic) {
PYBIND11_ENUM_OP_CONV("__lt__", a < b);
PYBIND11_ENUM_OP_CONV("__gt__", a > b);
PYBIND11_ENUM_OP_CONV("__le__", a <= b);
PYBIND11_ENUM_OP_CONV("__ge__", a >= b);
PYBIND11_ENUM_OP_CONV("__and__", a & b);
PYBIND11_ENUM_OP_CONV("__rand__", a & b);
PYBIND11_ENUM_OP_CONV("__or__", a | b);
PYBIND11_ENUM_OP_CONV("__ror__", a | b);
PYBIND11_ENUM_OP_CONV("__xor__", a ^ b);
PYBIND11_ENUM_OP_CONV("__rxor__", a ^ b);
m_base.attr("__invert__")
= cpp_function([](const object &arg) { return ~(int_(arg)); },
name("__invert__"),
is_method(m_base));
}
} else {
PYBIND11_ENUM_OP_STRICT("__eq__", int_(a).equal(int_(b)), return false);
PYBIND11_ENUM_OP_STRICT("__ne__", !int_(a).equal(int_(b)), return true);
if (is_arithmetic) {
#define PYBIND11_THROW throw type_error("Expected an enumeration of matching type!");
PYBIND11_ENUM_OP_STRICT("__lt__", int_(a) < int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__gt__", int_(a) > int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__le__", int_(a) <= int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__ge__", int_(a) >= int_(b), PYBIND11_THROW);
#undef PYBIND11_THROW
}
}
#undef PYBIND11_ENUM_OP_CONV_LHS
#undef PYBIND11_ENUM_OP_CONV
#undef PYBIND11_ENUM_OP_STRICT
m_base.attr("__getstate__") = cpp_function(
[](const object &arg) { return int_(arg); }, name("__getstate__"), is_method(m_base));
m_base.attr("__hash__") = cpp_function(
[](const object &arg) { return int_(arg); }, name("__hash__"), is_method(m_base));
}
PYBIND11_NOINLINE void value(char const *name_, object value, const char *doc = nullptr) {
dict entries = m_base.attr("__entries");
str name(name_);
if (entries.contains(name)) {
std::string type_name = (std::string) str(m_base.attr("__name__"));
throw value_error(std::move(type_name) + ": element \"" + std::string(name_)
+ "\" already exists!");
}
entries[name] = pybind11::make_tuple(value, doc);
m_base.attr(std::move(name)) = std::move(value);
}
PYBIND11_NOINLINE void export_values() {
dict entries = m_base.attr("__entries");
for (auto kv : entries) {
m_parent.attr(kv.first) = kv.second[int_(0)];
}
}
handle m_base;
handle m_parent;
};
template <bool is_signed, size_t length>
struct equivalent_integer {};
template <>
struct equivalent_integer<true, 1> {
using type = int8_t;
};
template <>
struct equivalent_integer<false, 1> {
using type = uint8_t;
};
template <>
struct equivalent_integer<true, 2> {
using type = int16_t;
};
template <>
struct equivalent_integer<false, 2> {
using type = uint16_t;
};
template <>
struct equivalent_integer<true, 4> {
using type = int32_t;
};
template <>
struct equivalent_integer<false, 4> {
using type = uint32_t;
};
template <>
struct equivalent_integer<true, 8> {
using type = int64_t;
};
template <>
struct equivalent_integer<false, 8> {
using type = uint64_t;
};
template <typename IntLike>
using equivalent_integer_t =
typename equivalent_integer<std::is_signed<IntLike>::value, sizeof(IntLike)>::type;
PYBIND11_NAMESPACE_END(detail)
/// Binds C++ enumerations and enumeration classes to Python
template <typename Type>
class enum_ : public class_<Type> {
public:
using Base = class_<Type>;
using Base::attr;
using Base::def;
using Base::def_property_readonly;
using Base::def_property_readonly_static;
using Underlying = typename std::underlying_type<Type>::type;
// Scalar is the integer representation of underlying type
using Scalar = detail::conditional_t<detail::any_of<detail::is_std_char_type<Underlying>,
std::is_same<Underlying, bool>>::value,
detail::equivalent_integer_t<Underlying>,
Underlying>;
