Spaces:
Running
Running
File size: 65,850 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 |
"""TorchScript.
This module contains functionality to support the JIT's scripting frontend, notably:
- torch.jit.script
This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""
import collections
import copy
import enum
import functools
import inspect
import pickle
import warnings
from typing import Any, Callable, Dict, List, Set, Tuple, Union
import torch
import torch._jit_internal as _jit_internal
from torch._classes import classes
from torch._jit_internal import _qualified_name
from torch.jit._builtins import _register_builtin
from torch.jit._fuser import _graph_for, _script_method_graph_for
from torch.jit._monkeytype_config import (
JitTypeTraceConfig,
JitTypeTraceStore,
monkeytype_trace,
)
from torch.jit._recursive import (
_compile_and_register_class,
infer_methods_to_compile,
ScriptMethodStub,
wrap_cpp_module,
)
from torch.jit._state import (
_enabled,
_set_jit_function_cache,
_set_jit_overload_cache,
_try_get_jit_cached_function,
_try_get_jit_cached_overloads,
)
from torch.jit.frontend import get_default_args, get_jit_class_def, get_jit_def
from torch.nn import Module
from torch.overrides import (
has_torch_function,
has_torch_function_unary,
has_torch_function_variadic,
)
from torch.package import PackageExporter, PackageImporter
from torch.utils import set_module
from ._serialization import validate_map_location
type_trace_db = JitTypeTraceStore() # DB to hold all call traces from MonkeyType
torch._C.ScriptMethod.graph_for = _script_method_graph_for # type: ignore[attr-defined]
torch._C.ScriptFunction.graph_for = _graph_for # type: ignore[attr-defined]
ScriptFunction = torch._C.ScriptFunction
ScriptFunction.__doc__ = """
Functionally equivalent to a :class:`ScriptModule`, but represents a single
function and does not have any attributes or Parameters.
"""
set_module(ScriptFunction, "torch.jit")
# Throws an error if a jit function is pickled.
# Helps to avoid Python crashes for Python versions 3.9.5 + when protocol 0 or 1 is given as an argument.
def _reduce(cls):
raise pickle.PickleError("ScriptFunction cannot be pickled")
ScriptFunction.__reduce__ = _reduce # type: ignore[assignment]
if _enabled:
Attribute = collections.namedtuple("Attribute", ["value", "type"])
else:
def Attribute(value, type): # type: ignore[no-redef]
return value
Attribute.__doc__ = """
This method is a pass-through function that returns `value`, mostly
used to indicate to the TorchScript compiler that the left-hand side
expression is a class instance attribute with type of `type`. Note that
`torch.jit.Attribute` should only be used in `__init__` method of `jit.ScriptModule`
subclasses.
Though TorchScript can infer correct type for most Python expressions, there are some cases where
type inference can be wrong, including:
- Empty containers like `[]` and `{}`, which TorchScript assumes to be container of `Tensor`
- Optional types like `Optional[T]` but assigned a valid value of type `T`, TorchScript would assume
it is type `T` rather than `Optional[T]`
In eager mode, it is simply a pass-through function that returns `value`
without other implications.
Example:
.. testcode::
import torch
from typing import Dict
class AttributeModule(torch.jit.ScriptModule):
def __init__(self):
super().__init__()
self.foo = torch.jit.Attribute(0.1, float)
# we should be able to use self.foo as a float here
assert 0.0 < self.foo
self.names_ages = torch.jit.Attribute({}, Dict[str, int])
self.names_ages["someone"] = 20
assert isinstance(self.names_ages["someone"], int)
m = AttributeModule()
# m will contain two attributes
# 1. foo of type float
# 2. names_ages of type Dict[str, int]
.. testcleanup::
del AttributeModule
del m
Note: it's now preferred to instead use type annotations instead of `torch.jit.Attribute`:
.. testcode::
import torch
from typing import Dict
class AttributeModule(torch.nn.Module):
names: Dict[str, int]
def __init__(self):
super().__init__()
self.names = {}
m = AttributeModule()
.. testcleanup::
del AttributeModule
del m
Args:
value: An initial value to be assigned to attribute.
type: A Python type
Returns:
Returns `value`
"""
def _get_type_trace_db():
# This is a private API. Use of this for external purposes is discouraged.
return type_trace_db
# Gets a function from the name of a method on a type
def _get_function_from_type(cls, name):
return getattr(cls, name, None)
# ScriptClasses must be new-style classes because we construct them using their
# __new__ method.
def _is_new_style_class(cls):
if hasattr(cls, "__class__"):
return "__dict__" in dir(cls) or hasattr(cls, "__slots__")
# These OrderedDictWrapper classes replace the actual OrderedDicts in
# module with versions that get/set properties inside of Module.
# This allows us to reuse most of nn.Module while still storing the
# data in C++.
# Each OrderedDict needs to support:
# x not in view
# x in view
# view[name] = ...
# view.values()
# del view[name]
# view.items()
# view.keys()
# len(view)
class OrderedDictWrapper:
def __init__(self, _c):
self._c = _c
def keys(self):
return [k for k, v in self.items()]
def values(self):
return [v for k, v in self.items()]
def __len__(self):
return len(self.values())
def __delitem__(self, k):
raise RuntimeError("cannot delete methods or parameters of a script module")
def items(self):
return self._c.items()
def __setitem__(self, k, v):
if k not in self:
raise RuntimeError(
f"Can't add a new parameter after ScriptModule construction. Tried to add '{k}"
)
self._c.setattr(k, v)
def __contains__(self, k):
return self._c.contains(k)
def __getitem__(self, k):
if k not in self:
raise KeyError(k)
return self._c.getattr(k)
class OrderedModuleDict(OrderedDictWrapper):
def __init__(self, module, python_dict):
super().__init__(torch._C.ModuleDict(module))
# contains _both_ script modules and non-script python-only modules
# because script modules are subclassed in python and the
# C++ Module class will not hold references to them,
# to ensure that you always get the same python value here
# we store it in the python dict as well
self._python_modules = python_dict
def items(self):
r = self._python_modules.items()
return r
def __contains__(self, k):
return k in self._python_modules
def __setitem__(self, k, v):
