Spaces:
Running
Running
File size: 46,245 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 |
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
number = Union[int, float]
# flake8: noqa
###
# There are generated files that depend on this file
# To re-generate, please run from the root of the repo:
# python torchgen/shape_functions/gen_jit_shape_functions.py
# How to test:
# After regenerating files, compile PyTorch.
# Then run: ./build/bin/test_jit --gtest_filter=TestShapeGraphLinting.Basic
# If you have enabled opinfo testing for the op, also run:
# python test/test_ops_jit.py TestJitCPU.test_variant_consistency_jit_[FAILING_OP]_cpu_float32
# to reproduce errors from opinfo tests.
# Example PR: https://github.com/pytorch/pytorch/pull/80860/files
####
import torch
def broadcast(a: List[int], b: List[int]):
dimsA = len(a)
dimsB = len(b)
ndim = max(dimsA, dimsB)
expandedSizes: List[int] = []
for i in range(ndim):
offset = ndim - 1 - i
dimA = dimsA - 1 - offset
dimB = dimsB - 1 - offset
sizeA = a[dimA] if (dimA >= 0) else 1
sizeB = b[dimB] if (dimB >= 0) else 1
if sizeA != sizeB and sizeA != 1 and sizeB != 1:
# TODO: only assertion error is bound in C++ compilation right now
raise AssertionError(
f"The size of tensor a {sizeA} must match the size of tensor b ({sizeB}) at non-singleton dimension {i}"
)
expandedSizes.append(sizeB if sizeA == 1 else sizeA)
return expandedSizes
def broadcast_three(a: List[int], b: List[int], c: List[int]):
return broadcast(broadcast(a, b), c)
def broadcast_one_three(a: List[int], b: Any, c: List[int]):
return broadcast(a, c)
def adaptive_avg_pool2d(self: List[int], out: List[int]):
assert len(out) == 2
assert len(self) == 3 or len(self) == 4
for i in range(1, len(self)):
assert self[i] != 0
shape: List[int] = []
for i in range(0, len(self) - 2):
shape.append(self[i])
for elem in out:
shape.append(elem)
return shape
def _copy(self: List[int]):
out: List[int] = []
for elem in self:
out.append(elem)
return out
def unary(self: List[int]):
return _copy(self)
def broadcast_inplace(a: List[int], b: List[int]):
dimsA = len(a)
dimsB = len(b)
if dimsB > dimsA:
raise AssertionError(
f"The dims of tensor b ({dimsB}) must be less than or equal tothe dims of tensor a ({dimsA}) "
)
for dimA in range(dimsA):
dimB = dimsB - dimsA + dimA
sizeA = a[dimA]
sizeB = b[dimB] if (dimB >= 0) else 1
if sizeA != sizeB and sizeB != 1:
# TODO: only assertion error is bound in C++ compilation right now
raise AssertionError(
"The size of tensor a {} must match the size of tensor b ("
"{}) at non-singleton dimension {}".format(sizeA, sizeB, dimA)
)
return _copy(a)
def expand(self: List[int], sizes: List[int]):
assert len(sizes) >= len(self)
ndim = len(sizes)
tensor_dim = len(self)
if ndim == 0:
return _copy(sizes)
out: List[int] = []
for i in range(ndim):
offset = ndim - 1 - i
dim = tensor_dim - 1 - offset
size = self[dim] if dim >= 0 else 1
targetSize = sizes[i]
if targetSize == -1:
assert dim >= 0
targetSize = size
if size != targetSize:
assert size == 1
size = targetSize
out.append(size)
return out
def expand_one_unused(self: List[int], sizes: List[int], inp0: Any):
return expand(self, sizes)
def infer_size_impl(shape: List[int], numel: int) -> List[int]:
newsize = 1
infer_dim: Optional[int] = None
for dim in range(len(shape)):
if shape[dim] == -1:
if infer_dim is not None:
raise AssertionError("only one dimension can be inferred")
infer_dim = dim
elif shape[dim] >= 0:
newsize *= shape[dim]
else:
raise AssertionError("invalid shape dimensions")
if not (
numel == newsize
or (infer_dim is not None and newsize > 0 and numel % newsize == 0)
):
raise AssertionError("invalid shape")
out = _copy(shape)
if infer_dim is not None:
out[infer_dim] = numel // newsize
return out
def numel(sizes: List[int]):
numel = 1
for elem in sizes:
numel *= elem
return numel
def view(self: List[int], sizes: List[int]):
return infer_size_impl(sizes, numel(self))
def view_one_unused(self: List[int], sizes: List[int], *, implicit: bool = False):
return view(self, sizes)
def sum_mean_dim(
self: List[int], opt_dims: Optional[List[int]], keep_dim: bool, dt: Any
):
out: List[int] = []
if opt_dims is None or len(opt_dims) == 0:
dims: List[int] = list(range(len(self)))
else:
dims = opt_dims
for idx in range(len(self)):
is_mean_dim: bool = False
for reduce_dim in dims:
if idx == maybe_wrap_dim(reduce_dim, len(self)):
is_mean_dim = True