template <typename... Extra>
enum_(const handle &scope, const char *name, const Extra &...extra)
: class_<Type>(scope, name, extra...), m_base(*this, scope) {
constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value;
constexpr bool is_convertible = std::is_convertible<Type, Underlying>::value;
m_base.init(is_arithmetic, is_convertible);
def(init([](Scalar i) { return static_cast<Type>(i); }), arg("value"));
def_property_readonly("value", [](Type value) { return (Scalar) value; });
def("__int__", [](Type value) { return (Scalar) value; });
def("__index__", [](Type value) { return (Scalar) value; });
attr("__setstate__") = cpp_function(
[](detail::value_and_holder &v_h, Scalar arg) {
detail::initimpl::setstate<Base>(
v_h, static_cast<Type>(arg), Py_TYPE(v_h.inst) != v_h.type->type);
},
detail::is_new_style_constructor(),
pybind11::name("__setstate__"),
is_method(*this),
arg("state"));
}
/// Export enumeration entries into the parent scope
enum_ &export_values() {
m_base.export_values();
return *this;
}
/// Add an enumeration entry
enum_ &value(char const *name, Type value, const char *doc = nullptr) {
m_base.value(name, pybind11::cast(value, return_value_policy::copy), doc);
return *this;
}
private:
detail::enum_base m_base;
};
PYBIND11_NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE void keep_alive_impl(handle nurse, handle patient) {
if (!nurse || !patient) {
pybind11_fail("Could not activate keep_alive!");
}
if (patient.is_none() || nurse.is_none()) {
return; /* Nothing to keep alive or nothing to be kept alive by */
}
auto tinfo = all_type_info(Py_TYPE(nurse.ptr()));
if (!tinfo.empty()) {
/* It's a pybind-registered type, so we can store the patient in the
* internal list. */
add_patient(nurse.ptr(), patient.ptr());
} else {
/* Fall back to clever approach based on weak references taken from
* Boost.Python. This is not used for pybind-registered types because
* the objects can be destroyed out-of-order in a GC pass. */
cpp_function disable_lifesupport([patient](handle weakref) {
patient.dec_ref();
weakref.dec_ref();
});
weakref wr(nurse, disable_lifesupport);
patient.inc_ref(); /* reference patient and leak the weak reference */
(void) wr.release();
}
}
PYBIND11_NOINLINE void
keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) {
auto get_arg = [&](size_t n) {
if (n == 0) {
return ret;
}
if (n == 1 && call.init_self) {
return call.init_self;
}
if (n <= call.args.size()) {
return call.args[n - 1];
}
return handle();
};
keep_alive_impl(get_arg(Nurse), get_arg(Patient));
}
inline std::pair<decltype(internals::registered_types_py)::iterator, bool>
all_type_info_get_cache(PyTypeObject *type) {
auto res = get_internals()
.registered_types_py
#ifdef __cpp_lib_unordered_map_try_emplace
.try_emplace(type);
#else
.emplace(type, std::vector<detail::type_info *>());
#endif
if (res.second) {
// New cache entry created; set up a weak reference to automatically remove it if the type
// gets destroyed:
weakref((PyObject *) type, cpp_function([type](handle wr) {
get_internals().registered_types_py.erase(type);
// TODO consolidate the erasure code in pybind11_meta_dealloc() in class.h
auto &cache = get_internals().inactive_override_cache;
for (auto it = cache.begin(), last = cache.end(); it != last;) {
if (it->first == reinterpret_cast<PyObject *>(type)) {
it = cache.erase(it);
} else {
++it;
}
}
wr.dec_ref();
}))
.release();
}
return res;
}
/* There are a large number of apparently unused template arguments because
* each combination requires a separate py::class_ registration.