# Cases where sub-module can be re-assigned after ScriptModule construction
# 1. If the attr is an module interface type, it's guaranteed that the module is
# not inlined in the graph, so it's safe to swap a new ScriptModule in.
# 2. if the new value if a ScriptModule with the same JIT type, IR won't change
# and it's legit to swap a new module in.
# In these two cases we allow swapping a new scripted module and update the
# corresponding python module dict to keep sync.
# Note: the value to be swapped in has to be ScriptModule instead of nn.Module,
# otherwise it's illegal and we throw error.
if isinstance(v, ScriptModule):
self._c.setattr(k, v)
self._python_modules[k] = v
else:
raise RuntimeError(
"Cannot re-assign modules in a ScriptModule with non-scripted "
f"module, tried to replace existing module '{k}': {v}"
)
def __getitem__(self, k):
return self._python_modules[k]
# For each user-defined class that subclasses ScriptModule, this meta-class:
# (1) finds all the methods annotated with @script_method in a ScriptModule and
# removes them from the class attributes
# (2) puts a wrapper around the class's __init__ method to recursively compile
# all of the script_methods with the module after the original __init__ has
# run. This has to occur after the user-defined __init__ so that submodules and
# parameters are initialized _before_ the script compiler resolve references to
# `self.param` or `self.module`.
class ScriptMeta(type):
def __init__(cls, name, bases, attrs): # noqa: B902
# Aggregate all the ScriptMethods and constants from superclasses
cls._methods: Dict[str, Any] = {}
cls._constants_set = set(getattr(cls, "__constants__", ()))
for base in reversed(bases):
for k, v in getattr(base, "_methods", {}).items():
cls._methods[k] = v
base_constants: Set = getattr(base, "_constants_set", set())
cls._constants_set = cls._constants_set.union(base_constants)
# find all the script methods of the current class
for k, v in sorted(attrs.items()):
if isinstance(v, ScriptMethodStub):
delattr(cls, k)
cls._methods[v.original_method.__name__] = v
if getattr(cls, "_disable_script_meta", False):
# We leave built-in ScriptModule types alone, since this metaclass
# is only for compiling user classes that inherit from
# ScriptModule.
return super().__init__(name, bases, attrs)
original_init = getattr(cls, "__init__", lambda self: None)
@functools.wraps(original_init)
def init_then_script(self, *args, **kwargs):
num_methods = len(cls._methods)
original_init(self, *args, **kwargs)
added_methods_in_init = len(cls._methods) > num_methods
if type(self) == cls:
def make_stubs(module):
cls = type(module)
if hasattr(cls, "_methods"):
return [v for k, v in sorted(cls._methods.items())]
else:
return infer_methods_to_compile(module)
self.__dict__[
"_actual_script_module"
] = torch.jit._recursive.create_script_module(
self, make_stubs, share_types=not added_methods_in_init
)
# Delete the Python attributes that now shadow the ScriptModule
# ones, so that __getattr__ and __setattr__ will properly find
# the scripted versions.
concrete_type = self._actual_script_module._concrete_type
for name in concrete_type.get_attributes():
delattr(self, name)
for name, _ in concrete_type.get_modules():
delattr(self, name)
for name in ("_parameters", "_buffers", "_modules"):
delattr(self, name)
cls.__init__ = init_then_script # type: ignore[misc]
super().__init__(name, bases, attrs)
class _CachedForward:
def __get__(self, obj, cls):
return self.__getattr__("forward") # type: ignore[attr-defined]
class ScriptWarning(Warning):
pass
def script_method(fn):
if not _enabled:
return fn
# NOTE: we need to traverse two frames here because the meta-class frame
# for ScriptModule will be present, as opposed to invoking @script on a
# a function or invoking define() on a CompilationUnit.
# The stack will look like:
#
# 0. createResolutionCallback()
# 1. script_method()
# 2. ScriptModule metaclass frame
# 3. Surrounding scope
#
# createResolutionCallback internally adds 1 to get us to the scope of this
# function (the calling function). Adding 2 gets us to the proper surrounding scope.
_rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=2)
ast = get_jit_def(fn, fn.__name__, self_name="ScriptModule")
return ScriptMethodStub(_rcb, ast, fn)
class ConstMap:
def __init__(self, const_mapping):
self.const_mapping = const_mapping
def __getattr__(self, attr):
return self.const_mapping[attr]
def unpackage_script_module(
importer: PackageImporter, script_module_id: str
) -> torch.nn.Module:
"""
Call by ``torch.package.PackageImporter``'s Pickler's ``persistent_load`` function.
Performs work of loading and returning a ScriptModule from a ``torch.package`` archive.
"""
if not isinstance(importer.zip_reader, torch._C.PyTorchFileReader):
raise RuntimeError(
"Loading ScriptObjects from a PackageImporter created from a "
"directory is not supported. Use a package archive file instead."
)
cu = torch._C.CompilationUnit()
cpp_module = torch._C._import_ir_module_from_package(
cu,
importer.zip_reader,
importer.storage_context,
validate_map_location(importer.last_map_location),
script_module_id,
)
return wrap_cpp_module(cpp_module)
if _enabled:
_magic_methods = [
"__iter__",
"__len__",
"__neg__",
"__mul__",
"__contains__",
"__add__",
"__sub__",
"__pow__",
"__truediv__",
"__mod__",
"__ne__",
"__eq__",
"__lt__",
"__gt__",
"__le__",
"__ge__",
"__and__",
"__or__",
"__xor__",
"__getitem__",
"__setitem__",
"__call__",
"__int__",
"__float__",
"__bool__",
"__str__",
"__enter__",
"__exit__",
]
class RecursiveScriptClass:
"""Wrapper for a TorchScript class instance for use in Python.
An analogue of RecursiveScriptModule for regular objects that are not modules.
This class is a wrapper around a torch._C.ScriptObject that represents an instance
of a TorchScript class and allows it to be used in Python.
Attributes:
_c [torch._C.ScriptObject]: The C++ object to which attribute lookups and method
calls are forwarded.
_props [Dict[str, property]]: A dictionary of properties fetched from self._c and
exposed on this wrppaer.