if is_mean_dim:
if keep_dim:
out.append(1)
else:
out.append(self[idx])
return out
def max_dim(self: List[int], dim: int, keep_dim: bool):
out = sum_mean_dim(self, [dim], keep_dim, None)
return out, out
# note: python already rounds down towards negative infinity on integer division, special arithmetic not needed
def div_rtn(x: int, y: int):
return x // y
def pooling_output_shape_pad_lr(
inputSize: int,
kernelSize: int,
pad_l: int,
pad_r: int,
stride: int,
dilation: int,
ceil_mode: bool,
):
outputSize = (
div_rtn(
inputSize
+ pad_l
+ pad_r
- dilation * (kernelSize - 1)
- 1
+ (stride - 1 if ceil_mode else 0),
stride,
)
+ 1
)
if ceil_mode:
if (outputSize - 1) * stride >= inputSize + pad_l:
outputSize = outputSize - 1
return outputSize
def pooling_output_shape(
inputSize: int,
kernelSize: int,
pad_l: int,
stride: int,
dilation: int,
ceil_mode: bool,
):
assert stride != 0, "stride should not be zeero"
return pooling_output_shape_pad_lr(
inputSize, kernelSize, pad_l, pad_l, stride, dilation, ceil_mode
)
def pool2d_shape_check(
input: List[int],
kH: int,
kW: int,
dH: int,
dW: int,
padH: int,
padW: int,
dilationH: int,
dilationW: int,
nInputPlane: int,
inputHeight: int,
inputWidth: int,
outputHeight: int,
outputWidth: int,
):
ndim = len(input)
nOutputPlane = nInputPlane
assert kW > 0 and kH > 0
assert dW > 0 and dH > 0
assert dilationH > 0 and dilationW > 0
valid_dims = input[1] != 0 and input[2] != 0
assert (
ndim == 3
and input[0] != 0
and valid_dims
or (ndim == 4 and valid_dims and input[3] != 0)
)
assert kW // 2 >= padW and kH // 2 >= padH
assert outputWidth >= 1 and outputHeight >= 1
def max_pool2d(
input: List[int],
kernel_size: List[int],
stride: List[int],
padding: List[int],
dilation: List[int],
ceil_mode: bool,
):
assert (
len(kernel_size) == 1 or len(kernel_size) == 2
), "max_pool2d: kernel_size must either be a single int, or a tuple of two ints"
kH = kernel_size[0]
kW = kH if len(kernel_size) == 1 else kernel_size[1]
assert (
len(stride) == 0 or len(stride) == 1 or len(stride) == 2
), "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints"
dH = kH if len(stride) == 0 else stride[0]
if len(stride) == 0:
dW = kW
elif len(stride) == 1:
dW = dH
else:
dW = stride[1]
assert (
len(padding) == 1 or len(padding) == 2
), "max_pool2d: padding must either be a single int, or a tuple of two ints"
padH = padding[0]
padW = padH if len(padding) == 1 else padding[1]
assert (
len(dilation) == 1 or len(dilation) == 2
), "max_pool2d: dilation must be either a single int, or a tuple of two ints"
dilationH = dilation[0]
dilationW = dilationH if len(dilation) == 1 else dilation[1]
assert len(input) == 3 or len(input) == 4
nbatch = input[-4] if len(input) == 4 else 1
nInputPlane = input[-3]
inputHeight = input[-2]
inputWidth = input[-1]
outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode)
outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode)
pool2d_shape_check(
input,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
)
if len(input) == 3:
return [nInputPlane, outputHeight, outputWidth]
else:
return [nbatch, nInputPlane, outputHeight, outputWidth]
def max_pool2d_with_indices(
input: List[int],
kernel_size: List[int],
stride: List[int],
padding: List[int],
dilation: List[int],
ceil_mode: bool,
):
out = max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
return (out, out)
def upsample_nearest2d(
input: List[int],
output_size: Optional[List[int]],
scale_factors: Optional[List[float]],
):
out: List[int] = []
out.append(input[0])
out.append(input[1])
if scale_factors is None and output_size is None:
assert 0, "Either output_size or scale_factors must be presented"
if output_size is not None:
assert (
scale_factors is None
), "Must specify exactly one of output_size and scale_factors"
assert len(output_size) == 2
out.append(output_size[0])
out.append(output_size[1])
if scale_factors is not None:
assert (
output_size is None
), "Must specify exactly one of output_size and scale_factors"
assert len(scale_factors) == 2
out.append(int(input[2] * scale_factors[0]))
out.append(int(input[3] * scale_factors[1]))
return out
def mm(self: List[int], mat2: List[int]):
assert len(self) == 2, "self must be a matrix"
assert len(mat2) == 2, "mat2 must be a matrix"
assert self[1] == mat2[0]
return [self[0], mat2[1]]
def dot(self: List[int], tensor: List[int]):
assert len(self) == 1 and len(tensor) == 1
assert self[0] == tensor[0]