*/
template <typename Access,
return_value_policy Policy,
typename Iterator,
typename Sentinel,
typename ValueType,
typename... Extra>
struct iterator_state {
Iterator it;
Sentinel end;
bool first_or_done;
};
// Note: these helpers take the iterator by non-const reference because some
// iterators in the wild can't be dereferenced when const. The & after Iterator
// is required for MSVC < 16.9. SFINAE cannot be reused for result_type due to
// bugs in ICC, NVCC, and PGI compilers. See PR #3293.
template <typename Iterator, typename SFINAE = decltype(*std::declval<Iterator &>())>
struct iterator_access {
using result_type = decltype(*std::declval<Iterator &>());
// NOLINTNEXTLINE(readability-const-return-type) // PR #3263
result_type operator()(Iterator &it) const { return *it; }
};
template <typename Iterator, typename SFINAE = decltype((*std::declval<Iterator &>()).first)>
class iterator_key_access {
private:
using pair_type = decltype(*std::declval<Iterator &>());
public:
/* If either the pair itself or the element of the pair is a reference, we
* want to return a reference, otherwise a value. When the decltype
* expression is parenthesized it is based on the value category of the
* expression; otherwise it is the declared type of the pair member.
* The use of declval<pair_type> in the second branch rather than directly
* using *std::declval<Iterator &>() is a workaround for nvcc
* (it's not used in the first branch because going via decltype and back
* through declval does not perfectly preserve references).
*/
using result_type
= conditional_t<std::is_reference<decltype(*std::declval<Iterator &>())>::value,
decltype(((*std::declval<Iterator &>()).first)),
decltype(std::declval<pair_type>().first)>;
result_type operator()(Iterator &it) const { return (*it).first; }
};
template <typename Iterator, typename SFINAE = decltype((*std::declval<Iterator &>()).second)>
class iterator_value_access {
private:
using pair_type = decltype(*std::declval<Iterator &>());
public:
using result_type
= conditional_t<std::is_reference<decltype(*std::declval<Iterator &>())>::value,
decltype(((*std::declval<Iterator &>()).second)),
decltype(std::declval<pair_type>().second)>;
result_type operator()(Iterator &it) const { return (*it).second; }
};
template <typename Access,
return_value_policy Policy,
typename Iterator,
typename Sentinel,
typename ValueType,
typename... Extra>
iterator make_iterator_impl(Iterator first, Sentinel last, Extra &&...extra) {
using state = detail::iterator_state<Access, Policy, Iterator, Sentinel, ValueType, Extra...>;
// TODO: state captures only the types of Extra, not the values
if (!detail::get_type_info(typeid(state), false)) {
class_<state>(handle(), "iterator", pybind11::module_local())
.def("__iter__", [](state &s) -> state & { return s; })
.def(
"__next__",
[](state &s) -> ValueType {
if (!s.first_or_done) {
++s.it;
} else {
s.first_or_done = false;
}
if (s.it == s.end) {
s.first_or_done = true;
throw stop_iteration();
}
return Access()(s.it);
// NOLINTNEXTLINE(readability-const-return-type) // PR #3263
},
std::forward<Extra>(extra)...,
Policy);
}
return cast(state{std::forward<Iterator>(first), std::forward<Sentinel>(last), true});
}
PYBIND11_NAMESPACE_END(detail)
/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename ValueType = typename detail::iterator_access<Iterator>::result_type,
typename... Extra>
typing::Iterator<ValueType> make_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_access<Iterator>,
Policy,
Iterator,
Sentinel,
ValueType,
Extra...>(std::forward<Iterator>(first),
std::forward<Sentinel>(last),
std::forward<Extra>(extra)...);
}
/// Makes a python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename KeyType = typename detail::iterator_key_access<Iterator>::result_type,
typename... Extra>
typing::Iterator<KeyType> make_key_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_key_access<Iterator>,
Policy,
Iterator,
Sentinel,
KeyType,
Extra...>(std::forward<Iterator>(first),
std::forward<Sentinel>(last),
std::forward<Extra>(extra)...);
}
/// Makes a python iterator over the values (`.second`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename ValueType = typename detail::iterator_value_access<Iterator>::result_type,
typename... Extra>
typing::Iterator<ValueType> make_value_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_value_access<Iterator>,
Policy,
Iterator,
Sentinel,
ValueType,
Extra...>(std::forward<Iterator>(first),
std::forward<Sentinel>(last),
std::forward<Extra>(extra)...);
}
/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename ValueType = typename detail::iterator_access<
decltype(std::begin(std::declval<Type &>()))>::result_type,
typename... Extra>
typing::Iterator<ValueType> make_iterator(Type &value, Extra &&...extra) {
return make_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename KeyType = typename detail::iterator_key_access<
