Spaces:
Running
Running
File size: 45,719 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
import ast
import dataclasses
import inspect
import re
import string
import sys
from collections import namedtuple
from textwrap import dedent
from typing import List, Tuple # noqa: F401
import torch
import torch.jit.annotations
from torch import _jit_internal
from torch._C._jit_tree_views import (
Apply,
Assert,
Assign,
Attribute,
AugAssign,
BinOp,
Break,
ClassDef,
Const,
Continue,
Decl,
Def,
Delete,
DictComp,
DictLiteral,
Dots,
EmptyTypeAnnotation,
ExprStmt,
FalseLiteral,
For,
Ident,
If,
ListComp,
ListLiteral,
NoneLiteral,
Param,
Pass,
Property,
Raise,
Return,
Select,
SliceExpr,
Starred,
Stmt,
StringLiteral,
Subscript,
TernaryIf,
TrueLiteral,
TupleLiteral,
UnaryOp,
Var,
While,
With,
WithItem,
)
from torch._jit_internal import ( # noqa: F401
_is_drop_fn,
FunctionModifiers,
is_static_fn,
should_drop,
)
from torch._sources import (
get_source_lines_and_file,
make_source_context,
parse_def,
ParsedDef as _ParsedDef,
)
from torch.jit._dataclass_impls import DATACLASS_MAGIC_METHODS
from torch.jit._monkeytype_config import get_qualified_name, monkeytype_trace
_IS_ASTUNPARSE_INSTALLED = False
try:
import astunparse # type: ignore[import]
_IS_ASTUNPARSE_INSTALLED = True
except ImportError:
pass
# Borrowed from cPython implementation
# https://github.com/python/cpython/blob/561612d8456cfab5672c9b445521113b847bd6b3/Lib/textwrap.py#L411#
_reserved_prefix = "__jit"
_reserved_names = {"print"}
_identifier_chars = set(string.ascii_lowercase + string.ascii_uppercase + string.digits)
def is_reserved_name(name):
return name.startswith(_reserved_prefix) or name in _reserved_names
pretty_node_names = {
ast.FunctionDef: "function definitions",
ast.For: "for loops",
ast.Delete: "del statements",
ast.ClassDef: "class definitions",
ast.With: "with statements",
ast.Raise: "raise statements",
ast.Assert: "assertions",
ast.Import: "import statements",
ast.ImportFrom: "import statements",
ast.Global: "global variables",
ast.Break: "break statements",
ast.Continue: "continue statements",
}
node_start_tokens = {
ast.FunctionDef: "def",
ast.For: "for",
ast.Delete: "del",
ast.ClassDef: "class",
ast.With: "with",
ast.Raise: "raise",
ast.Assert: "assert",
ast.Import: "import",
ast.ImportFrom: "from",
ast.Global: "global",
ast.Break: "break",
ast.Continue: "continue",
}
pretty_node_names.update(
{
ast.AsyncFunctionDef: "async function definitions",
ast.AsyncFor: "async for loops",
ast.AsyncWith: "async with statements",
ast.Try: "try blocks",
ast.Nonlocal: "nonlocal variables",
}
)
node_start_tokens.update(
{
ast.AsyncFunctionDef: "async def",
ast.AsyncFor: "async for",
ast.AsyncWith: "async with",
ast.Try: "try",
ast.Nonlocal: "nonlocal",
}
)
pretty_node_names.update(
{
ast.AnnAssign: "annotated assignments",
}
)
# NB: no specific token for AnnAssign
class FrontendError(Exception):
def __init__(self, source_range, msg):
self.source_range = source_range
self.msg = msg
# This has to be instantiated here so the ErrorReport is accurate to the
# call stack when the FrontendError was raised
self.error_report = torch._C.ErrorReport(self.source_range)
def __str__(self):
return self.msg + self.error_report.what().lstrip()
class NotSupportedError(FrontendError):
pass
class UnsupportedNodeError(NotSupportedError):
def __init__(self, ctx, offending_node, reason=""):
# If we don't have a specific token, we default to length of 1
node_type = type(offending_node)
range_len = len(node_start_tokens.get(node_type, " "))
source_range = ctx.make_range(
offending_node.lineno,
offending_node.col_offset,
offending_node.col_offset + range_len,
)
feature_name = pretty_node_names.get(node_type, node_type.__name__)
msg = f"{feature_name} {reason + ' ' if reason else ''}aren't supported"
super().__init__(source_range, msg)
class FrontendTypeError(FrontendError):
pass
def build_withitems(ctx, items):
items = [build_withitem(ctx, i) for i in items]
return list(items)
def build_stmts(ctx, stmts):
stmts = [build_stmt(ctx, s) for s in stmts]
return list(filter(None, stmts))
def get_class_properties(cls, self_name):
"""
Get a list of Property objects representing the properties of a class.