"""
def __init__(self, cpp_class):
super().__init__()
self.__dict__["_initializing"] = True
self._c = cpp_class
# Add wrapped object's properties to this class instance.
self._props = {
prop.name: property(prop.getter, prop.setter)
for prop in self._c._properties()
}
self.__dict__["_initializing"] = False
def __getattr__(self, attr):
if self.__dict__.get("_initializing"):
return super().__getattr__(attr) # type: ignore[misc]
if attr in self._props:
return self._props[attr].fget() # type: ignore[call-arg, misc]
return getattr(self._c, attr)
def __setattr__(self, attr, value):
if self.__dict__.get("_initializing"):
return super().__setattr__(attr, value)
if attr in self._props:
return self._props[attr].fset(value) # type: ignore[call-arg, misc]
setattr(self._c, attr, value)
# Delegate calls to magic methods like __len__ to the C++ module backing the
# RecursiveScriptClass.
def forward_magic_method(self, method_name, *args, **kwargs):
if not self._c._has_method(method_name):
raise TypeError()
self_method = self.__getattr__(method_name)
return self_method(*args, **kwargs)
def __getstate__(self):
raise pickle.PickleError("ScriptClasses cannot be pickled")
def __iadd__(self, other):
if self._c._has_method("__iadd__"):
return self.forward_magic_method("__iadd__", other)
else:
return self.forward_magic_method("__add__", other)
for method_name in _magic_methods:
def method_template(self, *args, **kwargs):
return self.forward_magic_method(method_name, *args, **kwargs)
setattr(RecursiveScriptClass, method_name, method_template)
# this is a Python 'non-data descriptor' that causes the first access
# to ScriptModule's forward to look up the forward method and stash
# it in the objects dict. Due to the standard rules for attribute lookup,
# subsequent lookups will just directly return the previously looked up method.
# This is necessary because nn.Module defines forward as a method. If we
# did nothing, __getattr__ would not be called. Instead we'd get nn.Module.forward
# which always throws an exception.
class ScriptModule(Module, metaclass=ScriptMeta):
r"""Wrapper for C++ torch::jit::Module with methods, attributes, and parameters.
A wrapper around C++ ``torch::jit::Module``. ``ScriptModule``\s
contain methods, attributes, parameters, and
constants. These can be accessed the same way as on a normal ``nn.Module``.
"""
__jit_unused_properties__ = [
"code",
"code_with_constants",
"graph",
"inlined_graph",
"original_name",
]
def __init__(self):
super().__init__()
forward: Callable[..., Any] = _CachedForward() # type: ignore[assignment]
def __getattr__(self, attr):
if "_actual_script_module" not in self.__dict__:
return super().__getattr__(attr)
return getattr(self._actual_script_module, attr)
def __setattr__(self, attr, value):
if "_actual_script_module" not in self.__dict__:
# Unwrap torch.jit.Attribute into a regular setattr + record
# the provided type in __annotations__.
#
# This ensures that if we use the attr again in `__init__`, it
# will look like the actual value, not an instance of Attribute.
if isinstance(value, Attribute):
# NB: Ensure that we set __annotations__ on the specific
# class in question, and not on a superclass (which would
# be wrong wrong wrong!).
# See also https://github.com/pytorch/pytorch/issues/39463
if "__annotations__" not in self.__class__.__dict__:
self.__class__.__annotations__ = {}
self.__annotations__[attr] = value.type
value = value.value
return super().__setattr__(attr, value)
setattr(self._actual_script_module, attr, value)
def define(self, src):
if "_actual_script_module" in self.__dict__:
# If we have completed initialization, just defer to the
# backing RecursiveScriptModule to eagerly compile the provided
# source.
return self._actual_script_module.define(src)
# Otherwise, we are still in the object's __init__.
# In that case, add `src` as a stub to be compiled.
#
# We use frames_up=1 to get to the proper surrounding scope. The stack
# will look like:
# 0. createResolutionCallback
# 1. define()
# 2. surrounding scope.
#
# createResolutionCallback internally adds 1 to get us to our frame, then
# we add 1 to get to the proper surrounding scope.
rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1)
ast = torch._C._parse_source_def(src)
self._methods[ast.name().name] = ScriptMethodStub(rcb, ast, None)
def _replicate_for_data_parallel(self):
return self._actual_script_module._replicate_for_data_parallel()
def __reduce_package__(self, exporter: PackageExporter):
"""Save a ScriptModule inside of a ``torch.package`` archive.
Called by ``torch.package.PackageExporter``'s Pickler's ``persistent_id`` when
saving TorchScript objects. Performs act of saving a ScriptModule inside of
a ``torch.package`` archive.
Returns method to load the ScriptModule from a ``torch.package.PackageImporter``'s
Pickler's ``persistent_load`` function.
"""
script_module_id = exporter.get_unique_id()
exporter.script_module_serializer.serialize(self._c, int(script_module_id))
return (unpackage_script_module, (script_module_id,))
class RecursiveScriptModule(ScriptModule):
# XXX: RecursiveScriptModule inherits from ScriptModule for the sole
# reason that it retains the existing isinstance(ScriptModule)
# behavior.
r"""Retain the existing isinstance(ScriptModule) behavior.
The core data structure in TorchScript is the ``ScriptModule``. It is an
analogue of torch's ``nn.Module`` and represents an entire model as a tree of
submodules. Like normal modules, each individual module in a ``ScriptModule`` can
have submodules, parameters, and methods. In ``nn.Module``\s methods are implemented
as Python functions, but in ``ScriptModule``\s methods are implemented as
TorchScript functions, a statically-typed subset of Python that contains all
of PyTorch's built-in Tensor operations. This difference allows your
``ScriptModule``\s code to run without the need for a Python interpreter.
``ScriptModule``\s should not be created manually, instead use
either :func:`tracing <torch.jit.trace>` or :func:`scripting <torch.jit.script>`.
Tracing and scripting can be applied incrementally and :ref:`composed as necessary <Types>`.
* Tracing records the tensor operations as executed with a set of example inputs and uses these
operations to construct a computation graph. You can use the full dynamic behavior of Python with tracing,
but values other than Tensors and control flow aren't captured in the graph.
* Scripting inspects the Python code of the model
and compiles it to TorchScript. Scripting allows the use of many `types`_ of values and supports dynamic control flow.
Many, but not all features of Python are supported by the compiler, so changes to the source code may be necessary.
"""
_disable_script_meta = True
def __init__(self, cpp_module):
self.__dict__["_initializing"] = True
self._c = cpp_module
super().__init__()
# Delete the 'training' attribute set up by `Module.__init__`. It
# will get set on the underlying cpp module, so we delete it here
# to avoid this version shadowing the cpp module version.
delattr(self, "training")
@staticmethod
def _construct(cpp_module, init_fn):
"""
Construct a RecursiveScriptModule that's ready for use.
PyTorch code should use this to construct a RecursiveScriptModule instead
of instead of calling `__init__` directly, as it makes sure the
object is properly finalized (and in the future, we may take
control of how the RecursiveScriptModule instance is created).