out: List[int] = []
return out
def mv(self: List[int], vec: List[int]):
assert len(self) == 2 and len(vec) == 1
assert self[1] == vec[0]
# TODO: return self
return [self[0]]
def unsqueeze(li: List[int], dim: int):
dim = maybe_wrap_dim(dim, len(li) + 1)
out = _copy(li)
out.insert(dim, 1)
return out
def squeeze_nodim(li: List[int]):
out: List[int] = []
for i in range(len(li)):
if li[i] != 1:
out.append(li[i])
return out
def squeeze(li: List[int], dim: int):
out: List[int] = []
wrapped_dim = maybe_wrap_dim(dim, len(li))
for i in range(len(li)):
if i == wrapped_dim:
if li[i] != 1:
out.append(li[i])
else:
out.append(li[i])
return out
def squeeze_dims(li: List[int], dims: List[int]):
if len(dims) == 0:
return li
wrapped_dims = _copy(dims)
for i in range(len(dims)):
wrapped_dims[i] = maybe_wrap_dim(wrapped_dims[i], len(li))
result: List[int] = []
for i in range(len(li)):
if li[i] == 1:
if i not in wrapped_dims:
result.append(li[i])
else:
result.append(li[i])
return result
def index_select(self: List[int], dim: int, index: List[int]):
dim = maybe_wrap_dim(dim, len(self))
numel = multiply_integers(index)
assert len(index) <= 1
assert dim == 0 or dim < len(self)
result_size: List[int] = []
for i in range(len(self)):
if dim == i:
result_size.append(numel)
else:
result_size.append(self[i])
return result_size
def embedding(
weight: List[int],
indices: List[int],
padding_idx: int = -1,
scale_grad_by_freq: bool = False,
sparse: bool = False,
):
assert len(weight) == 2
if len(indices) == 1:
return index_select(weight, 0, indices)
size = _copy(indices)
size.append(weight[1])
return size
def max_int():
return 9223372036854775807
def slice(
self: List[int], dim: int, start: Optional[int], end: Optional[int], step: int
):
ndim = len(self)
assert ndim != 0
dim = maybe_wrap_dim(dim, ndim)
start_val = start if start is not None else 0
end_val = end if end is not None else max_int()
assert step > 0
if start_val == max_int():
start_val = 0
if start_val < 0:
start_val += self[dim]
if end_val < 0:
end_val += self[dim]
if start_val < 0:
start_val = 0
elif start_val > self[dim]:
start_val = self[dim]
if end_val < start_val:
end_val = start_val
elif end_val >= self[dim]:
end_val = self[dim]
slice_len = end_val - start_val
out = _copy(self)
out[dim] = (slice_len + step - 1) // step
return out
def check_cat_no_zero_dim(tensors: List[List[int]]):
for tensor in tensors:
assert len(tensor) > 0
def legacy_cat_wrap_dim(dim: int, tensor_sizes: List[List[int]]):
out_dim: Optional[int] = None
for size in tensor_sizes:
if not (len(size) == 1 and size[0] == 0):
if out_dim is None:
out_dim = maybe_wrap_dim(dim, len(size))
if out_dim is None:
out_dim = dim
return out_dim
def should_skip(tensor: List[int]):
return numel(tensor) == 0 and len(tensor) == 1
def check_cat_shape_except_dim(
first: List[int], second: List[int], dimension: int, index: int
):
first_dims = len(first)
second_dims = len(second)
assert first_dims == second_dims, "Tensors must have same number of dimensions"
for dim in range(0, first_dims):
if dim != dimension:
assert (
first[dim] == second[dim]
), "Sizes of tensors must match except in dimension"
def cat(tensors: List[List[int]], dim: int):
check_cat_no_zero_dim(tensors)
dim = legacy_cat_wrap_dim(dim, tensors)
assert len(tensors) > 0
not_skipped_tensor: Optional[List[int]] = None
for tensor in tensors:
if not should_skip(tensor):
not_skipped_tensor = tensor
if not_skipped_tensor is None:
return [0]
cat_dim_size = 0
for i in range(len(tensors)):
tensor = tensors[i]
if not should_skip(tensor):
check_cat_shape_except_dim(not_skipped_tensor, tensor, dim, i)
cat_dim_size = cat_dim_size + tensor[dim]
result_size = _copy(not_skipped_tensor)
result_size[dim] = cat_dim_size
return result_size
def stack(tensors: List[List[int]], dim: int):
unsqueezed_tensors: List[List[int]] = []
for tensor in tensors:
unsqueezed = unsqueeze(tensor, dim)
unsqueezed_tensors.append(unsqueezed)
return cat(unsqueezed_tensors, dim)
def select(self: List[int], dim: int, index: int):
ndim = len(self)
assert ndim != 0
dim = maybe_wrap_dim(dim, ndim)
size = self[dim]
assert not (index < -size or index >= size)
if index < 0:
index += size
out: List[int] = []
for i in range(ndim):
if i != dim:
out.append(self[i])
return out
def matmul(tensor1: List[int], tensor2: List[int]):
dim_tensor1 = len(tensor1)
dim_tensor2 = len(tensor2)
if dim_tensor1 == 1 and dim_tensor2 == 1:
return dot(tensor1, tensor2)
elif dim_tensor1 == 2 and dim_tensor2 == 1:
return mv(tensor1, tensor2)
elif dim_tensor1 == 1 and dim_tensor2 == 2:
return squeeze(mm(unsqueeze(tensor1, 0), tensor2), 0)
elif dim_tensor1 == 2 and dim_tensor2 == 2:
return mm(tensor1, tensor2)
elif dim_tensor1 >= 1 and dim_tensor2 >= 1:
# We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list);
# we track m1 vs m2 separately even though they must match for nicer error messages
n = tensor1[-2] if dim_tensor1 > 1 else 1
m1 = tensor1[-1]
batch_tensor1: List[int] = []
# TODO: handling of slice
for i in range(dim_tensor1 - 2):
batch_tensor1.append(tensor1[i])
m2 = tensor2[-1] if dim_tensor2 > 1 else 1
p = tensor2[-1]
batch_tensor2: List[int] = []
# TODO: handling of slice
for i in range(dim_tensor2 - 2):
batch_tensor2.append(tensor2[i])
# expand the batch portion (i.e. cut off matrix dimensions and expand rest)
expand_batch_portion = broadcast(batch_tensor1, batch_tensor2)
# todo: copy ?
output_shape = expand_batch_portion
if dim_tensor1 > 1:
output_shape.append(n)
if dim_tensor2 > 1:
output_shape.append(p)
return output_shape
else:
assert False, "both arguments to matmul need to be at least 1D"
def t(self: List[int]):
assert len(self) <= 2
self_len = len(self)
if self_len == 0:
out: List[int] = []
return out
elif self_len == 1:
return [self[0]]
else:
return [self[1], self[0]]
def transpose(self: List[int], dim0: int, dim1: int):
ndims = len(self)
dim0 = maybe_wrap_dim(dim0, ndims)
dim1 = maybe_wrap_dim(dim1, ndims)
if dim0 == dim1:
return _copy(self)
out: List[int] = []
for i in range(ndims):
if i == dim0:
out.append(self[dim1])
elif i == dim1:
out.append(self[dim0])
else:
out.append(self[i])
return out
def linear(input: List[int], weight: List[int], bias: Optional[List[int]]):
out = matmul(input, t(weight))
if bias is not None:
assert broadcast(bias, out) == out
return out
def addmm(self: List[int], mat1: List[int], mat2: List[int], beta: Any, alpha: Any):
return broadcast(self, mm(mat1, mat2))
def check_non_negative(array: List[int]) -> bool:
# TODO: look into rewriting with early return and getting loop unrolling to fire
non_negative = False
for val in array:
if val < 0:
non_negative = True
return non_negative
def check_shape_forward(
input: List[int],
weight_sizes: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
groups: int,
):
k = len(input)
weight_dim = len(weight_sizes)
# TODO: assertions could be expanded with the error messages
assert not check_non_negative(padding)
assert not check_non_negative(stride)
assert weight_dim == k
assert weight_sizes[0] >= groups
assert (weight_sizes[0] % groups) == 0
# only handling not transposed
assert input[1] == weight_sizes[1] * groups
assert bias is None or (len(bias) == 1 and bias[0] == weight_sizes[0])
for i in range(2, k):
assert (input[i] + 2 * padding[i - 2]) >= (
dilation[i - 2] * (weight_sizes[i] - 1) + 1
)
# this is not handling transposed convolution yet
def conv_output_size(
input_size: List[int],
weight_size: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
groups: int,
):
check_shape_forward(
input_size, weight_size, bias, stride, padding, dilation, groups
)
has_dilation = len(dilation) > 0
dim = len(input_size)
output_size: List[int] = []
input_batch_size_dim = 0
weight_output_channels_dim = 0
output_size.append(input_size[input_batch_size_dim])
output_size.append(weight_size[weight_output_channels_dim])
for d in range(2, dim):
dilation_ = dilation[d - 2] if has_dilation else 1
kernel = dilation_ * (weight_size[d] - 1) + 1
output_size.append(
(input_size[d] + (2 * padding[d - 2]) - kernel) // stride[d - 2] + 1
)
return output_size
def conv1d(
input: List[int],
weight: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
groups: int,
):
assert len(weight) == 3
assert len(input) == 3
return conv_output_size(input, weight, bias, stride, padding, dilation, groups)
def conv2d(
input: List[int],
weight: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
groups: int,
):
assert len(weight) == 4
assert len(input) == 4
return conv_output_size(input, weight, bias, stride, padding, dilation, groups)
def conv_backwards(
grad_output: List[int],
input: List[int],
weight: List[int],
biases: Optional[List[int]],
):
# Bias gradient is always generated regardess of if biases is supplied
return _copy(input), _copy(weight), [grad_output[1]]
def conv_transpose2d_input(