Args:
cls: The class to get properties of.
self_name: The name of the class that the properties should belong to.
Returns:
A list of Property objects corresponding to the properties of cls. Property
here refers to the subclass of TreeView.
"""
props = inspect.getmembers(cls, predicate=lambda m: isinstance(m, property))
# Any property that should not compiled must be in this list on the Module.
unused_properties = getattr(cls, "__jit_unused_properties__", [])
# Create Property TreeView objects from inspected property objects.
properties = []
for prop in props:
if prop[0] not in unused_properties and not should_drop(prop[1].fget):
getter = get_jit_def(
prop[1].fget, f"__{prop[0]}_getter", self_name=self_name
)
setter = (
get_jit_def(prop[1].fset, f"__{prop[0]}_setter", self_name=self_name)
if prop[1].fset
else None
)
properties.append(
Property(getter.range(), Ident(getter.range(), prop[0]), getter, setter)
)
return properties
def get_class_assigns(ctx, cls_ast):
assigns = []
def maybe_build_assign(builder, entry):
nonlocal assigns
try:
assigns.append(builder(ctx, entry))
except NotSupportedError:
pass
for entry in cls_ast.body:
if isinstance(entry, ast.Assign):
maybe_build_assign(StmtBuilder.build_Assign, entry)
elif isinstance(entry, ast.AnnAssign):
maybe_build_assign(StmtBuilder.build_AnnAssign, entry)
return assigns
def get_jit_class_def(cls, self_name):
# Get defs for each method within the current class independently
# TODO: proper overriding analysis when implementing class inheritance
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__
and not _is_drop_fn(m),
)
def is_classmethod(fn):
return inspect.ismethod(fn) and getattr(fn, "__self__", None) == cls
# Get and parse the source code for this class
sourcelines, file_lineno, filename = get_source_lines_and_file(
cls, torch._C.ErrorReport.call_stack()
)
source = "".join(sourcelines)
dedent_src = dedent(source)
py_ast = ast.parse(dedent_src)
class_ast = py_ast.body[0]
assert isinstance(class_ast, ast.ClassDef)
# Special case for dataclasses. In general we need access to the source code for
# an object in order to JIT compile it. But the dataclasses module dynamically synthesizes
# magic methods for classes, and we can't get the source code for these methods. As a
# workaround, we synthesize TorchScript-friendly implementations ourselves.
if dataclasses.is_dataclass(cls):
# Detect whether the user manually implemented any of the magic methods. If they did,
# we don't want to synthesize/override them.
overrides = {
method.name
for method in class_ast.body
if isinstance(method, ast.FunctionDef)
and method.name in DATACLASS_MAGIC_METHODS
}
for i, (name, _) in enumerate(methods):
# Is this a magic method we can synthesize?
synthesizer_fn = DATACLASS_MAGIC_METHODS.get(name)
if synthesizer_fn and name not in overrides:
parsed_def = synthesizer_fn(cls)
methods[i] = name, parsed_def
func = getattr(cls, name)
_jit_internal.loader.cache(func, parsed_def.source)
method_defs = [
get_jit_def(obj, name, self_name=self_name, is_classmethod=is_classmethod(obj))
for (name, obj) in methods
]
properties = get_class_properties(cls, self_name)
leading_whitespace_len = len(source.split("\n", 1)[0]) - len(
dedent_src.split("\n", 1)[0]
)
ctx = make_source_context(
source, filename, file_lineno, leading_whitespace_len, False
)
assigns = get_class_assigns(ctx, class_ast)
return build_class_def(ctx, class_ast, method_defs, properties, self_name, assigns)
def get_jit_def(fn, def_name, self_name=None, is_classmethod=False):
"""
Build a JIT AST (TreeView) from the given function.