decltype(std::begin(std::declval<Type &>()))>::result_type,
typename... Extra>
typing::Iterator<KeyType> make_key_iterator(Type &value, Extra &&...extra) {
return make_key_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
/// Makes an iterator over the values (`.second`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename ValueType = typename detail::iterator_value_access<
decltype(std::begin(std::declval<Type &>()))>::result_type,
typename... Extra>
typing::Iterator<ValueType> make_value_iterator(Type &value, Extra &&...extra) {
return make_value_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
template <typename InputType, typename OutputType>
void implicitly_convertible() {
struct set_flag {
bool &flag;
explicit set_flag(bool &flag_) : flag(flag_) { flag_ = true; }
~set_flag() { flag = false; }
};
auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
static bool currently_used = false;
if (currently_used) { // implicit conversions are non-reentrant
return nullptr;
}
set_flag flag_helper(currently_used);
if (!detail::make_caster<InputType>().load(obj, false)) {
return nullptr;
}
tuple args(1);
args[0] = obj;
PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
if (result == nullptr) {
PyErr_Clear();
}
return result;
};
if (auto *tinfo = detail::get_type_info(typeid(OutputType))) {
tinfo->implicit_conversions.emplace_back(std::move(implicit_caster));
} else {
pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
}
}
inline void register_exception_translator(ExceptionTranslator &&translator) {
detail::get_internals().registered_exception_translators.push_front(
std::forward<ExceptionTranslator>(translator));
}
/**
* Add a new module-local exception translator. Locally registered functions
* will be tried before any globally registered exception translators, which
* will only be invoked if the module-local handlers do not deal with
* the exception.
*/
inline void register_local_exception_translator(ExceptionTranslator &&translator) {
detail::get_local_internals().registered_exception_translators.push_front(
std::forward<ExceptionTranslator>(translator));
}
/**
* Wrapper to generate a new Python exception type.
*
* This should only be used with py::set_error() for now.
* It is not (yet) possible to use as a py::base.
* Template type argument is reserved for future use.
*/
template <typename type>
class exception : public object {
public:
exception() = default;
exception(handle scope, const char *name, handle base = PyExc_Exception) {
std::string full_name
= scope.attr("__name__").cast<std::string>() + std::string(".") + name;
m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base.ptr(), nullptr);
if (hasattr(scope, "__dict__") && scope.attr("__dict__").contains(name)) {
pybind11_fail("Error during initialization: multiple incompatible "
"definitions with name \""
+ std::string(name) + "\"");
}
scope.attr(name) = *this;
}
// Sets the current python exception to this exception object with the given message
PYBIND11_DEPRECATED("Please use py::set_error() instead "
"(https://github.com/pybind/pybind11/pull/4772)")
void operator()(const char *message) const { set_error(*this, message); }
};
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
struct handle_type_name<exception<void>> {
static constexpr auto name = const_name("Exception");
};
// Helper function for register_exception and register_local_exception
template <typename CppException>
exception<CppException> &
register_exception_impl(handle scope, const char *name, handle base, bool isLocal) {
PYBIND11_CONSTINIT static gil_safe_call_once_and_store<exception<CppException>> exc_storage;
exc_storage.call_once_and_store_result(
[&]() { return exception<CppException>(scope, name, base); });
auto register_func
= isLocal ? ®ister_local_exception_translator : ®ister_exception_translator;
register_func([](std::exception_ptr p) {
if (!p) {
return;
}
try {
std::rethrow_exception(p);
} catch (const CppException &e) {
set_error(exc_storage.get_stored(), e.what());
}
});
return exc_storage.get_stored();
}
PYBIND11_NAMESPACE_END(detail)
/**
* Registers a Python exception in `m` of the given `name` and installs a translator to
* translate the C++ exception to the created Python exception using the what() method.
* This is intended for simple exception translations; for more complex translation, register the
* exception object and translator directly.
*/
template <typename CppException>
exception<CppException> &
register_exception(handle scope, const char *name, handle base = PyExc_Exception) {
return detail::register_exception_impl<CppException>(scope, name, base, false /* isLocal */);
}
/**
* Registers a Python exception in `m` of the given `name` and installs a translator to
* translate the C++ exception to the created Python exception using the what() method.