Args:
cpp_module: The C++ Module that will hold the actual state of
this RecursiveScriptModule instance.
init_fn: Lambda that initializes the RecursiveScriptModule passed to it.
"""
script_module = RecursiveScriptModule(cpp_module)
init_fn(script_module)
# Finalize the ScriptModule: replace the nn.Module state with our
# custom implementations and flip the _initializing bit.
RecursiveScriptModule._finalize_scriptmodule(script_module)
return script_module
@staticmethod
def _finalize_scriptmodule(script_module):
script_module._parameters = OrderedDictWrapper(
torch._C.ParameterDict(script_module._c)
)
script_module._buffers = OrderedDictWrapper(
torch._C.BufferDict(script_module._c)
)
script_module._modules = OrderedModuleDict(
script_module._c, script_module._modules
)
script_module._initializing = False
def _reconstruct(self, cpp_module):
"""
Re-construct an instance of RecursiveScriptModule using an instance of a C++ module.
Args:
cpp_module: The C++ module that this RecursiveScriptModule will be rebuilt around.
"""
self.__init__(cpp_module) # type: ignore[misc]
# Copy the concrete type from the C++ module to this ScriptModule.
self._concrete_type = torch._C.ConcreteModuleType.from_jit_type(
self._c._type()
)
# Copy submodules from the C++ module to this ScriptModule.
modules = {}
for name, cpp_module in torch._C.ModuleDict(self._c).items():
modules[name] = wrap_cpp_module(cpp_module)
self._modules = OrderedModuleDict(self._c, modules) # type: ignore[assignment]
# Copy parameters and buffers.
self._parameters = OrderedDictWrapper(torch._C.ParameterDict(self._c)) # type: ignore[assignment]
self._buffers = OrderedDictWrapper(torch._C.BufferDict(self._c)) # type: ignore[assignment]
# Get rid of the functions from the old C++ module.
self.__dict__ = {
k: v
for k, v in self.__dict__.items()
if not isinstance(v, torch._C.ScriptMethod)
}
self.__dict__["_initializing"] = False
@property
def graph(self):
r"""Return a string representation of the internal graph for the ``forward`` method.
See :ref:`interpreting-graphs` for details.
"""
return self._c._get_method("forward").graph
@property
def inlined_graph(self):
r"""
Return a string representation of the internal graph for the ``forward`` method.
This graph will be preprocessed to inline all function and method calls.
See :ref:`interpreting-graphs` for details.
"""
return self.forward.inlined_graph # type: ignore[attr-defined]
@property
def code(self):
r"""
Return a pretty-printed representation (as valid Python syntax) of the internal graph for the ``forward`` method.
See :ref:`inspecting-code` for details.
"""
return self.forward.code # type: ignore[attr-defined]
@property
def code_with_constants(self):
r"""Return a tuple.
Returns a tuple of:
[0] a pretty-printed representation (as valid Python syntax) of
the internal graph for the ``forward`` method. See `code`.
[1] a ConstMap following the CONSTANT.cN format of the output in [0].
The indices in the [0] output are keys to the underlying constant's values.
See :ref:`inspecting-code` for details.
"""
r = self.forward.code_with_constants # type: ignore[attr-defined]
return (r[0], ConstMap(r[1]))
def save(self, f, **kwargs):
r"""Save with a file-like object.
save(f, _extra_files={})
See :func:`torch.jit.save <torch.jit.save>` which accepts a file-like object.
This function, torch.save(), converts the object to a string, treating it as a path.
DO NOT confuse these two functions when it comes to the 'f' parameter functionality.
"""
return self._c.save(str(f), **kwargs)
def _save_for_lite_interpreter(self, *args, **kwargs):
r"""Add (or update) the bytecode session to the script model.
_save_for_lite_interpreter(f)
The updated model is used
in lite interpreter for mobile applications.
Args:
f: a string containing a file name.
_extra_files: Map from filename to contents which will be stored as part of 'f'.
"""
return self._c._save_for_mobile(*args, **kwargs)
def _save_to_buffer_for_lite_interpreter(self, *args, **kwargs):
return self._c._save_to_buffer_for_mobile(*args, **kwargs)
def save_to_buffer(self, *args, **kwargs):
return self._c.save_to_buffer(*args, **kwargs)
def get_debug_state(self, *args, **kwargs):
return self._c.get_debug_state()
def extra_repr(self):
return f"original_name={self.original_name}"
def graph_for(self, *args, **kwargs):
return self.forward.graph_for(self, *args, **kwargs) # type: ignore[attr-defined]
@property
def original_name(self):
if type(self) == str(self._c._type().name()):
return ""
return str(self._c._type().name())
def define(self, src):
# We use frames_up=1 to get to the proper surrounding scope. The stack
# will look like:
# 0. createResolutionCallback
# 1. define()
# 2. surrounding scope.
#
# createResolutionCallback internally adds 1 to get us to our frame, then
# we add 1 to get to the proper surrounding scope.
rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1)
self._c._define(self._concrete_type, src, rcb)
def __getattr__(self, attr):
if "_initializing" not in self.__dict__:
raise RuntimeError(
"ScriptModule has not been initialized, did you forget to call super's init?"
)
if self._initializing:
return super().__getattr__(attr)
# _modules check is before hasattr since modules are included as attributes in _c,
# but we want to get the python wrapper from _modules instead of the raw _c object.
if attr in self._modules:
return self._modules[attr]
elif self._c.hasattr(attr):
return self._c.getattr(attr)
elif self._c._has_method(attr):
script_method = self._c._get_method(attr)
# cache method so future calls do not go through __getattr__
# to improve invocation performance
self.__dict__[attr] = script_method
return script_method
return super().__getattr__(attr)
def __setattr__(self, attr, value):
if self._initializing:
return super().__setattr__(attr, value)
if attr in self._modules:
self._modules[attr] = value
elif self._c.hasattr(attr):
self._c.setattr(attr, value)
elif (
hasattr(self, "_concrete_type")
and attr in self._concrete_type.get_constants().keys()
):
# TODO: we don't have _concrete_type set after load(), and in general we lose constant information.
# We should encode constants as class type attributes (or something) so it persists across save/load.
raise AttributeError(
f"Cannot mutate TorchScript constant value: '{attr}'. Value: '{value}'"
)
else:
# We allow setting Python attributes on the ScriptModule, for
# when people want to stash some convenience info on it.
# TODO: it's possible that the following is confusing:
# s = torch.jit.script(...)
# s.python_attr = ...
# s.save() <--- this doesn't have `python_attr`
# It's fairly trivial to save enough info to warn in this case.
return super().__setattr__(attr, value)
def __copy__(self):
return torch.jit._recursive.wrap_cpp_module(copy.copy(self._c))
def __deepcopy__(self, memo):
return torch.jit._recursive.wrap_cpp_module(copy.deepcopy(self._c, memo))
# Python magic methods do method lookups on an object's class type, instead of looking up
# the method defines on the class instance. In order to continue to expose the magic methods
# of builtin-containers (ModuleList, Sequential, ModuleDict) to Python, we
# define magic methods here as a shim to the correct attribute.
def forward_magic_method(self, method_name, *args, **kwargs):
self_method = getattr(self, method_name)
if getattr(self_method, "__func__", None) == getattr(
RecursiveScriptModule, method_name
):
raise NotImplementedError()
return self_method(*args, **kwargs)
def __iter__(self):
return self.forward_magic_method("__iter__")
def __getitem__(self, idx):
return self.forward_magic_method("__getitem__", idx)
def __len__(self):
return self.forward_magic_method("__len__")
def __contains__(self, key):
return self.forward_magic_method("__contains__", key)
# dir is defined by the base nn.Module, so instead of throwing if
# it is not overridden, we call into the nn.Module __dir__ method
def __dir__(self):
self_method = self.__dir__
if (
self_method.__func__ # type: ignore[attr-defined]
== _get_function_from_type(RecursiveScriptModule, "__dir__")
):
return super().__dir__()
return self_method()
# to resolve bool(value), Python looks if __bool__ is defined then __iter__
# is defined then returns true for classes. Since __iter__() on this
# class throws if it isn't overridden, we define __bool__ to preserve default behavior
def __bool__(self):
self_method = self.__bool__
if (
self_method.__func__ # type: ignore[attr-defined]
== _get_function_from_type(RecursiveScriptModule, "__bool__")
):
return True
return self_method()
def _replicate_for_data_parallel(self):
# we have to initialize ScriptModule properly so that
# it works with pybind11
def init_fn(script_module):
# Don't do anything here, we'll initialize the ScriptModule below
return
return RecursiveScriptModule._construct(
self._c._replicate_for_data_parallel(), init_fn
)
# Need to copy all RecursiveScriptModule methods to ScriptModule.
#
# This is because `super().foo()` does not use
# `__getattr__` to look up `foo`. So we need to make each method available on
# the ScriptModule manually.
for name, item in RecursiveScriptModule.__dict__.items():
if not callable(item) and not isinstance(item, property):
continue
if name.startswith("__") or hasattr(ScriptModule, name):
continue
# We can copy over the implementation wholesale because besides the
# `super()` thing above, ScriptModule behaves exactly like
# RecursiveScriptModule
setattr(ScriptModule, name, item)
def _get_methods(cls):
import inspect
# In Python 3 unbound methods are functions, but in Python 2 they are methods
return inspect.getmembers(
cls, predicate=lambda x: inspect.isfunction(x) or inspect.ismethod(x)
)
_compiled_methods_allowlist = {
"forward",
"register_buffer",
"register_parameter",
"register_module",
"add_module",
"_apply",
"apply",
"cuda",
"cpu",
"to",
"type",
"float",
"double",
"half",
"state_dict",
"_save_to_state_dict",
"load_state_dict",
"_load_from_state_dict",
"_named_members",
"parameters",
"named_parameters",
"buffers",
"named_buffers",
"children",
"named_children",
"modules",
"named_modules",
"zero_grad",
"share_memory",
"_get_name",
"extra_repr",
"_slow_forward",
"_tracing_name",
"eval",
"train",
"get_extra_state",
"set_extra_state",
}
def _make_fail(name):
def fail(self, *args, **kwargs):
raise RuntimeError(name + " is not supported on ScriptModules")
return fail
for name, method in _get_methods(torch.nn.Module):
if name.startswith("__") or name.endswith("_call_impl"):
continue
if (
name not in RecursiveScriptModule.__dict__
and name not in _compiled_methods_allowlist
):
setattr(RecursiveScriptModule, method.__name__, _make_fail(name))
else:
# TODO MAKE SURE THAT DISABLING WORKS
class RecursiveScriptClass: # type: ignore[no-redef]
pass
class ScriptModule(torch.nn.Module): # type: ignore[no-redef]
def __init__(self, arg=None):
super().__init__()
class RecursiveScriptModule(ScriptModule): # type: ignore[no-redef]
def __init__(self, arg=None):
super().__init__()
def call_prepare_scriptable_func_impl(obj, memo):
if not isinstance(obj, torch.nn.Module):
return obj
obj_id = id(obj)
# If obj_id is in memo, obj has already been prepared or is being
# prepared in another call up the stack.
if obj_id in memo:
return memo[id(obj)]
obj = obj.__prepare_scriptable__() if hasattr(obj, "__prepare_scriptable__") else obj # type: ignore[operator]
# Record obj in memo to avoid infinite recursion in the case of cycles in the module
# hierarchy when recursing below.
memo[obj_id] = obj
new_obj_dict = {}
for name, sub_module in obj.__dict__.items():
if name == "_modules":
for k, v in sub_module.items():
sub_module[k] = call_prepare_scriptable_func_impl(v, memo)
new_obj_dict[name] = sub_module
elif isinstance(sub_module, torch.nn.Module) and not isinstance(
sub_module, ScriptModule
):
new_obj_dict[name] = call_prepare_scriptable_func_impl(sub_module, memo)
else:
new_obj_dict[name] = sub_module
for k, v in new_obj_dict.items():
obj.__dict__[name] = v
return obj
def call_prepare_scriptable_func(obj):
memo: Dict[int, torch.nn.Module] = {}
return call_prepare_scriptable_func_impl(obj, memo)
def create_script_dict(obj):
"""
Create a ``torch._C.ScriptDict`` instance with the data from ``obj``.
Args:
obj (dict): The Python dictionary that is used to initialize the ``ScriptDict``
returned by this function.
Returns:
An instance of ``torch._C.ScriptDict`` that has the same data as ``obj``
and can be passed between Python and TorchScript with reference semantics and
zero copy overhead.
"""
return torch._C.ScriptDict(obj) # type: ignore[attr-defined]
def create_script_list(obj, type_hint=None):
"""
Create a ``torch._C.ScriptList`` instance with the data from ``obj``.