input: List[int],
weight: List[int],
bias: Optional[List[int]] = None,
stride: Optional[List[int]] = None,
padding: Optional[List[int]] = None,
output_padding: Optional[List[int]] = None,
groups: int = 1,
dilation: Optional[List[int]] = None,
) -> List[int]:
if stride is None:
stride = [1, 1]
if padding is None:
padding = [0, 0]
if output_padding is None:
output_padding = [0, 0]
if dilation is None:
dilation = [1, 1]
has_dilation = len(dilation) > 0
dim = len(input)
output_size: List[int] = []
input_batch_size_dim = 0
weight_output_channels_dim = 1
output_size.append(input[input_batch_size_dim])
output_size.append(weight[weight_output_channels_dim] * groups)
for d in range(2, dim):
dilation_ = dilation[d - 2] if has_dilation else 1
kernel = dilation_ * (weight[d] - 1)
output_size.append(
(input[d] - 1) * stride[d - 2]
- 2 * padding[d - 2]
+ kernel
+ output_padding[d - 2]
+ 1
)
return output_size
def conv_forwards(
input: List[int],
weight: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
transposed: bool,
output_padding: List[int],
groups: int,
) -> List[int]:
has_dilation = len(dilation) > 0
has_output_padding = len(output_padding) > 0
dim = len(input)
output_size: List[int] = []
input_batch_size_dim = 0
weight_output_channels_dim = 1 if transposed else 0
output_size.append(input[input_batch_size_dim])
if transposed:
output_size.append(weight[weight_output_channels_dim] * groups)
else:
output_size.append(weight[weight_output_channels_dim])
for d in range(2, dim):
dilation_ = dilation[d - 2] if has_dilation else 1
output_padding_ = output_padding[d - 2] if has_output_padding else 0
if transposed:
kernel = dilation_ * (weight[d] - 1)
output_size.append(
(input[d] - 1) * stride[d - 2]
- 2 * padding[d - 2]
+ kernel
+ output_padding_
+ 1
)
else:
kernel = dilation_ * (weight[d] - 1) + 1
output_size.append(
(input[d] + (2 * padding[d - 2]) - kernel) // stride[d - 2] + 1
)
return output_size
def _conv_forwards(
input: List[int],
weight: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
transposed: bool,
output_padding: List[int],
groups: int,
benchmark: bool,
deterministic: bool,
cudnn_enabled: bool,
allow_tf32: bool,
) -> List[int]:
return conv_forwards(
input,
weight,
bias,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
)
def batch_norm(
input: List[int],
weight: Optional[List[int]],
bias: Optional[List[int]],
running_mean: Optional[List[int]],
running_var: Optional[List[int]],
training: bool,
momentum: float,
eps: float,
cudnn_enabled: bool,
):
out: List[int] = []
for elem in input:
out.append(elem)
return out
def conv3d(
input: List[int],
weight: List[int],
bias: Optional[List[int]],
stride: List[int],
padding: List[int],
dilation: List[int],
groups: int,
):
assert len(weight) == 5
assert len(input) == 5
return conv_output_size(input, weight, bias, stride, padding, dilation, groups)
def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True):
if dim_post_expr <= 0:
assert wrap_scalar
dim_post_expr = 1
min = -dim_post_expr
max = dim_post_expr - 1
assert not (dim < min or dim > max)
if dim < 0:
dim += dim_post_expr
return dim
def zero_dim_tensor(input: Any):
out: List[int] = []
return out
def multiply_integers(li: List[int]):
out = 1
for elem in li:
out = out * elem
return out
def arange_end(end: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any):
assert end >= 0
return [int(math.ceil(end))]
def arange_start(
start: number, end: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any
):
assert end >= 0
assert end >= start
return [int(math.ceil(end - start))]
def arange_start_step(
start: number, end: number, step: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any
):
assert step != 0
if step < 0:
assert start >= end
else:
assert end >= start
return [int(math.ceil((end - start) / step))]
def permute(input: List[int], dims: List[int]):
assert len(input) == len(dims)
ndim = len(dims)
seen_dims: List[int] = []
newSizes: List[int] = []
for i in range(ndim):
dim = maybe_wrap_dim(dims[i], ndim)
seen_dims.append(dim)
newSizes.append(input[dim])
for i in range(1, ndim):
for j in range(i):
assert seen_dims[i] != seen_dims[j]
return newSizes
def movedim(self: List[int], source: List[int], destination: List[int]) -> List[int]:
self_dim = len(self)
if self_dim <= 1:
return self
normalized_src: List[int] = []
normalized_dst: List[int] = []
for i in range(len(source)):
