File size: 46,245 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

number = Union[int, float]
# flake8: noqa

###
# There are generated files that depend on this file
# To re-generate, please run from the root of the repo:
# python torchgen/shape_functions/gen_jit_shape_functions.py

# How to test:
# After regenerating files, compile PyTorch.
# Then run: ./build/bin/test_jit --gtest_filter=TestShapeGraphLinting.Basic
# If you have enabled opinfo testing for the op, also run:
# python test/test_ops_jit.py TestJitCPU.test_variant_consistency_jit_[FAILING_OP]_cpu_float32
# to reproduce errors from opinfo tests.

# Example PR: https://github.com/pytorch/pytorch/pull/80860/files
####

import torch


def broadcast(a: List[int], b: List[int]):
    dimsA = len(a)
    dimsB = len(b)
    ndim = max(dimsA, dimsB)
    expandedSizes: List[int] = []

    for i in range(ndim):
        offset = ndim - 1 - i
        dimA = dimsA - 1 - offset
        dimB = dimsB - 1 - offset
        sizeA = a[dimA] if (dimA >= 0) else 1
        sizeB = b[dimB] if (dimB >= 0) else 1

        if sizeA != sizeB and sizeA != 1 and sizeB != 1:
            # TODO: only assertion error is bound in C++ compilation right now
            raise AssertionError(
                f"The size of tensor a {sizeA} must match the size of tensor b ({sizeB}) at non-singleton dimension {i}"
            )

        expandedSizes.append(sizeB if sizeA == 1 else sizeA)

    return expandedSizes


def broadcast_three(a: List[int], b: List[int], c: List[int]):
    return broadcast(broadcast(a, b), c)


def broadcast_one_three(a: List[int], b: Any, c: List[int]):
    return broadcast(a, c)


def adaptive_avg_pool2d(self: List[int], out: List[int]):
    assert len(out) == 2
    assert len(self) == 3 or len(self) == 4
    for i in range(1, len(self)):
        assert self[i] != 0

    shape: List[int] = []
    for i in range(0, len(self) - 2):
        shape.append(self[i])
    for elem in out:
        shape.append(elem)
    return shape


def _copy(self: List[int]):
    out: List[int] = []
    for elem in self:
        out.append(elem)
    return out


def unary(self: List[int]):
    return _copy(self)


def broadcast_inplace(a: List[int], b: List[int]):
    dimsA = len(a)
    dimsB = len(b)
    if dimsB > dimsA:
        raise AssertionError(
            f"The dims of tensor b ({dimsB}) must be less than or equal tothe dims of tensor a ({dimsA}) "
        )
    for dimA in range(dimsA):
        dimB = dimsB - dimsA + dimA
        sizeA = a[dimA]
        sizeB = b[dimB] if (dimB >= 0) else 1
        if sizeA != sizeB and sizeB != 1:
            # TODO: only assertion error is bound in C++ compilation right now
            raise AssertionError(
                "The size of tensor a {} must match the size of tensor b ("
                "{}) at non-singleton dimension {}".format(sizeA, sizeB, dimA)
            )
    return _copy(a)


def expand(self: List[int], sizes: List[int]):
    assert len(sizes) >= len(self)
    ndim = len(sizes)
    tensor_dim = len(self)
    if ndim == 0:
        return _copy(sizes)
    out: List[int] = []
    for i in range(ndim):
        offset = ndim - 1 - i
        dim = tensor_dim - 1 - offset
        size = self[dim] if dim >= 0 else 1
        targetSize = sizes[i]
        if targetSize == -1:
            assert dim >= 0
            targetSize = size
        if size != targetSize:
            assert size == 1
            size = targetSize
        out.append(size)
    return out


def expand_one_unused(self: List[int], sizes: List[int], inp0: Any):
    return expand(self, sizes)


def infer_size_impl(shape: List[int], numel: int) -> List[int]:
    newsize = 1
    infer_dim: Optional[int] = None
    for dim in range(len(shape)):
        if shape[dim] == -1:
            if infer_dim is not None:
                raise AssertionError("only one dimension can be inferred")
            infer_dim = dim
        elif shape[dim] >= 0:
            newsize *= shape[dim]
        else:
            raise AssertionError("invalid shape dimensions")
    if not (
        numel == newsize
        or (infer_dim is not None and newsize > 0 and numel % newsize == 0)
    ):
        raise AssertionError("invalid shape")
    out = _copy(shape)
    if infer_dim is not None:
        out[infer_dim] = numel // newsize
    return out


def numel(sizes: List[int]):
    numel = 1
    for elem in sizes:
        numel *= elem
    return numel


def view(self: List[int], sizes: List[int]):
    return infer_size_impl(sizes, numel(self))


def view_one_unused(self: List[int], sizes: List[int], *, implicit: bool = False):
    return view(self, sizes)


def sum_mean_dim(

    self: List[int], opt_dims: Optional[List[int]], keep_dim: bool, dt: Any

):
    out: List[int] = []
    if opt_dims is None or len(opt_dims) == 0:
        dims: List[int] = list(range(len(self)))
    else:
        dims = opt_dims

    for idx in range(len(self)):
        is_mean_dim: bool = False
        for reduce_dim in dims:
            if idx == maybe_wrap_dim(reduce_dim, len(self)):
                is_mean_dim = True
        if is_mean_dim:
            if keep_dim:
                out.append(1)
        else:
            out.append(self[idx])
    return out


def max_dim(self: List[int], dim: int, keep_dim: bool):
    out = sum_mean_dim(self, [dim], keep_dim, None)
    return out, out