Args:
obj (dict): The Python list that is used to initialize the ``ScriptList``
returned by this function.
Returns:
An instance of ``torch._C.ScriptList`` that has the same data as ``obj``
and can be passed between Python and TorchScript with reference semantics and
zero copy overhead.
"""
return torch._C.ScriptList(obj) # type: ignore[attr-defined]
def script(
obj,
optimize=None,
_frames_up=0,
_rcb=None,
example_inputs: Union[List[Tuple], Dict[Callable, List[Tuple]], None] = None,
):
r"""Script the function.
Scripting a function or ``nn.Module`` will inspect the source code, compile
it as TorchScript code using the TorchScript compiler, and return a :class:`ScriptModule` or
:class:`ScriptFunction`. TorchScript itself is a subset of the Python language, so not all
features in Python work, but we provide enough functionality to compute on
tensors and do control-dependent operations. For a complete guide, see the
:ref:`language-reference`.
Scripting a dictionary or list copies the data inside it into a TorchScript instance than can be
subsequently passed by reference between Python and TorchScript with zero copy overhead.
``torch.jit.script`` can be used as a function for modules, functions, dictionaries and lists
and as a decorator ``@torch.jit.script`` for :ref:`torchscript-classes` and functions.
Args:
obj (Callable, class, or nn.Module): The ``nn.Module``, function, class type,
dictionary, or list to compile.
example_inputs (Union[List[Tuple], Dict[Callable, List[Tuple]], None]): Provide example inputs
to annotate the arguments for a function or ``nn.Module``.
Returns:
If ``obj`` is ``nn.Module``, ``script`` returns
a :class:`ScriptModule` object. The returned :class:`ScriptModule` will
have the same set of sub-modules and parameters as the
original ``nn.Module``. If ``obj`` is a standalone function,
a :class:`ScriptFunction` will be returned. If ``obj`` is a ``dict``, then
``script`` returns an instance of `torch._C.ScriptDict`. If ``obj`` is a ``list``,
then ``script`` returns an instance of `torch._C.ScriptList`.
**Scripting a function**
The ``@torch.jit.script`` decorator will construct a :class:`ScriptFunction`
by compiling the body of the function.
Example (scripting a function):
.. testcode::
import torch
@torch.jit.script
def foo(x, y):
if x.max() > y.max():
r = x
else:
r = y
return r
print(type(foo)) # torch.jit.ScriptFunction
# See the compiled graph as Python code
print(foo.code)
# Call the function using the TorchScript interpreter
foo(torch.ones(2, 2), torch.ones(2, 2))
.. testoutput::
:hide:
...
****Scripting a function using example_inputs**
Example inputs can be used to annotate a function arguments.
Example (annotating a function before scripting):
.. testcode::
import torch
def test_sum(a, b):
return a + b
# Annotate the arguments to be int
scripted_fn = torch.jit.script(test_sum, example_inputs=[(3, 4)])
print(type(scripted_fn)) # torch.jit.ScriptFunction
# See the compiled graph as Python code
print(scripted_fn.code)
# Call the function using the TorchScript interpreter
scripted_fn(20, 100)
.. testoutput::
:hide:
...
**Scripting an nn.Module**
Scripting an ``nn.Module`` by default will compile the ``forward`` method and recursively
compile any methods, submodules, and functions called by ``forward``. If a ``nn.Module`` only uses
features supported in TorchScript, no changes to the original module code should be necessary. ``script``
will construct :class:`ScriptModule` that has copies of the attributes, parameters, and methods of
the original module.
Example (scripting a simple module with a Parameter):
.. testcode::
import torch
class MyModule(torch.nn.Module):
def __init__(self, N, M):
super().__init__()
# This parameter will be copied to the new ScriptModule
self.weight = torch.nn.Parameter(torch.rand(N, M))
# When this submodule is used, it will be compiled
self.linear = torch.nn.Linear(N, M)
def forward(self, input):
output = self.weight.mv(input)
# This calls the `forward` method of the `nn.Linear` module, which will
# cause the `self.linear` submodule to be compiled to a `ScriptModule` here
output = self.linear(output)
return output
scripted_module = torch.jit.script(MyModule(2, 3))
Example (scripting a module with traced submodules):
.. testcode::
import torch
import torch.nn as nn
import torch.nn.functional as F
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# torch.jit.trace produces a ScriptModule's conv1 and conv2
self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16))
self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16))
def forward(self, input):
input = F.relu(self.conv1(input))
input = F.relu(self.conv2(input))
return input
scripted_module = torch.jit.script(MyModule())
To compile a method other than ``forward`` (and recursively compile anything it calls), add
the :func:`@torch.jit.export <torch.jit.export>` decorator to the method. To opt out of compilation
use :func:`@torch.jit.ignore <torch.jit.ignore>` or :func:`@torch.jit.unused <torch.jit.unused>`.
Example (an exported and ignored method in a module)::
import torch
import torch.nn as nn
class MyModule(nn.Module):
def __init__(self):
super().__init__()
@torch.jit.export
def some_entry_point(self, input):
return input + 10
@torch.jit.ignore
def python_only_fn(self, input):
# This function won't be compiled, so any
# Python APIs can be used
import pdb
pdb.set_trace()
def forward(self, input):
if self.training:
self.python_only_fn(input)
return input * 99
scripted_module = torch.jit.script(MyModule())
print(scripted_module.some_entry_point(torch.randn(2, 2)))
print(scripted_module(torch.randn(2, 2)))
Example ( Annotating forward of nn.Module using example_inputs)::
import torch
import torch.nn as nn
from typing import NamedTuple
class MyModule(NamedTuple):
result: List[int]
class TestNNModule(torch.nn.Module):
def forward(self, a) -> MyModule:
result = MyModule(result=a)
return result
pdt_model = TestNNModule()
# Runs the pdt_model in eager model with the inputs provided and annotates the arguments of forward
scripted_model = torch.jit.script(pdt_model, example_inputs={pdt_model: [([10, 20, ], ), ], })
# Run the scripted_model with actual inputs
print(scripted_model([20]))
"""
global type_trace_db
if not _enabled:
return obj
if optimize is not None:
warnings.warn(
"`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead"
)
# No-op for modules, functions, class instances that are already scripted
if isinstance(obj, RecursiveScriptClass):
return obj
if isinstance(obj, ScriptModule):
return obj
if isinstance(obj, ScriptFunction):
return obj
if example_inputs:
# If MonkeyType is installed, enable profile directed type annotation
# Check if example_inputs are defined and generate call traces
# for the method by running eager mode version of the method with
# the provide example inputs. This logs all the traces in type_trace_db
type_trace_db = JitTypeTraceStore()
if monkeytype_trace:
monkeytype_config = JitTypeTraceConfig(type_trace_db)
with monkeytype_trace(monkeytype_config):
if isinstance(example_inputs, Dict):