normalized_src.append(maybe_wrap_dim(source[i], self_dim))
normalized_dst.append(maybe_wrap_dim(destination[i], self_dim))
order = [-1 for i in range(self_dim)]
src_dims = [i for i in range(self_dim)]
dst_dims = [i for i in range(self_dim)]
for i in range(len(source)):
order[normalized_dst[i]] = normalized_src[i]
src_dims[normalized_src[i]] = -1
dst_dims[normalized_dst[i]] = -1
source_dims: List[int] = []
destination_dims: List[int] = []
for ele in src_dims:
if ele != -1:
source_dims.append(ele)
for ele in dst_dims:
if ele != -1:
destination_dims.append(ele)
rest_dim = self_dim - len(source)
for i in range(rest_dim):
order[destination_dims[i]] = source_dims[i]
return permute(self, order)
def flatten(input: List[int], start_dim: int, end_dim: int):
start_dim = maybe_wrap_dim(start_dim, len(input))
end_dim = maybe_wrap_dim(end_dim, len(input))
assert start_dim <= end_dim
if len(input) == 0:
return [1]
if start_dim == end_dim:
# TODO: return self
out: List[int] = []
for elem in input:
out.append(elem)
return out
slice_numel = 1
for i in range(start_dim, end_dim + 1):
slice_numel *= input[i]
# TODO: use slicing when slice optimization has landed
# slice_numel = multiply_integers(input[start_dim:end_dim - start_dim + 1])
shape: List[int] = []
for i in range(start_dim):
shape.append(input[i])
shape.append(slice_numel)
for i in range(end_dim + 1, len(input)):
shape.append(input[i])
return shape
def nonzero_lower_bound(input: List[int]):
return [0, len(input)]
def nonzero_upper_bound(input: List[int]):
return [numel(input), len(input)]
def _reduce_along_dim(self: List[int], dim: int, keepdim: bool):
dim = maybe_wrap_dim(dim, len(self))
out: List[int] = []
for i, self_dim in enumerate(self):
if i == dim:
if keepdim:
out.append(1)
else:
out.append(self_dim)
return out
def argmax(
self: List[int], dim: Optional[int] = None, keepdim: bool = False
) -> List[int]:
if dim is None:
return []
return _reduce_along_dim(self, dim, keepdim)
def bmm(self: List[int], mat2: List[int]) -> List[int]:
assert len(self) == 3, "bmm only supports 3D tensors"
assert len(mat2) == 3, "bmm only supports 3D tensors"
assert self[0] == mat2[0], "mismatching batch dimension"
assert self[2] == mat2[1], "mismatching contracting dimension"
return [self[0], self[1], mat2[2]]
def _shape_as_tensor(self: List[int]) -> List[int]:
return [len(self)]
def topk(self: List[int], k: int, dim: int = -1) -> Tuple[List[int], List[int]]:
if len(self) == 0:
result: List[int] = []
else:
assert (
k <= self[dim]
), f"k ({k}) is too big for dimension {dim} of size {self[dim]}"
result = _copy(self)
result[dim] = k
return result, result
def nll_loss_forward(
self: List[int], target: List[int], weight: Optional[List[int]], reduction: int
) -> Tuple[List[int], List[int]]:
# This is taken shamelessly from the meta function in LossNLL.cpp
self_dim = len(self)
target_dim = len(target)
assert 0 < self_dim <= 2
assert target_dim <= 1
no_batch_dim = self_dim == 1 and target_dim == 0
assert no_batch_dim or (self[0] == target[0])
n_classes = self[-1]
scalar_shape: List[int] = []
assert weight is None or (len(weight) == 1 and weight[0] == n_classes)
if reduction == 0 and self_dim == 2:
reduction_shape = [self[0]]
else:
reduction_shape = scalar_shape
return reduction_shape, scalar_shape
def native_layer_norm(
input: List[int], normalized_shape: List[int]
) -> Tuple[List[int], List[int], List[int]]:
reduction_shape: List[int] = []
num_unreduced_dimensions = len(input) - len(normalized_shape)
assert num_unreduced_dimensions >= 0
for i in range(num_unreduced_dimensions):
reduction_shape.append(input[i])
for i in range(num_unreduced_dimensions, len(input)):
reduction_shape.append(1)
return _copy(input), reduction_shape, reduction_shape
def native_batch_norm(
input: List[int],
weight: Optional[List[int]],
bias: Optional[List[int]],
running_mean: Optional[List[int]],
running_var: Optional[List[int]],
training: bool,
) -> Tuple[List[int], List[int], List[int]]:
if training:
_size = [input[1]]
else:
_size = [0]
return _copy(input), _size, _size
def cross_entropy_loss(
self: List[int],
target: List[int],
weight: Optional[List[int]] = None,
reduction: int = 1,
ignore_index: int = -100,
label_smoothing: float = 0.0,
) -> List[int]:
result_shape = nll_loss_forward(self, target, weight, reduction)[0]
return result_shape
"""
Currently deferring the enabling of this, as part of the propoasal to suspend
adding ops.