# note: python already rounds down towards negative infinity on integer division, special arithmetic not needed
def div_rtn(x: int, y: int):
    return x // y


def pooling_output_shape_pad_lr(

    inputSize: int,

    kernelSize: int,

    pad_l: int,

    pad_r: int,

    stride: int,

    dilation: int,

    ceil_mode: bool,

):
    outputSize = (
        div_rtn(
            inputSize
            + pad_l
            + pad_r
            - dilation * (kernelSize - 1)
            - 1
            + (stride - 1 if ceil_mode else 0),
            stride,
        )
        + 1
    )
    if ceil_mode:
        if (outputSize - 1) * stride >= inputSize + pad_l:
            outputSize = outputSize - 1
    return outputSize


def pooling_output_shape(

    inputSize: int,

    kernelSize: int,

    pad_l: int,

    stride: int,

    dilation: int,

    ceil_mode: bool,

):
    assert stride != 0, "stride should not be zeero"
    return pooling_output_shape_pad_lr(
        inputSize, kernelSize, pad_l, pad_l, stride, dilation, ceil_mode
    )


def pool2d_shape_check(

    input: List[int],

    kH: int,

    kW: int,

    dH: int,

    dW: int,

    padH: int,

    padW: int,

    dilationH: int,

    dilationW: int,

    nInputPlane: int,

    inputHeight: int,

    inputWidth: int,

    outputHeight: int,

    outputWidth: int,

):
    ndim = len(input)
    nOutputPlane = nInputPlane

    assert kW > 0 and kH > 0
    assert dW > 0 and dH > 0
    assert dilationH > 0 and dilationW > 0

    valid_dims = input[1] != 0 and input[2] != 0
    assert (
        ndim == 3
        and input[0] != 0
        and valid_dims
        or (ndim == 4 and valid_dims and input[3] != 0)
    )

    assert kW // 2 >= padW and kH // 2 >= padH
    assert outputWidth >= 1 and outputHeight >= 1


def max_pool2d(

    input: List[int],

    kernel_size: List[int],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    ceil_mode: bool,

):
    assert (
        len(kernel_size) == 1 or len(kernel_size) == 2
    ), "max_pool2d: kernel_size must either be a single int, or a tuple of two ints"
    kH = kernel_size[0]
    kW = kH if len(kernel_size) == 1 else kernel_size[1]

    assert (
        len(stride) == 0 or len(stride) == 1 or len(stride) == 2
    ), "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints"
    dH = kH if len(stride) == 0 else stride[0]
    if len(stride) == 0:
        dW = kW
    elif len(stride) == 1:
        dW = dH
    else:
        dW = stride[1]

    assert (
        len(padding) == 1 or len(padding) == 2
    ), "max_pool2d: padding must either be a single int, or a tuple of two ints"
    padH = padding[0]
    padW = padH if len(padding) == 1 else padding[1]

    assert (
        len(dilation) == 1 or len(dilation) == 2
    ), "max_pool2d: dilation must be either a single int, or a tuple of two ints"
    dilationH = dilation[0]
    dilationW = dilationH if len(dilation) == 1 else dilation[1]

    assert len(input) == 3 or len(input) == 4

    nbatch = input[-4] if len(input) == 4 else 1
    nInputPlane = input[-3]
    inputHeight = input[-2]
    inputWidth = input[-1]

    outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode)
    outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode)

    pool2d_shape_check(
        input,
        kH,
        kW,
        dH,
        dW,
        padH,
        padW,
        dilationH,
        dilationW,
        nInputPlane,
        inputHeight,
        inputWidth,
        outputHeight,
        outputWidth,
    )

    if len(input) == 3:
        return [nInputPlane, outputHeight, outputWidth]
    else:
        return [nbatch, nInputPlane, outputHeight, outputWidth]


def max_pool2d_with_indices(

    input: List[int],

    kernel_size: List[int],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    ceil_mode: bool,