# If the obj is an nn.Module or a class, then each method is
# executed with the arguments provided in the example inputs.
# example inputs here will be of type Dict(class.method, (arguments))
# This is used to infer type annotations for those methods
# which are not called directly under the hood of monkeytype.
for module, example_input in example_inputs.items():
for example in example_input:
module(*example)
elif isinstance(example_inputs, List):
for examples in example_inputs:
obj(*examples)
else:
raise ValueError(
"Error: Unable to infer types. Please format the inputs to type `List[Tuple]`"
" or `Dict[Callable, List[Tuple]]` to be run with MonkeyType."
)
else:
warnings.warn(
"Warning: monkeytype is not installed. Please install https://github.com/Instagram/MonkeyType "
"to enable Profile-Directed Typing in TorchScript. Refer to "
"https://github.com/Instagram/MonkeyType/blob/master/README.rst to install MonkeyType. "
)
if isinstance(obj, torch.nn.Module):
obj = call_prepare_scriptable_func(obj)
return torch.jit._recursive.create_script_module(
obj, torch.jit._recursive.infer_methods_to_compile
)
else:
obj = obj.__prepare_scriptable__() if hasattr(obj, "__prepare_scriptable__") else obj # type: ignore[operator]
if isinstance(obj, dict):
return create_script_dict(obj)
if isinstance(obj, list):
return create_script_list(obj)
if inspect.isclass(obj):
qualified_name = _qualified_name(obj)
# If this type is a `nn.Module` subclass, they probably meant to pass
# an instance instead of a Module
if issubclass(obj, torch.nn.Module):
raise RuntimeError(
f"Type '{obj}' cannot be compiled since it inherits from nn.Module, pass an instance instead"
)
# Enums are automatically usable in TorchScript, explicitly scripting
# is not necessary, but not harmful either.
if issubclass(obj, enum.Enum):
return obj
if not _is_new_style_class(obj):
raise RuntimeError(
"TorchScript classes must be new-style classes. "
"Please inherit from 'object'."
)
if len(obj.mro()) > 2:
raise RuntimeError(
"TorchScript classes does not support inheritance yet. "
"Please directly inherit from 'object'."
)
if _rcb is None:
_rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1)
_compile_and_register_class(obj, _rcb, qualified_name)
return obj
elif inspect.isfunction(obj) or inspect.ismethod(obj):
qualified_name = _qualified_name(obj)
# this is a decorated fn, and we need to the underlying fn and its rcb
if hasattr(obj, "__script_if_tracing_wrapper"):
obj = obj.__original_fn # type: ignore[union-attr]
_rcb = _jit_internal.createResolutionCallbackFromClosure(obj)
# some functions are explicitly marked as not supported in script mode
if hasattr(obj, "__script_unsupported"):
raise RuntimeError("TorchScript error: " + obj.__script_unsupported)
_check_directly_compile_overloaded(obj)
maybe_already_compiled_fn = _try_get_jit_cached_function(obj)
if maybe_already_compiled_fn:
return maybe_already_compiled_fn
ast = get_jit_def(obj, obj.__name__)
if _rcb is None:
_rcb = _jit_internal.createResolutionCallbackFromClosure(obj)
fn = torch._C._jit_script_compile(
qualified_name, ast, _rcb, get_default_args(obj)
)
# Forward docstrings
fn.__doc__ = obj.__doc__
# Allow torch.compile() to inline
fn._torchdynamo_inline = obj # type: ignore[attr-defined]
_set_jit_function_cache(obj, fn)
return fn
else:
return torch.jit._recursive.create_script_class(obj)
# overloads are registered in _jit_internal and compiled here so that _overload
# can be used in nn/functional.py without an import cycle
def _check_overload_defaults(impl_defaults, overload_defaults, loc):
for name, overload_value in overload_defaults.items():
if name not in impl_defaults or impl_defaults[name] != overload_value:
raise torch.jit.frontend.FrontendError(
loc,
"Default parameters on overloads do not affect the runtime so they "
"must equal to the default parameter on the implementation function. Found on "
f"parameter {name}",
)
def _compile_function_with_overload(overload_fn, qual_name, impl_fn):
overload_decl = get_jit_def(overload_fn, overload_fn.__name__).decl()
overload_signature = torch.jit.annotations.get_signature(
overload_fn, None, None, inspect.ismethod(overload_fn)
)
impl_ast = get_jit_def(impl_fn, impl_fn.__name__)
overload_defaults = get_default_args(overload_fn)
implementation_defaults = get_default_args(impl_fn)
_rcb = _jit_internal.createResolutionCallbackFromClosure(impl_fn)
_check_overload_defaults(
implementation_defaults, overload_defaults, overload_decl.range()
)
fn = torch._C._jit_script_compile_overload(
qual_name,
overload_decl,
impl_ast,
_rcb,
implementation_defaults,
overload_signature,
)
return fn
def _get_overloads(obj):
# check for cached compiled fns
existing_compiled_fns = _try_get_jit_cached_overloads(obj)
qual_name = _qualified_name(obj)
uncompiled_overloads = _jit_internal._get_fn_overloads(qual_name)
if uncompiled_overloads is None:
return existing_compiled_fns
if obj in uncompiled_overloads:
raise RuntimeError(
_jit_internal.get_overload_no_implementation_error_message("function", obj)
)
compiled_fns = []
for overload_fn in uncompiled_overloads:
compiled_fns.append(
_compile_function_with_overload(overload_fn, qual_name, obj)
)
if existing_compiled_fns:
compiled_fns = existing_compiled_fns + compiled_fns
# cache compilation, remove information stored to do compilation
_set_jit_overload_cache(obj, compiled_fns)
_jit_internal._clear_fn_overloads(qual_name)
return compiled_fns
def _check_directly_compile_overloaded(obj):
qual_name = _qualified_name(obj)
if _jit_internal._get_fn_overloads(qual_name) or _try_get_jit_cached_overloads(obj):
raise RuntimeError(
f"Function {qual_name} cannot be directly compiled because it"
" is overloaded. It must be used in a context of a function"
" where its inputs can determine which overload to call."