There are currently cases in the test case where this is being called
in the SSA opinfo tests with with unexpected values (eg list of two ints, see the first
opinfo test). The behavoir of index is significantly dependent on the inputs.
This could be an error with how we are matching up shape functions, or that this
function needs to just implement everything.
def index_Tensor(self: List[int], indices: List[Optional[List[int]]]) -> List[int]:
assert len(indices) <= len(self), "More indices than dimensions to index"
broadcasted_shape: List[int] = []
for index_tensor_shape in indices:
if index_tensor_shape is not None:
broadcasted_shape = broadcast(broadcasted_shape, index_tensor_shape)
return broadcasted_shape
"""
ScriptFn = torch._C.ScriptFunction
shape_compute_graph_mapping: Dict[str, ScriptFn] = {}
bounded_compute_graph_mapping: Dict[str, Tuple[ScriptFn, ScriptFn]] = {}
script_func_map: Dict[Callable, ScriptFn] = {}
def process_func(func: Callable):
if func not in script_func_map:
scripted_func = torch.jit.script(func)
torch._C._jit_pass_inline(scripted_func.graph)
for _ in range(2):
torch._C._jit_pass_peephole(scripted_func.graph)
torch._C._jit_pass_constant_propagation(scripted_func.graph)
script_func_map[func] = scripted_func
return script_func_map[func]
def add_shape_compute_mapping(operator_schema: str, func: Callable):
global shape_compute_graph_mapping
shape_compute_graph_mapping[operator_schema] = process_func(func)
def add_bounded_compute_mapping(
operator_schema: str, lower_bound_func: Callable, upper_bound_func: Callable
):
# Adds a shape compute function for both upper and lower bounds
fns = (process_func(lower_bound_func), process_func(upper_bound_func))
bounded_compute_graph_mapping[operator_schema] = fns
add_shape_compute_mapping(
"aten::contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a)",
unary,
)
add_shape_compute_mapping(
"aten::rsub.Tensor(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", unary
)
add_shape_compute_mapping(
"aten::dropout(Tensor input, float p, bool train) -> Tensor", unary
)
add_shape_compute_mapping(
"aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor",
adaptive_avg_pool2d,
)
add_shape_compute_mapping(
"prim::NumToTensor.Scalar(Scalar a) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping("prim::NumToTensor.bool(bool a) -> Tensor", zero_dim_tensor)
add_shape_compute_mapping(
"aten::zeros(int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)",
unary,
)
add_shape_compute_mapping(
"aten::to.dtype(Tensor(a) self, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))",
unary,
)
add_shape_compute_mapping(
"aten::arange(Scalar end, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)",
arange_end,
)
add_shape_compute_mapping(
"aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor",
arange_start,
)
add_shape_compute_mapping(
"aten::arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor",
arange_start_step,
)
add_shape_compute_mapping("aten::squeeze(Tensor(a) self) -> Tensor(a)", squeeze_nodim)
add_shape_compute_mapping(
"aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)", squeeze
)
add_shape_compute_mapping(
"aten::squeeze.dims(Tensor(a) self, int[] dim) -> Tensor(a)", squeeze_dims
)
add_shape_compute_mapping(
"aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a)", unsqueeze
)
add_shape_compute_mapping(
"aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=None, int? end=None, int step=1) -> Tensor(a)",
slice,
)
add_shape_compute_mapping(
"aten::select.int(Tensor(a) self, int dim, int index) -> Tensor(a)", select
)
add_shape_compute_mapping(
"aten::index_select(Tensor self, int dim, Tensor index) -> Tensor", index_select
)
add_shape_compute_mapping(
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, "
"float eps=1e-05, bool cudnn_enable=True) -> Tensor",
unary,
)
add_shape_compute_mapping(
"aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", unary
)
add_shape_compute_mapping(
"aten::_no_grad_embedding_renorm_(Tensor weight, Tensor input, float max_norm, float norm_type) -> Tensor",
unary,
)
add_shape_compute_mapping(
"aten::embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!)",
unary,
)
add_shape_compute_mapping(
"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor",
embedding,
)
add_shape_compute_mapping("aten::mm(Tensor self, Tensor mat2) -> Tensor", mm)
add_shape_compute_mapping("aten::dot(Tensor self, Tensor tensor) -> Tensor", dot)
add_shape_compute_mapping("aten::mv(Tensor self, Tensor vec) -> Tensor", mv)
add_shape_compute_mapping("aten::matmul(Tensor self, Tensor other) -> Tensor", matmul)
add_shape_compute_mapping(
"aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor", linear
)
add_shape_compute_mapping(
"aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor",
max_pool2d,
)
add_shape_compute_mapping(
"aten::max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)",