):
    out = max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
    return (out, out)


def upsample_nearest2d(

    input: List[int],

    output_size: Optional[List[int]],

    scale_factors: Optional[List[float]],

):
    out: List[int] = []
    out.append(input[0])
    out.append(input[1])

    if scale_factors is None and output_size is None:
        assert 0, "Either output_size or scale_factors must be presented"

    if output_size is not None:
        assert (
            scale_factors is None
        ), "Must specify exactly one of output_size and scale_factors"
        assert len(output_size) == 2
        out.append(output_size[0])
        out.append(output_size[1])

    if scale_factors is not None:
        assert (
            output_size is None
        ), "Must specify exactly one of output_size and scale_factors"
        assert len(scale_factors) == 2
        out.append(int(input[2] * scale_factors[0]))
        out.append(int(input[3] * scale_factors[1]))

    return out


def mm(self: List[int], mat2: List[int]):
    assert len(self) == 2, "self must be a matrix"
    assert len(mat2) == 2, "mat2 must be a matrix"

    assert self[1] == mat2[0]
    return [self[0], mat2[1]]


def dot(self: List[int], tensor: List[int]):
    assert len(self) == 1 and len(tensor) == 1
    assert self[0] == tensor[0]
    out: List[int] = []
    return out


def mv(self: List[int], vec: List[int]):
    assert len(self) == 2 and len(vec) == 1
    assert self[1] == vec[0]
    # TODO: return self
    return [self[0]]


def unsqueeze(li: List[int], dim: int):
    dim = maybe_wrap_dim(dim, len(li) + 1)
    out = _copy(li)
    out.insert(dim, 1)
    return out


def squeeze_nodim(li: List[int]):
    out: List[int] = []
    for i in range(len(li)):
        if li[i] != 1:
            out.append(li[i])
    return out


def squeeze(li: List[int], dim: int):
    out: List[int] = []
    wrapped_dim = maybe_wrap_dim(dim, len(li))
    for i in range(len(li)):
        if i == wrapped_dim:
            if li[i] != 1:
                out.append(li[i])
        else:
            out.append(li[i])
    return out


def squeeze_dims(li: List[int], dims: List[int]):
    if len(dims) == 0:
        return li
    wrapped_dims = _copy(dims)
    for i in range(len(dims)):
        wrapped_dims[i] = maybe_wrap_dim(wrapped_dims[i], len(li))
    result: List[int] = []
    for i in range(len(li)):
        if li[i] == 1:
            if i not in wrapped_dims:
                result.append(li[i])
        else:
            result.append(li[i])
    return result


def index_select(self: List[int], dim: int, index: List[int]):
    dim = maybe_wrap_dim(dim, len(self))
    numel = multiply_integers(index)
    assert len(index) <= 1
    assert dim == 0 or dim < len(self)
    result_size: List[int] = []
    for i in range(len(self)):
        if dim == i:
            result_size.append(numel)
        else:
            result_size.append(self[i])
    return result_size


def embedding(

    weight: List[int],

    indices: List[int],

    padding_idx: int = -1,

    scale_grad_by_freq: bool = False,

    sparse: bool = False,

):
    assert len(weight) == 2
    if len(indices) == 1:
        return index_select(weight, 0, indices)
    size = _copy(indices)
    size.append(weight[1])
    return size


def max_int():
    return 9223372036854775807


def slice(

    self: List[int], dim: int, start: Optional[int], end: Optional[int], step: int

):
    ndim = len(self)
    assert ndim != 0
    dim = maybe_wrap_dim(dim, ndim)
    start_val = start if start is not None else 0
    end_val = end if end is not None else max_int()
    assert step > 0
    if start_val == max_int():
        start_val = 0
    if start_val < 0:
        start_val += self[dim]
    if end_val < 0:
        end_val += self[dim]
    if start_val < 0:
        start_val = 0
    elif start_val > self[dim]:
        start_val = self[dim]
    if end_val < start_val:
        end_val = start_val
    elif end_val >= self[dim]:
        end_val = self[dim]
    slice_len = end_val - start_val
    out = _copy(self)
    out[dim] = (slice_len + step - 1) // step
    return out


def check_cat_no_zero_dim(tensors: List[List[int]]):
    for tensor in tensors:
        assert len(tensor) > 0


def legacy_cat_wrap_dim(dim: int, tensor_sizes: List[List[int]]):
    out_dim: Optional[int] = None
    for size in tensor_sizes:
        if not (len(size) == 1 and size[0] == 0):
            if out_dim is None:
                out_dim = maybe_wrap_dim(dim, len(size))
    if out_dim is None:
        out_dim = dim
    return out_dim


def should_skip(tensor: List[int]):
    return numel(tensor) == 0 and len(tensor) == 1


def check_cat_shape_except_dim(

    first: List[int], second: List[int], dimension: int, index: int

):
    first_dims = len(first)
    second_dims = len(second)
    assert first_dims == second_dims, "Tensors must have same number of dimensions"
    for dim in range(0, first_dims):
        if dim != dimension:
            assert (
                first[dim] == second[dim]
            ), "Sizes of tensors must match except in dimension"


def cat(tensors: List[List[int]], dim: int):
    check_cat_no_zero_dim(tensors)
    dim = legacy_cat_wrap_dim(dim, tensors)
    assert len(tensors) > 0
    not_skipped_tensor: Optional[List[int]] = None
    for tensor in tensors:
        if not should_skip(tensor):
            not_skipped_tensor = tensor
    if not_skipped_tensor is None:
        return [0]

    cat_dim_size = 0

    for i in range(len(tensors)):
        tensor = tensors[i]
        if not should_skip(tensor):
            check_cat_shape_except_dim(not_skipped_tensor, tensor, dim, i)
            cat_dim_size = cat_dim_size + tensor[dim]

