File size: 9,465 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""Serialization.



This module contains functionality for serializing TorchScript modules, notably:

    * torch.jit.save

    * torch.jit.load



This is not intended to be imported directly; please use the exposed

functionalities in `torch.jit`.

"""
import os

import torch
from torch.jit._recursive import wrap_cpp_module
from torch.serialization import validate_cuda_device


def save(m, f, _extra_files=None):
    r"""

    Save an offline version of this module for use in a separate process.



    The saved module serializes all of the methods, submodules, parameters, and

    attributes of this module. It can be loaded into the C++ API using

    ``torch::jit::load(filename)`` or into the Python API with

    :func:`torch.jit.load <torch.jit.load>`.



    To be able to save a module, it must not make any calls to native Python

    functions.  This means that all submodules must be subclasses of

    :class:`ScriptModule` as well.



    .. DANGER::

        All modules, no matter their device, are always loaded onto the CPU

        during loading.  This is different from :func:`torch.load`'s semantics

        and may change in the future.



    Args:

        m: A :class:`ScriptModule` to save.

        f: A file-like object (has to implement write and flush) or a string

           containing a file name.

        _extra_files: Map from filename to contents which will be stored as part of `f`.



    .. note::

        torch.jit.save attempts to preserve the behavior of some operators

        across versions. For example, dividing two integer tensors in

        PyTorch 1.5 performed floor division, and if the module

        containing that code is saved in PyTorch 1.5 and loaded in PyTorch 1.6

        its division behavior will be preserved. The same module saved in

        PyTorch 1.6 will fail to load in PyTorch 1.5, however, since the

        behavior of division changed in 1.6, and 1.5 does not know how to

        replicate the 1.6 behavior.



    Example:

    .. testcode::



        import torch

        import io



        class MyModule(torch.nn.Module):

            def forward(self, x):

                return x + 10



        m = torch.jit.script(MyModule())



        # Save to file

        torch.jit.save(m, 'scriptmodule.pt')

        # This line is equivalent to the previous

        m.save("scriptmodule.pt")



        # Save to io.BytesIO buffer

        buffer = io.BytesIO()

        torch.jit.save(m, buffer)



        # Save with extra files

        extra_files = {'foo.txt': b'bar'}

        torch.jit.save(m, 'scriptmodule.pt', _extra_files=extra_files)

    """
    if _extra_files is None:
        _extra_files = {}
    if isinstance(f, (str, os.PathLike)):
        m.save(f, _extra_files=_extra_files)
    else:
        ret = m.save_to_buffer(_extra_files=_extra_files)
        f.write(ret)


def load(f, map_location=None, _extra_files=None, _restore_shapes=False):
    r"""

    Load a :class:`ScriptModule` or :class:`ScriptFunction` previously saved with :func:`torch.jit.save <torch.jit.save>`.



    All previously saved modules, no matter their device, are first loaded onto CPU,

    and then are moved to the devices they were saved from. If this fails (e.g.

    because the run time system doesn't have certain devices), an exception is

    raised.



    Args:

        f: a file-like object (has to implement read, readline, tell, and seek),

            or a string containing a file name

        map_location (string or torch.device): A simplified version of

            ``map_location`` in `torch.jit.save` used to dynamically remap

            storages to an alternative set of devices.

        _extra_files (dictionary of filename to content): The extra

            filenames given in the map would be loaded and their content

            would be stored in the provided map.

        _restore_shapes (bool): Whether or not to retrace the module on load using stored inputs



    Returns:

        A :class:`ScriptModule` object.



    Example:

    .. testcode::



        import torch

        import io



        torch.jit.load('scriptmodule.pt')



        # Load ScriptModule from io.BytesIO object

        with open('scriptmodule.pt', 'rb') as f:

            buffer = io.BytesIO(f.read())



        # Load all tensors to the original device

        torch.jit.load(buffer)



        # Load all tensors onto CPU, using a device

        buffer.seek(0)

        torch.jit.load(buffer, map_location=torch.device('cpu'))



        # Load all tensors onto CPU, using a string

        buffer.seek(0)

        torch.jit.load(buffer, map_location='cpu')



        # Load with extra files.

        extra_files = {'foo.txt': ''}  # values will be replaced with data

        torch.jit.load('scriptmodule.pt', _extra_files=extra_files)

        print(extra_files['foo.txt'])



    .. testoutput::

        :hide:



        ...