max_pool2d_with_indices,
)
add_shape_compute_mapping("aten::t(Tensor(a) self) -> Tensor(a)", t)
add_shape_compute_mapping(
"aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)", transpose
)
add_shape_compute_mapping(
"aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] dilation=1, int groups=1) -> Tensor",
conv1d,
)
add_shape_compute_mapping(
"aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, int groups=1) -> Tensor",
conv2d,
)
add_shape_compute_mapping(
"aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor",
batch_norm,
)
add_shape_compute_mapping(
"aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] dilation=1, int groups=1) -> Tensor",
conv3d,
)
add_shape_compute_mapping(
"aten::convolution_backward(Tensor grad_output, Tensor input, Tensor weight, int[]? bias_sizes, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)",
conv_backwards,
)
add_shape_compute_mapping(
"aten::convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor",
conv_forwards,
)
add_shape_compute_mapping(
"aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor",
_conv_forwards,
)
add_shape_compute_mapping(
"aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int groups=1, int[2] dilation=1) -> Tensor",
conv_transpose2d_input,
)
add_shape_compute_mapping(
"aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a)",
flatten,
)
add_shape_compute_mapping("aten::cat(Tensor[] tensors, int dim=0) -> Tensor", cat)
add_shape_compute_mapping("aten::stack(Tensor[] tensors, int dim=0) -> Tensor", stack)
add_shape_compute_mapping(
"aten::permute(Tensor(a) self, int[] dims) -> Tensor(a)", permute
)
add_shape_compute_mapping(
"aten::movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a)",
movedim,
)
add_shape_compute_mapping("aten::view(Tensor(a) self, int[] size) -> Tensor(a)", view)
add_shape_compute_mapping(
"aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)", expand
)
add_shape_compute_mapping(
"aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a)",
expand_one_unused,
)
add_shape_compute_mapping(
"aten::mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor",
sum_mean_dim,
)
add_shape_compute_mapping(
"aten::sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor",
sum_mean_dim,
)
add_shape_compute_mapping(
"aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)",
max_dim,
)
add_shape_compute_mapping(
"aten::mean(Tensor self, *, ScalarType? dtype=None) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping(
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor",
addmm,
)
add_shape_compute_mapping(
"aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)",
upsample_nearest2d,
)
add_shape_compute_mapping(
"aten::quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor",
unary,
)
add_shape_compute_mapping(
"aten::quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype) -> Tensor",
unary,
)
add_shape_compute_mapping("aten::dequantize(Tensor self) -> Tensor", unary)
add_shape_compute_mapping(
"quantized::add(Tensor qa, Tensor qb, float scale, int zero_point) -> Tensor qc",
broadcast,
)
add_shape_compute_mapping(
"aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor", argmax
)
add_shape_compute_mapping("aten::bmm(Tensor self, Tensor mat2) -> Tensor", bmm)
add_shape_compute_mapping(
"aten::_shape_as_tensor(Tensor self) -> Tensor", _shape_as_tensor
)
add_shape_compute_mapping(
"aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)",
topk,
)
add_shape_compute_mapping(
"aten::nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)",
nll_loss_forward,
)
add_shape_compute_mapping(
"aten::native_layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)",
native_layer_norm,
)
add_shape_compute_mapping(
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
native_batch_norm,
)
add_shape_compute_mapping(
"aten::_native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
native_batch_norm,
)
add_shape_compute_mapping(
"aten::_native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
native_batch_norm,
)
add_shape_compute_mapping(
"aten::cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, float label_smoothing=0.0) -> Tensor",
cross_entropy_loss,
)
# add_shape_compute_mapping("aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor", index_Tensor)
# TODO: migrate over all of symbolic_shape_registry_util.cpp
# These are duplicated here so that the functions will be serialiazed
add_shape_compute_mapping(
"aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor",
broadcast_three,
)
add_shape_compute_mapping(
"aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor",
broadcast_one_three,
)
add_shape_compute_mapping(
"aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)",
broadcast_inplace,
)
# quantized_conv_prepack TODO
# Shape Compute Fn with upper and lower bounds
add_bounded_compute_mapping(
"aten::nonzero(Tensor self) -> (Tensor)", nonzero_lower_bound, nonzero_upper_bound
)
|