    result_size = _copy(not_skipped_tensor)
    result_size[dim] = cat_dim_size
    return result_size


def stack(tensors: List[List[int]], dim: int):
    unsqueezed_tensors: List[List[int]] = []
    for tensor in tensors:
        unsqueezed = unsqueeze(tensor, dim)
        unsqueezed_tensors.append(unsqueezed)
    return cat(unsqueezed_tensors, dim)


def select(self: List[int], dim: int, index: int):
    ndim = len(self)
    assert ndim != 0
    dim = maybe_wrap_dim(dim, ndim)
    size = self[dim]
    assert not (index < -size or index >= size)
    if index < 0:
        index += size
    out: List[int] = []
    for i in range(ndim):
        if i != dim:
            out.append(self[i])
    return out


def matmul(tensor1: List[int], tensor2: List[int]):
    dim_tensor1 = len(tensor1)
    dim_tensor2 = len(tensor2)
    if dim_tensor1 == 1 and dim_tensor2 == 1:
        return dot(tensor1, tensor2)
    elif dim_tensor1 == 2 and dim_tensor2 == 1:
        return mv(tensor1, tensor2)
    elif dim_tensor1 == 1 and dim_tensor2 == 2:
        return squeeze(mm(unsqueeze(tensor1, 0), tensor2), 0)
    elif dim_tensor1 == 2 and dim_tensor2 == 2:
        return mm(tensor1, tensor2)
    elif dim_tensor1 >= 1 and dim_tensor2 >= 1:
        # We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list);
        # we track m1 vs m2 separately even though they must match for nicer error messages
        n = tensor1[-2] if dim_tensor1 > 1 else 1
        m1 = tensor1[-1]
        batch_tensor1: List[int] = []
        # TODO: handling of slice
        for i in range(dim_tensor1 - 2):
            batch_tensor1.append(tensor1[i])
        m2 = tensor2[-1] if dim_tensor2 > 1 else 1
        p = tensor2[-1]
        batch_tensor2: List[int] = []
        # TODO: handling of slice
        for i in range(dim_tensor2 - 2):
            batch_tensor2.append(tensor2[i])

        # expand the batch portion (i.e. cut off matrix dimensions and expand rest)
        expand_batch_portion = broadcast(batch_tensor1, batch_tensor2)

        # todo: copy ?
        output_shape = expand_batch_portion
        if dim_tensor1 > 1:
            output_shape.append(n)

        if dim_tensor2 > 1:
            output_shape.append(p)

        return output_shape
    else:
        assert False, "both  arguments to matmul need to be at least 1D"


def t(self: List[int]):
    assert len(self) <= 2
    self_len = len(self)
    if self_len == 0:
        out: List[int] = []
        return out
    elif self_len == 1:
        return [self[0]]
    else:
        return [self[1], self[0]]


def transpose(self: List[int], dim0: int, dim1: int):
    ndims = len(self)
    dim0 = maybe_wrap_dim(dim0, ndims)
    dim1 = maybe_wrap_dim(dim1, ndims)
    if dim0 == dim1:
        return _copy(self)
    out: List[int] = []
    for i in range(ndims):
        if i == dim0:
            out.append(self[dim1])
        elif i == dim1:
            out.append(self[dim0])
        else:
            out.append(self[i])
    return out


def linear(input: List[int], weight: List[int], bias: Optional[List[int]]):
    out = matmul(input, t(weight))
    if bias is not None:
        assert broadcast(bias, out) == out
    return out


def addmm(self: List[int], mat1: List[int], mat2: List[int], beta: Any, alpha: Any):
    return broadcast(self, mm(mat1, mat2))


def check_non_negative(array: List[int]) -> bool:
    # TODO: look into rewriting with early return and getting loop unrolling to fire
    non_negative = False
    for val in array:
        if val < 0:
            non_negative = True
    return non_negative


def check_shape_forward(

    input: List[int],

    weight_sizes: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    groups: int,

):
    k = len(input)
    weight_dim = len(weight_sizes)

    # TODO: assertions could be expanded with the error messages
    assert not check_non_negative(padding)
    assert not check_non_negative(stride)

    assert weight_dim == k
    assert weight_sizes[0] >= groups
    assert (weight_sizes[0] % groups) == 0
    # only handling not transposed
    assert input[1] == weight_sizes[1] * groups
    assert bias is None or (len(bias) == 1 and bias[0] == weight_sizes[0])

    for i in range(2, k):
        assert (input[i] + 2 * padding[i - 2]) >= (
            dilation[i - 2] * (weight_sizes[i] - 1) + 1
        )

    # this is not handling transposed convolution yet


def conv_output_size(

    input_size: List[int],

    weight_size: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    groups: int,