Args:
fn: A function object to compile or a pre-parsed ParsedDef object
def_name: The name to give to the resulting AST object. This is not
always the same as `fn.__name__`, for example:
def _forward(self):
...
forward = _forward
In this case, the `__name__` attribute of the function object is "_forward",
but we want the result AST to have the name "forward".
self_name: If this function is a method, what the type name of `self` is.
"""
parsed_def = parse_def(fn) if not isinstance(fn, _ParsedDef) else fn
type_line = torch.jit.annotations.get_type_line(parsed_def.source)
fn_def = parsed_def.ast.body[0]
if is_classmethod:
arg_name = fn_def.args.args[0].arg
# Insert a statement that assigns the first argument to the class
assign_stmt = ast.parse(f"{arg_name} = {self_name}").body[0]
fn_def.body.insert(0, assign_stmt)
# Swap out the function signature and body if it is unused
if should_drop(fn):
unused_fn_def = ast.parse(
'def unused_fn(self: Any):\n\traise RuntimeError("Cannot call @unused methods")'
)
if len(unused_fn_def.body) != 1 or not isinstance(
unused_fn_def.body[0], ast.FunctionDef
):
raise RuntimeError(
f"Expected a single top-level function: {parsed_def.filename}:{parsed_def.file_lineno}"
)
unused_def = unused_fn_def.body[0]
fn_def.body = unused_def.body
# kwarg/vararg not supported by `build_def`
fn_def.args.kwarg = fn_def.args.vararg = None
for arg in fn_def.args.args + fn_def.args.kwonlyargs:
# Replace potentially unsupported type annotations by "Any"
arg.annotation = unused_def.args.args[0].annotation
if _is_drop_fn(fn):
# Dropping potentially unsupported return type annotation for jit._drop
fn_def.returns = None
fn_def.type_comment = None
# If MonkeyType is installed, get all the consolidated type traces
# for the arguments from type_trace_db
type_trace_db = torch.jit._script._get_type_trace_db()
pdt_arg_types = None
if monkeytype_trace and not isinstance(fn, _ParsedDef): # type: ignore[truthy-function]
qualname = get_qualified_name(fn)
pdt_arg_types = type_trace_db.get_args_types(qualname)
return build_def(
parsed_def.ctx,
fn_def,
type_line,
def_name,
self_name=self_name,
pdt_arg_types=pdt_arg_types,
)
# TODO: more robust handling of recognizing ignore context manager
def is_torch_jit_ignore_context_manager(stmt):
# checks if the statement is torch.jit.ignore context manager
if isinstance(stmt.items[0].context_expr, ast.Call):
# extract torch part
function = stmt.items[0].context_expr.func
if isinstance(function, ast.Attribute):
attr_name = function.attr
attr_value = function.value
if attr_name == "_IgnoreContextManager" and isinstance(
attr_value, ast.Attribute
):
# there should be at most two nested attributes (e.g torch.jit._IgnoreContextManager)
if attr_value.attr == "jit" and isinstance(attr_value.value, ast.Name):
if attr_value.value.id == "torch":
return True
return False
class Builder:
def __call__(self, ctx, node):
method = getattr(self, "build_" + node.__class__.__name__, None)
if method is None:
raise UnsupportedNodeError(ctx, node)
return method(ctx, node)
def build_class_def(ctx, py_def, methods, properties, self_name, assigns):
r = ctx.make_range(
py_def.lineno, py_def.col_offset, py_def.col_offset + len("class")
)
return ClassDef(
Ident(r, self_name), [Stmt(method) for method in methods], properties, assigns
)
def build_def(ctx, py_def, type_line, def_name, self_name=None, pdt_arg_types=None):
body = py_def.body
r = ctx.make_range(py_def.lineno, py_def.col_offset, py_def.col_offset + len("def"))
param_list = build_param_list(ctx, py_def.args, self_name, pdt_arg_types)
return_type = None
if getattr(py_def, "returns", None) is not None:
return_type = build_expr(ctx, py_def.returns)
decl = Decl(r, param_list, return_type)
is_method = self_name is not None
if type_line is not None:
type_comment_decl = torch._C.parse_type_comment(type_line)
decl = torch._C.merge_type_from_type_comment(decl, type_comment_decl, is_method)
return Def(Ident(r, def_name), decl, build_stmts(ctx, body))
_vararg_kwarg_err = (
"Compiled functions can't take variable number of arguments "
"or use keyword-only arguments with defaults"
)
def build_param_list(ctx, py_args, self_name, pdt_arg_types=None):
if py_args.kwarg is not None:
expr = py_args.kwarg
ctx_range = ctx.make_range(
expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg)
)
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if py_args.vararg is not None:
expr = py_args.vararg
ctx_range = ctx.make_range(
expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg)
)
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if len(py_args.kw_defaults) > 0:
# kw_defaults is a list of the values for the kwargs (which default to None),
# so they don't actually have line numbers.
for arg in py_args.kw_defaults:
if arg is not None:
ctx_range = build_expr(ctx, arg).range()
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
# List of Tuple of args and type as inferred by profile directed typing
arg_and_types = [
(
arg,
pdt_arg_types[arg.arg]
if pdt_arg_types and bool(pdt_arg_types[arg.arg])
else None,
)
for arg in py_args.args
]
arg_and_types_kwonlyargs = [
(
arg,
pdt_arg_types[arg.arg]
if pdt_arg_types and bool(pdt_arg_types[arg.arg])
else None,
)
for arg in py_args.kwonlyargs
]
result = [
build_param(ctx, arg, self_name, kwarg_only=False, pdt_arg_type=arg_type)
for arg, arg_type in arg_and_types
]
result += [
build_param(ctx, arg, self_name, kwarg_only=True, pdt_arg_type=arg_type)
for arg, arg_type in arg_and_types_kwonlyargs
]
return result
def build_param(ctx, py_arg, self_name, kwarg_only, pdt_arg_type=None):
# NB: In Python3 py_arg is a pair of (str arg, expr? annotation)
name = py_arg.arg
r = ctx.make_range(py_arg.lineno, py_arg.col_offset, py_arg.col_offset + len(name))
if getattr(py_arg, "annotation", None) is not None:
annotation_expr = build_expr(ctx, py_arg.annotation)
elif pdt_arg_type:
annotation_expr = Var(Ident(r, pdt_arg_type))
elif self_name is not None and name == "self":
annotation_expr = Var(Ident(r, self_name))
else:
annotation_expr = EmptyTypeAnnotation(r)
return Param(annotation_expr, Ident(r, name), kwarg_only)
def build_ignore_context_manager(ctx, stmt):
InputType = namedtuple("InputType", ["name", "ann"])
OutputType = namedtuple("OutputType", ["name", "ann"])
def process_ins_outs(args):
# parse the context manager to figure out inputs and outputs
# with their annotated types
# TODO: add input, output validator
inputs = []
outputs = []
for arg in args:
var_name = arg.arg
var_ann = arg.value.value
var_decl_type, var_ann = var_ann.split(":")
if var_decl_type == "inp":
inputs.append(InputType(var_name, var_ann))
if var_decl_type == "out":
outputs.append(OutputType(var_name, var_ann))
return inputs, outputs
def create_unique_name_ext(ctx, stmt):
# extension will be based on the full path filename plus
# the line number of original context manager
fn = re.sub(r"[^a-zA-Z0-9_]", "_", ctx.filename)
return f"{fn}_{stmt.lineno}"
def build_return_ann_stmt(outputs):
return_type_ann = ""
return_statement_str = "return "
if len(outputs) == 0:
return_type_ann += " -> None"
if len(outputs) == 1:
return_type_ann = " -> " + outputs[0].ann
return_statement_str += outputs[0].name
if len(outputs) > 1:
return_type_ann = " -> Tuple"
return_type_ann += "[" + ", ".join([var.ann for var in outputs]) + "]"
return_statement_str += ", ".join([var.name for var in outputs])
return return_type_ann, return_statement_str
def build_args(args):
return ", ".join([arg.name for arg in args])
inputs, outputs = process_ins_outs(stmt.items[0].context_expr.keywords)
# build the replacement function str with given inputs and outputs
ignore_function_name = "func_ignore_" + create_unique_name_ext(ctx, stmt)
ignore_function_str = "\ndef " + ignore_function_name
ignore_function_str += (
"(" + ", ".join([var.name + " :" + var.ann for var in inputs]) + ")"
)
return_ann, return_stmt = build_return_ann_stmt(outputs)
ignore_function_str += return_ann + ": pass"