    .. testcleanup::



        import os

        os.remove("scriptmodule.pt")

    """
    if isinstance(f, (str, os.PathLike)):
        if not os.path.exists(f):  # type: ignore[type-var]
            raise ValueError(f"The provided filename {f} does not exist")  # type: ignore[str-bytes-safe]
        if os.path.isdir(f):
            raise ValueError(f"The provided filename {f} is a directory")  # type: ignore[str-bytes-safe]

    map_location = validate_map_location(map_location)
    if _extra_files is None:
        _extra_files = {}

    cu = torch._C.CompilationUnit()
    if isinstance(f, (str, os.PathLike)):
        cpp_module = torch._C.import_ir_module(cu, os.fspath(f), map_location, _extra_files, _restore_shapes)  # type: ignore[call-arg]
    else:
        cpp_module = torch._C.import_ir_module_from_buffer(
            cu, f.read(), map_location, _extra_files, _restore_shapes
        )  # type: ignore[call-arg]

    # TODO: Pretty sure this approach loses ConstSequential status and such
    return wrap_cpp_module(cpp_module)


def validate_map_location(map_location=None):
    if isinstance(map_location, str):
        map_location = torch.device(map_location)
    elif not (map_location is None or isinstance(map_location, torch.device)):
        raise ValueError(
            "map_location should be either None, string or torch.device, "
            "but got type: " + str(type(map_location))
        )

    if str(map_location).startswith("cuda"):
        validate_cuda_device(map_location)

    return map_location


def jit_module_from_flatbuffer(f):
    if isinstance(f, (str, os.PathLike)):
        f = os.fspath(f)
        return wrap_cpp_module(torch._C._load_jit_module_from_file(f))
    else:
        return wrap_cpp_module(torch._C._load_jit_module_from_bytes(f.read()))


def save_jit_module_to_flatbuffer(m, f, _extra_files=None):
    r"""

    Save an offline version of this module for use in a separate process.



    The saved module serializes all of the methods, submodules, parameters, and

    attributes of this module. It can be loaded into the C++ API using

    ``torch::jit::load_jit_module_from_file(filename)`` or into the Python API with

    :func:`torch.jit.jit_module_from_flatbuffer<torch.jit.jit_module_from_flatbuffer>`.



    To be able to save a module, it must not make any calls to native Python

    functions.  This means that all submodules must be subclasses of

    :class:`ScriptModule` as well.



    .. DANGER::

        All modules, no matter their device, are always loaded onto the CPU

        during loading.  This is different from :func:`torch.load`'s semantics

        and may change in the future.



    Args:

        m: A :class:`ScriptModule` to save.

        f: A string for file path





    Example:

    .. testcode::



        import torch

        import io



        class MyModule(torch.nn.Module):

            def forward(self, x):

                return x + 10



        m = torch.jit.script(MyModule())



        # Save to file

        torch.jit.save_jit_module_to_flatbuffer(m, 'scriptmodule.ff')

    """
    extra_files = _extra_files
    if extra_files is None:
        extra_files = {}

    if isinstance(f, (str, os.PathLike)):
        f = os.fspath(f)
        torch._C._save_jit_module(m._c, f, extra_files)
    else:
        s = torch._C._save_jit_module_to_bytes(m._c, extra_files)
        f.write(s)


def get_flatbuffer_module_info(path_or_file):
    r"""Get some information regarding a model file in flatbuffer format.



    Args:

        path_or_file: Either str, Path or file like object (BytesIO OK).

            If it's str or Path, we will read the file referenced by that

            path as Bytes.



    Returns:

        A dict with metadata on what that file contains, currently looks like

        this:

        {

            'bytecode_version': 4,  # int

            'operator_version': 4,  # int

            'function_names': {

                '__torch__.___torch_mangle_0.Foo.forward'}, # set

            'type_names': set(),  # set

            'opname_to_num_args': {'aten::linear': 3} # Dict[str, int]

        }

    """
    if isinstance(path_or_file, (str, os.PathLike)):
        with open(path_or_file, "rb") as f:
            all_bytes = f.read()
    else:
        all_bytes = path_or_file.read()
    return torch._C._get_module_info_from_flatbuffer(all_bytes)