)
def interface(obj):
r"""Decorate to annotate classes or modules of different types.
This decorator can be used to define an interface that can be used to annotate
classes or modules of different types. This can be used for to annotate a submodule
or attribute class that could have different types that implement the same
interface, or which could be swapped at runtime; or to store a list of modules or
classes of varying types.
It is sometimes used to implement "Callables" - functions or modules that implement
an interface but whose implementations differ and which can be swapped out.
Example:
.. testcode::
import torch
from typing import List
@torch.jit.interface
class InterfaceType:
def run(self, x: torch.Tensor) -> torch.Tensor:
pass
# implements InterfaceType
@torch.jit.script
class Impl1:
def run(self, x: torch.Tensor) -> torch.Tensor:
return x.relu()
class Impl2(torch.nn.Module):
def __init__(self):
super().__init__()
self.val = torch.rand(())
@torch.jit.export
def run(self, x: torch.Tensor) -> torch.Tensor:
return x + self.val
def user_fn(impls: List[InterfaceType], idx: int, val: torch.Tensor) -> torch.Tensor:
return impls[idx].run(val)
user_fn_jit = torch.jit.script(user_fn)
impls = [Impl1(), torch.jit.script(Impl2())]
val = torch.rand(4, 4)
user_fn_jit(impls, 0, val)
user_fn_jit(impls, 1, val)
"""
if not inspect.isclass(obj):
raise RuntimeError("interface must be applied to a class")
if not _is_new_style_class(obj):
raise RuntimeError("TorchScript interfaces must inherit from 'object'")
# Expected MRO is:
# User module
# torch.nn.modules.module.Module
# object
is_module_interface = issubclass(obj, torch.nn.Module) and len(obj.mro()) == 3
if not is_module_interface and len(obj.mro()) > 2:
raise RuntimeError(
"TorchScript interface does not support inheritance yet. "
"Please directly inherit from 'object' or 'nn.Module'."
)
qualified_name = _qualified_name(obj)
rcb = _jit_internal.createResolutionCallbackFromFrame(1)
# if this type is a `nn.Module` subclass, generate a module interface type
# instead of a class interface type; a module interface type only compiles
# the user provided methods as part of the interface
ast = get_jit_class_def(obj, obj.__name__)
mangled_classname = torch._C._jit_script_interface_compile(
qualified_name, ast, rcb, is_module_interface
)
obj.__torch_script_interface__ = mangled_classname
return obj
def _recursive_compile_class(obj, loc):
_qual_name = _qualified_name(obj)
# We're starting a new compilation, so update the error call stack in
# case it fails
error_stack = torch._C.CallStack(_qual_name, loc)
rcb = _jit_internal.createResolutionCallbackForClassMethods(obj)
return _compile_and_register_class(obj, rcb, _qual_name)
CompilationUnit = torch._C.CompilationUnit
set_module(CompilationUnit, "torch.jit")
def pad(s: str, padding: int, offset: int = 0, char: str = " "):
if padding >= len(s):
padding -= len(s)
return "".join([char for _ in range(padding + offset)]) + s
class _ScriptProfileColumn:
def __init__(self, header: str, alignment: int = 4, offset: int = 0):
self.header = header
self.alignment = alignment
self.offset = offset
self.rows: Dict[int, Any] = {}
def add_row(self, lineno: int, value: Any):
self.rows[lineno] = value
def materialize(self):
max_length = len(self.header)
rows: List[Tuple[int, str]] = []
for key, value in self.rows.items():
cell = str(value)
rows.append((key, cell))
max_length = max(len(cell), max_length)
if self.alignment > 0:
padding = max_length + self.alignment
padding -= padding % self.alignment
else:
padding = 0
rows = [(key, pad(cell, padding, self.offset)) for key, cell in rows]
return pad(self.header, padding, self.offset), rows
class _ScriptProfileTable:
def __init__(self, cols: List[_ScriptProfileColumn], source_range: List[int]):
self.cols = cols
self.source_range = source_range
def dump_string(self):
outputs: List[str] = []
cells: List[Tuple[str, Dict[int, str]]] = []
header_buffer = ""
for col in self.cols:
header, rows = col.materialize()
header_buffer += header
cells.append((header, dict(rows)))
outputs.append(header_buffer)
outputs.append(pad("", len(header_buffer), 0, "="))
for line in self.source_range:
row_buffer = ""
for header, rows in cells:
cell = rows.get(line)
if cell is None:
row_buffer += pad("", len(header))
else:
row_buffer += cell
outputs.append(row_buffer)
return "\n".join(outputs)
class _ScriptProfile:
def __init__(self):
self.profile = classes.profiling._ScriptProfile()
def enable(self):
self.profile.enable()
def disable(self):
self.profile.disable()
def dump_string(self) -> str:
outputs: List[str] = []
for source_stats in self.profile._dump_stats():
source_ref = source_stats.source()
source_lines = source_ref.text().splitlines()
dedent = min([len(line) - len(line.lstrip(" ")) for line in source_lines])
source_lines = [line[dedent:] for line in source_lines]
start_line = source_ref.starting_lineno()
end_line = start_line + len(source_lines)
source_range = range(start_line, end_line)
lineno = _ScriptProfileColumn("Line #")
hits = _ScriptProfileColumn("Hits")
time_ns = _ScriptProfileColumn("Time (ns)")
line_contents = _ScriptProfileColumn("Line Contents", 0, 1)
stats = source_stats.line_map()
for line in source_range:
lineno.add_row(line, line)
line_contents.add_row(line, source_lines[line - start_line])
stat = stats.get(line)
if stat is not None:
hits.add_row(line, stat.count())
time_ns.add_row(line, stat.duration_ns())
table = _ScriptProfileTable(
[lineno, hits, time_ns, line_contents], list(source_range)
)
outputs.append(table.dump_string())
return "\n\n".join(outputs)
def dump(self):
print(self.dump_string())
def _unwrap_optional(x):
assert x is not None, "Unwrapping null optional"
return x
_register_builtin(_unwrap_optional, "aten::_unwrap_optional")
_register_builtin(_jit_internal.is_scripting, "aten::is_scripting")
_register_builtin(has_torch_function, "aten::has_torch_function")
_register_builtin(has_torch_function_unary, "aten::has_torch_function")
_register_builtin(has_torch_function_variadic, "aten::has_torch_function")
|