):
    check_shape_forward(
        input_size, weight_size, bias, stride, padding, dilation, groups
    )

    has_dilation = len(dilation) > 0
    dim = len(input_size)
    output_size: List[int] = []
    input_batch_size_dim = 0
    weight_output_channels_dim = 0
    output_size.append(input_size[input_batch_size_dim])
    output_size.append(weight_size[weight_output_channels_dim])

    for d in range(2, dim):
        dilation_ = dilation[d - 2] if has_dilation else 1
        kernel = dilation_ * (weight_size[d] - 1) + 1
        output_size.append(
            (input_size[d] + (2 * padding[d - 2]) - kernel) // stride[d - 2] + 1
        )
    return output_size


def conv1d(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    groups: int,

):
    assert len(weight) == 3
    assert len(input) == 3
    return conv_output_size(input, weight, bias, stride, padding, dilation, groups)


def conv2d(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    groups: int,

):
    assert len(weight) == 4
    assert len(input) == 4
    return conv_output_size(input, weight, bias, stride, padding, dilation, groups)


def conv_backwards(

    grad_output: List[int],

    input: List[int],

    weight: List[int],

    biases: Optional[List[int]],

):
    # Bias gradient is always generated regardess of if biases is supplied
    return _copy(input), _copy(weight), [grad_output[1]]


def conv_transpose2d_input(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]] = None,

    stride: Optional[List[int]] = None,

    padding: Optional[List[int]] = None,

    output_padding: Optional[List[int]] = None,

    groups: int = 1,

    dilation: Optional[List[int]] = None,

) -> List[int]:
    if stride is None:
        stride = [1, 1]
    if padding is None:
        padding = [0, 0]
    if output_padding is None:
        output_padding = [0, 0]
    if dilation is None:
        dilation = [1, 1]
    has_dilation = len(dilation) > 0
    dim = len(input)
    output_size: List[int] = []
    input_batch_size_dim = 0
    weight_output_channels_dim = 1
    output_size.append(input[input_batch_size_dim])
    output_size.append(weight[weight_output_channels_dim] * groups)

    for d in range(2, dim):
        dilation_ = dilation[d - 2] if has_dilation else 1
        kernel = dilation_ * (weight[d] - 1)
        output_size.append(
            (input[d] - 1) * stride[d - 2]
            - 2 * padding[d - 2]
            + kernel
            + output_padding[d - 2]
            + 1
        )
    return output_size


def conv_forwards(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    transposed: bool,

    output_padding: List[int],

    groups: int,

) -> List[int]:
    has_dilation = len(dilation) > 0
    has_output_padding = len(output_padding) > 0
    dim = len(input)
    output_size: List[int] = []
    input_batch_size_dim = 0
    weight_output_channels_dim = 1 if transposed else 0
    output_size.append(input[input_batch_size_dim])
    if transposed:
        output_size.append(weight[weight_output_channels_dim] * groups)
    else:
        output_size.append(weight[weight_output_channels_dim])

    for d in range(2, dim):
        dilation_ = dilation[d - 2] if has_dilation else 1
        output_padding_ = output_padding[d - 2] if has_output_padding else 0
        if transposed:
            kernel = dilation_ * (weight[d] - 1)
            output_size.append(
                (input[d] - 1) * stride[d - 2]
                - 2 * padding[d - 2]
                + kernel
                + output_padding_
                + 1
            )
        else:
            kernel = dilation_ * (weight[d] - 1) + 1
            output_size.append(
                (input[d] + (2 * padding[d - 2]) - kernel) // stride[d - 2] + 1
            )
    return output_size


def _conv_forwards(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    transposed: bool,

    output_padding: List[int],

    groups: int,

    benchmark: bool,

    deterministic: bool,

    cudnn_enabled: bool,

    allow_tf32: bool,

) -> List[int]:
    return conv_forwards(
        input,
        weight,
        bias,
        stride,
        padding,
        dilation,
        transposed,
        output_padding,
        groups,
    )


def batch_norm(

    input: List[int],

    weight: Optional[List[int]],

    bias: Optional[List[int]],

    running_mean: Optional[List[int]],

    running_var: Optional[List[int]],

    training: bool,

    momentum: float,

    eps: float,

    cudnn_enabled: bool,

):
    out: List[int] = []
    for elem in input:
        out.append(elem)
    return out


def conv3d(

    input: List[int],

    weight: List[int],

    bias: Optional[List[int]],

    stride: List[int],

    padding: List[int],

    dilation: List[int],

    groups: int,

):
    assert len(weight) == 5
    assert len(input) == 5
    return conv_output_size(input, weight, bias, stride, padding, dilation, groups)


def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True):
    if dim_post_expr <= 0:
        assert wrap_scalar
        dim_post_expr = 1
    min = -dim_post_expr
    max = dim_post_expr - 1
    assert not (dim < min or dim > max)
    if dim < 0:
        dim += dim_post_expr
    return dim


def zero_dim_tensor(input: Any):
    out: List[int] = []
    return out


def multiply_integers(li: List[int]):
    out = 1
    for elem in li:
        out = out * elem
    return out


def arange_end(end: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any):
    assert end >= 0
    return [int(math.ceil(end))]


def arange_start(

    start: number, end: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any

):
    assert end >= 0
    assert end >= start
    return [int(math.ceil(end - start))]


def arange_start_step(

    start: number, end: number, step: number, inp0: Any, inp1: Any, inp2: Any, inp3: Any