* This translator will only be used for exceptions that are thrown in this module and will be
* tried before global exception translators, including those registered with register_exception.
* This is intended for simple exception translations; for more complex translation, register the
* exception object and translator directly.
*/
template <typename CppException>
exception<CppException> &
register_local_exception(handle scope, const char *name, handle base = PyExc_Exception) {
return detail::register_exception_impl<CppException>(scope, name, base, true /* isLocal */);
}
PYBIND11_NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE void print(const tuple &args, const dict &kwargs) {
auto strings = tuple(args.size());
for (size_t i = 0; i < args.size(); ++i) {
strings[i] = str(args[i]);
}
auto sep = kwargs.contains("sep") ? kwargs["sep"] : str(" ");
auto line = sep.attr("join")(std::move(strings));
object file;
if (kwargs.contains("file")) {
file = kwargs["file"].cast<object>();
} else {
try {
file = module_::import("sys").attr("stdout");
} catch (const error_already_set &) {
/* If print() is called from code that is executed as
part of garbage collection during interpreter shutdown,
importing 'sys' can fail. Give up rather than crashing the
interpreter in this case. */
return;
}
}
auto write = file.attr("write");
write(std::move(line));
write(kwargs.contains("end") ? kwargs["end"] : str("\n"));
if (kwargs.contains("flush") && kwargs["flush"].cast<bool>()) {
file.attr("flush")();
}
}
PYBIND11_NAMESPACE_END(detail)
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
detail::print(c.args(), c.kwargs());
}
inline void
error_already_set::m_fetched_error_deleter(detail::error_fetch_and_normalize *raw_ptr) {
gil_scoped_acquire gil;
error_scope scope;
delete raw_ptr;
}
inline const char *error_already_set::what() const noexcept {
gil_scoped_acquire gil;
error_scope scope;
return m_fetched_error->error_string().c_str();
}
PYBIND11_NAMESPACE_BEGIN(detail)
inline function
get_type_override(const void *this_ptr, const type_info *this_type, const char *name) {
handle self = get_object_handle(this_ptr, this_type);
if (!self) {
return function();
}
handle type = type::handle_of(self);
auto key = std::make_pair(type.ptr(), name);
/* Cache functions that aren't overridden in Python to avoid
many costly Python dictionary lookups below */
auto &cache = get_internals().inactive_override_cache;
if (cache.find(key) != cache.end()) {
return function();
}
function override = getattr(self, name, function());
if (override.is_cpp_function()) {
cache.insert(std::move(key));
return function();
}
/* Don't call dispatch code if invoked from overridden function.
Unfortunately this doesn't work on PyPy. */
#if !defined(PYPY_VERSION)
# if PY_VERSION_HEX >= 0x03090000
PyFrameObject *frame = PyThreadState_GetFrame(PyThreadState_Get());
if (frame != nullptr) {
PyCodeObject *f_code = PyFrame_GetCode(frame);
// f_code is guaranteed to not be NULL
if ((std::string) str(f_code->co_name) == name && f_code->co_argcount > 0) {
PyObject *locals = PyEval_GetLocals();
if (locals != nullptr) {
# if PY_VERSION_HEX >= 0x030b0000
PyObject *co_varnames = PyCode_GetVarnames(f_code);
# else
PyObject *co_varnames = PyObject_GetAttrString((PyObject *) f_code, "co_varnames");
# endif
PyObject *self_arg = PyTuple_GET_ITEM(co_varnames, 0);
Py_DECREF(co_varnames);
PyObject *self_caller = dict_getitem(locals, self_arg);
if (self_caller == self.ptr()) {
Py_DECREF(f_code);
Py_DECREF(frame);
return function();
}
}
}
Py_DECREF(f_code);
Py_DECREF(frame);
}
# else
PyFrameObject *frame = PyThreadState_Get()->frame;
if (frame != nullptr && (std::string) str(frame->f_code->co_name) == name
&& frame->f_code->co_argcount > 0) {
PyFrame_FastToLocals(frame);
PyObject *self_caller
= dict_getitem(frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
if (self_caller == self.ptr()) {
return function();
}
}
# endif
#else
/* PyPy currently doesn't provide a detailed cpyext emulation of
frame objects, so we have to emulate this using Python. This
is going to be slow..*/
dict d;
d["self"] = self;
d["name"] = pybind11::str(name);
PyObject *result
= PyRun_String("import inspect\n"
"frame = inspect.currentframe()\n"
"if frame is not None:\n"
" frame = frame.f_back\n"
" if frame is not None and str(frame.f_code.co_name) == name and "
"frame.f_code.co_argcount > 0:\n"
" self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n"
" if self_caller == self:\n"
" self = None\n",
Py_file_input,
d.ptr(),
d.ptr());
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
if (d["self"].is_none())
return function();
#endif
return override;
}
PYBIND11_NAMESPACE_END(detail)
/** \rst
Try to retrieve a python method by the provided name from the instance pointed to by the
this_ptr.