):
    assert step != 0
    if step < 0:
        assert start >= end
    else:
        assert end >= start
    return [int(math.ceil((end - start) / step))]


def permute(input: List[int], dims: List[int]):
    assert len(input) == len(dims)
    ndim = len(dims)
    seen_dims: List[int] = []
    newSizes: List[int] = []
    for i in range(ndim):
        dim = maybe_wrap_dim(dims[i], ndim)
        seen_dims.append(dim)
        newSizes.append(input[dim])
    for i in range(1, ndim):
        for j in range(i):
            assert seen_dims[i] != seen_dims[j]
    return newSizes


def movedim(self: List[int], source: List[int], destination: List[int]) -> List[int]:
    self_dim = len(self)
    if self_dim <= 1:
        return self
    normalized_src: List[int] = []
    normalized_dst: List[int] = []
    for i in range(len(source)):
        normalized_src.append(maybe_wrap_dim(source[i], self_dim))
        normalized_dst.append(maybe_wrap_dim(destination[i], self_dim))
    order = [-1 for i in range(self_dim)]
    src_dims = [i for i in range(self_dim)]
    dst_dims = [i for i in range(self_dim)]

    for i in range(len(source)):
        order[normalized_dst[i]] = normalized_src[i]
        src_dims[normalized_src[i]] = -1
        dst_dims[normalized_dst[i]] = -1

    source_dims: List[int] = []
    destination_dims: List[int] = []
    for ele in src_dims:
        if ele != -1:
            source_dims.append(ele)
    for ele in dst_dims:
        if ele != -1:
            destination_dims.append(ele)

    rest_dim = self_dim - len(source)
    for i in range(rest_dim):
        order[destination_dims[i]] = source_dims[i]
    return permute(self, order)


def flatten(input: List[int], start_dim: int, end_dim: int):
    start_dim = maybe_wrap_dim(start_dim, len(input))
    end_dim = maybe_wrap_dim(end_dim, len(input))
    assert start_dim <= end_dim
    if len(input) == 0:
        return [1]
    if start_dim == end_dim:
        # TODO: return self
        out: List[int] = []
        for elem in input:
            out.append(elem)
        return out
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= input[i]
    # TODO: use slicing when slice optimization has landed
    # slice_numel = multiply_integers(input[start_dim:end_dim - start_dim + 1])
    shape: List[int] = []
    for i in range(start_dim):
        shape.append(input[i])
    shape.append(slice_numel)
    for i in range(end_dim + 1, len(input)):
        shape.append(input[i])
    return shape


def nonzero_lower_bound(input: List[int]):
    return [0, len(input)]


def nonzero_upper_bound(input: List[int]):
    return [numel(input), len(input)]


def _reduce_along_dim(self: List[int], dim: int, keepdim: bool):
    dim = maybe_wrap_dim(dim, len(self))
    out: List[int] = []
    for i, self_dim in enumerate(self):
        if i == dim:
            if keepdim:
                out.append(1)
        else:
            out.append(self_dim)
    return out


def argmax(

    self: List[int], dim: Optional[int] = None, keepdim: bool = False

) -> List[int]:
    if dim is None:
        return []
    return _reduce_along_dim(self, dim, keepdim)


def bmm(self: List[int], mat2: List[int]) -> List[int]:
    assert len(self) == 3, "bmm only supports 3D tensors"
    assert len(mat2) == 3, "bmm only supports 3D tensors"
    assert self[0] == mat2[0], "mismatching batch dimension"
    assert self[2] == mat2[1], "mismatching contracting dimension"
    return [self[0], self[1], mat2[2]]


def _shape_as_tensor(self: List[int]) -> List[int]:
    return [len(self)]


def topk(self: List[int], k: int, dim: int = -1) -> Tuple[List[int], List[int]]:
    if len(self) == 0:
        result: List[int] = []
    else:
        assert (
            k <= self[dim]
        ), f"k ({k}) is too big for dimension {dim} of size {self[dim]}"
        result = _copy(self)
        result[dim] = k
    return result, result


def nll_loss_forward(

    self: List[int], target: List[int], weight: Optional[List[int]], reduction: int

) -> Tuple[List[int], List[int]]:
    # This is taken shamelessly from the meta function in LossNLL.cpp
    self_dim = len(self)
    target_dim = len(target)
    assert 0 < self_dim <= 2
    assert target_dim <= 1
    no_batch_dim = self_dim == 1 and target_dim == 0
    assert no_batch_dim or (self[0] == target[0])
    n_classes = self[-1]
    scalar_shape: List[int] = []
    assert weight is None or (len(weight) == 1 and weight[0] == n_classes)
    if reduction == 0 and self_dim == 2:
        reduction_shape = [self[0]]
    else:
        reduction_shape = scalar_shape
    return reduction_shape, scalar_shape


def native_layer_norm(

    input: List[int], normalized_shape: List[int]