:this_ptr: The pointer to the object the overridden method should be retrieved for. This should
be the first non-trampoline class encountered in the inheritance chain.
:name: The name of the overridden Python method to retrieve.
:return: The Python method by this name from the object or an empty function wrapper.
\endrst */
template <class T>
function get_override(const T *this_ptr, const char *name) {
auto *tinfo = detail::get_type_info(typeid(T));
return tinfo ? detail::get_type_override(this_ptr, tinfo, name) : function();
}
#define PYBIND11_OVERRIDE_IMPL(ret_type, cname, name, ...) \
do { \
pybind11::gil_scoped_acquire gil; \
pybind11::function override \
= pybind11::get_override(static_cast<const cname *>(this), name); \
if (override) { \
auto o = override(__VA_ARGS__); \
if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \
static pybind11::detail::override_caster_t<ret_type> caster; \
return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \
} \
return pybind11::detail::cast_safe<ret_type>(std::move(o)); \
} \
} while (false)
/** \rst
Macro to populate the virtual method in the trampoline class. This macro tries to look up a
method named 'fn' from the Python side, deals with the :ref:`gil` and necessary argument
conversions to call this method and return the appropriate type.
See :ref:`overriding_virtuals` for more information. This macro should be used when the method
name in C is not the same as the method name in Python. For example with `__str__`.
.. code-block:: cpp
std::string toString() override {
PYBIND11_OVERRIDE_NAME(
std::string, // Return type (ret_type)
Animal, // Parent class (cname)
"__str__", // Name of method in Python (name)
toString, // Name of function in C++ (fn)
);
}
\endrst */
#define PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...) \
do { \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
return cname::fn(__VA_ARGS__); \
} while (false)
/** \rst
Macro for pure virtual functions, this function is identical to
:c:macro:`PYBIND11_OVERRIDE_NAME`, except that it throws if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...) \
do { \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
pybind11::pybind11_fail( \
"Tried to call pure virtual function \"" PYBIND11_STRINGIFY(cname) "::" name "\""); \
} while (false)
/** \rst
Macro to populate the virtual method in the trampoline class. This macro tries to look up the
method from the Python side, deals with the :ref:`gil` and necessary argument conversions to
call this method and return the appropriate type. This macro should be used if the method name
in C and in Python are identical.
See :ref:`overriding_virtuals` for more information.
.. code-block:: cpp
class PyAnimal : public Animal {
public:
// Inherit the constructors
using Animal::Animal;
// Trampoline (need one for each virtual function)
std::string go(int n_times) override {
PYBIND11_OVERRIDE_PURE(
std::string, // Return type (ret_type)
Animal, // Parent class (cname)
go, // Name of function in C++ (must match Python name) (fn)
n_times // Argument(s) (...)
);
}
};
\endrst */
#define PYBIND11_OVERRIDE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)
/** \rst
Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE`,
except that it throws if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_PURE_NAME( \
PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)
// Deprecated versions
PYBIND11_DEPRECATED("get_type_overload has been deprecated")
inline function
get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) {
return detail::get_type_override(this_ptr, this_type, name);
}
template <class T>
inline function get_overload(const T *this_ptr, const char *name) {
return get_override(this_ptr, name);
}
#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__)
#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERRIDE_PURE_NAME( \
PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__);
#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_PURE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__);
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|