) -> Tuple[List[int], List[int], List[int]]:
    reduction_shape: List[int] = []
    num_unreduced_dimensions = len(input) - len(normalized_shape)
    assert num_unreduced_dimensions >= 0
    for i in range(num_unreduced_dimensions):
        reduction_shape.append(input[i])
    for i in range(num_unreduced_dimensions, len(input)):
        reduction_shape.append(1)
    return _copy(input), reduction_shape, reduction_shape


def native_batch_norm(

    input: List[int],

    weight: Optional[List[int]],

    bias: Optional[List[int]],

    running_mean: Optional[List[int]],

    running_var: Optional[List[int]],

    training: bool,

) -> Tuple[List[int], List[int], List[int]]:
    if training:
        _size = [input[1]]
    else:
        _size = [0]
    return _copy(input), _size, _size


def cross_entropy_loss(

    self: List[int],

    target: List[int],

    weight: Optional[List[int]] = None,

    reduction: int = 1,

    ignore_index: int = -100,

    label_smoothing: float = 0.0,

) -> List[int]:
    result_shape = nll_loss_forward(self, target, weight, reduction)[0]
    return result_shape


"""

Currently deferring the enabling of this, as part of the propoasal to suspend

adding ops.

There are currently cases in the test case where this is being called

in the SSA opinfo tests with with unexpected values (eg list of two ints, see the first

opinfo test). The behavoir of index is significantly dependent on the inputs.



This could be an error with how we are matching up shape functions, or that this

function needs to just implement everything.



def index_Tensor(self: List[int], indices: List[Optional[List[int]]]) -> List[int]:

    assert len(indices) <= len(self), "More indices than dimensions to index"

    broadcasted_shape: List[int] = []

    for index_tensor_shape in indices:

        if index_tensor_shape is not None:

            broadcasted_shape = broadcast(broadcasted_shape, index_tensor_shape)

    return broadcasted_shape

"""

ScriptFn = torch._C.ScriptFunction
shape_compute_graph_mapping: Dict[str, ScriptFn] = {}
bounded_compute_graph_mapping: Dict[str, Tuple[ScriptFn, ScriptFn]] = {}
script_func_map: Dict[Callable, ScriptFn] = {}


def process_func(func: Callable):
    if func not in script_func_map:
        scripted_func = torch.jit.script(func)

        torch._C._jit_pass_inline(scripted_func.graph)

        for _ in range(2):
            torch._C._jit_pass_peephole(scripted_func.graph)
            torch._C._jit_pass_constant_propagation(scripted_func.graph)

        script_func_map[func] = scripted_func
    return script_func_map[func]


def add_shape_compute_mapping(operator_schema: str, func: Callable):
    global shape_compute_graph_mapping

    shape_compute_graph_mapping[operator_schema] = process_func(func)


def add_bounded_compute_mapping(

    operator_schema: str, lower_bound_func: Callable, upper_bound_func: Callable

):
    # Adds a shape compute function for both upper and lower bounds
    fns = (process_func(lower_bound_func), process_func(upper_bound_func))
    bounded_compute_graph_mapping[operator_schema] = fns


add_shape_compute_mapping(
    "aten::contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a)",
    unary,
)
add_shape_compute_mapping(
    "aten::rsub.Tensor(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", unary
)
add_shape_compute_mapping(
    "aten::dropout(Tensor input, float p, bool train) -> Tensor", unary
)
add_shape_compute_mapping(
    "aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor",
    adaptive_avg_pool2d,
)
add_shape_compute_mapping(
    "prim::NumToTensor.Scalar(Scalar a) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping("prim::NumToTensor.bool(bool a) -> Tensor", zero_dim_tensor)
add_shape_compute_mapping(
    "aten::zeros(int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)",
    unary,
)
add_shape_compute_mapping(
    "aten::to.dtype(Tensor(a) self, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))",
    unary,
)
add_shape_compute_mapping(
    "aten::arange(Scalar end, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)",
    arange_end,
)
add_shape_compute_mapping(
    "aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor",
    arange_start,
)
add_shape_compute_mapping(
    "aten::arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor",
    arange_start_step,
)
add_shape_compute_mapping("aten::squeeze(Tensor(a) self) -> Tensor(a)", squeeze_nodim)
add_shape_compute_mapping(
    "aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)", squeeze
)
add_shape_compute_mapping(
    "aten::squeeze.dims(Tensor(a) self, int[] dim) -> Tensor(a)", squeeze_dims
)
add_shape_compute_mapping(
    "aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a)", unsqueeze
)
add_shape_compute_mapping(
    "aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=None, int? end=None, int step=1) -> Tensor(a)",
    slice,
)
add_shape_compute_mapping(
    "aten::select.int(Tensor(a) self, int dim, int index) -> Tensor(a)", select
)
add_shape_compute_mapping(
    "aten::index_select(Tensor self, int dim, Tensor index) -> Tensor", index_select
)
add_shape_compute_mapping(
    "aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, "
    "float eps=1e-05, bool cudnn_enable=True) -> Tensor",
    unary,
)
add_shape_compute_mapping(
    "aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", unary
)
add_shape_compute_mapping(
    "aten::_no_grad_embedding_renorm_(Tensor weight, Tensor input, float max_norm, float norm_type) -> Tensor",
    unary,
)
add_shape_compute_mapping(
    "aten::embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!)",
    unary,
)
add_shape_compute_mapping(
    "aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor",
    embedding,
)
add_shape_compute_mapping("aten::mm(Tensor self, Tensor mat2) -> Tensor", mm)
add_shape_compute_mapping("aten::dot(Tensor self, Tensor tensor) -> Tensor", dot)
add_shape_compute_mapping("aten::mv(Tensor self, Tensor vec) -> Tensor", mv)
add_shape_compute_mapping("aten::matmul(Tensor self, Tensor other) -> Tensor", matmul)
add_shape_compute_mapping(
    "aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor", linear
)
add_shape_compute_mapping(
    "aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor",
    max_pool2d,
)
add_shape_compute_mapping(
    "aten::max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)",
    max_pool2d_with_indices,
)
add_shape_compute_mapping("aten::t(Tensor(a) self) -> Tensor(a)", t)
add_shape_compute_mapping(
    "aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)", transpose
)
add_shape_compute_mapping(
    "aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] dilation=1, int groups=1) -> Tensor",
    conv1d,
)
add_shape_compute_mapping(
    "aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, int groups=1) -> Tensor",
    conv2d,
)
add_shape_compute_mapping(
    "aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor",
    batch_norm,
)
add_shape_compute_mapping(
    "aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] dilation=1, int groups=1) -> Tensor",
    conv3d,
)
add_shape_compute_mapping(
    "aten::convolution_backward(Tensor grad_output, Tensor input, Tensor weight, int[]? bias_sizes, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)",
    conv_backwards,
)
add_shape_compute_mapping(
    "aten::convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor",
    conv_forwards,
)
add_shape_compute_mapping(
    "aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor",
    _conv_forwards,
)
add_shape_compute_mapping(
    "aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int groups=1, int[2] dilation=1) -> Tensor",
    conv_transpose2d_input,
)
add_shape_compute_mapping(
    "aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a)",
    flatten,
)
add_shape_compute_mapping("aten::cat(Tensor[] tensors, int dim=0) -> Tensor", cat)
add_shape_compute_mapping("aten::stack(Tensor[] tensors, int dim=0) -> Tensor", stack)
add_shape_compute_mapping(
    "aten::permute(Tensor(a) self, int[] dims) -> Tensor(a)", permute
)
add_shape_compute_mapping(
    "aten::movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a)",
    movedim,
)
add_shape_compute_mapping("aten::view(Tensor(a) self, int[] size) -> Tensor(a)", view)
add_shape_compute_mapping(
    "aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)", expand
)
add_shape_compute_mapping(
    "aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a)",
    expand_one_unused,
)
add_shape_compute_mapping(
    "aten::mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor",
    sum_mean_dim,
)
add_shape_compute_mapping(
    "aten::sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor",
    sum_mean_dim,
)
add_shape_compute_mapping(
    "aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)",
    max_dim,
)
add_shape_compute_mapping(
    "aten::mean(Tensor self, *, ScalarType? dtype=None) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping(
    "aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor", zero_dim_tensor
)
add_shape_compute_mapping(
    "aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor",
    addmm,
)
add_shape_compute_mapping(
    "aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)",
    upsample_nearest2d,
)
add_shape_compute_mapping(
    "aten::quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor",
    unary,
)
add_shape_compute_mapping(
    "aten::quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype) -> Tensor",
    unary,
)
add_shape_compute_mapping("aten::dequantize(Tensor self) -> Tensor", unary)
add_shape_compute_mapping(
    "quantized::add(Tensor qa, Tensor qb, float scale, int zero_point) -> Tensor qc",
    broadcast,
)
add_shape_compute_mapping(
    "aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor", argmax
)
add_shape_compute_mapping("aten::bmm(Tensor self, Tensor mat2) -> Tensor", bmm)
add_shape_compute_mapping(
    "aten::_shape_as_tensor(Tensor self) -> Tensor", _shape_as_tensor
)
add_shape_compute_mapping(
    "aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)",
    topk,
)
add_shape_compute_mapping(
    "aten::nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)",
    nll_loss_forward,
)
add_shape_compute_mapping(
    "aten::native_layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)",
    native_layer_norm,
)
add_shape_compute_mapping(
    "aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
    native_batch_norm,
)
add_shape_compute_mapping(
    "aten::_native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
    native_batch_norm,
)
add_shape_compute_mapping(
    "aten::_native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
    native_batch_norm,
)
add_shape_compute_mapping(
    "aten::cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, float label_smoothing=0.0) -> Tensor",
    cross_entropy_loss,
)
# add_shape_compute_mapping("aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor", index_Tensor)

# TODO: migrate over all of symbolic_shape_registry_util.cpp
# These are duplicated here so that the functions will be serialiazed
add_shape_compute_mapping(
    "aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor",
    broadcast_three,
)
add_shape_compute_mapping(
    "aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor",
    broadcast_one_three,
)
add_shape_compute_mapping(
    "aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)",
    broadcast_inplace,
)

# quantized_conv_prepack TODO

# Shape Compute Fn with upper and lower bounds
add_bounded_compute_mapping(
    "aten::nonzero(Tensor self) -> (Tensor)", nonzero_lower_bound, nonzero_upper_bound
)