# first create the functionDef object from just declaration
ignore_function = ast.parse(ignore_function_str).body[0]
# dump the body of context manager to dummy function
ignore_function.body = stmt.body # type: ignore[attr-defined]
# insert return statement to the function
return_stmt = ast.parse(return_stmt).body[0]
ignore_function.body.append(return_stmt) # type: ignore[attr-defined]
# registers the custom function in the global context
ignore_func_str = "@torch.jit.ignore\n" + astunparse.unparse(ignore_function)
ignore_func_str += f'\nglobals()["{ignore_function_name}"] = {ignore_function_name}'
exec(ignore_func_str) # noqa: P204
# build the statements as:
# <out_1>, <out_2>, ... = torch.jit.frontend.<func>(<in_1>, <in_2>)
assign_str_lhs = build_args(outputs)
# this function will be registered in torch.jit.frontend module by default
assign_str_rhs = (
f"torch.jit.frontend.{ignore_function_name}(" + build_args(inputs) + ")"
)
if len(outputs) > 0:
assign_str = assign_str_lhs + " = " + assign_str_rhs
else:
assign_str = assign_str_rhs
assign_ast = ast.parse(assign_str).body[0]
return assign_ast
def get_default_args(fn):
if fn is None:
return {}
signature = inspect.signature(fn)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
def get_default_args_for_class(cls):
"""
Get default arguments for all methods in a class (except for static methods).
Args:
cls: type - The class type to inspect for default arguments.
Returns:
A Dict[str, Dict[str, Any]] which maps each method name to a Dict[str, Any]
that maps each argument name to its default value.
"""
# Get methods (except static methods because those are compiled separately as
# if they were independent script functions).
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__,
)
# Get method defaults. Property defaults do not need to be considered
# because setters cannot be invoked without a value.
defaults = {
method_name: get_default_args(method_impl)
for method_name, method_impl in methods
}
return defaults
class WithItemBuilder(Builder):
@staticmethod
def build_withitem(ctx, item):
lineno = item.context_expr.lineno
start = item.context_expr.col_offset
end = start + len(pretty_node_names[ast.With])
op_vars = item.optional_vars
r = ctx.make_range(lineno, start, end)
return WithItem(
r,
build_expr(ctx, item.context_expr),
build_expr(ctx, op_vars) if op_vars else None,
)
class StmtBuilder(Builder):
augassign_map = {
ast.Add: "+",
ast.Sub: "-",
ast.Mult: "*",
ast.Div: "/",
ast.Mod: "%",
ast.BitOr: "|",
ast.BitAnd: "&",
ast.BitXor: "^",
ast.LShift: "<<",
ast.RShift: ">>",
ast.Pow: "**",
}
@staticmethod
def build_Expr(ctx, stmt):
value = stmt.value
if value.__class__.__name__ == "Str":
# If a statement is a string literal expression,
# then it is a docstring. Just ignore it.
return None
else:
return ExprStmt(build_expr(ctx, value))
@staticmethod
def build_Assign(ctx, stmt):
rhs = build_expr(ctx, stmt.value)
lhs = [build_expr(ctx, x) for x in stmt.targets]
return Assign(lhs, rhs)
@staticmethod
def build_AnnAssign(ctx, stmt):
if stmt.value is None:
raise UnsupportedNodeError(ctx, stmt, reason="without assigned value")
# Disallow type annotations on instance attributes outside of __init__
if (
type(stmt.target) == ast.Attribute
and stmt.target.value.id == "self" # type: ignore[attr-defined]
and ctx.funcname != "__init__"
):
start = stmt.col_offset
end = start + len(f"self.{stmt.target.attr}")
if hasattr(stmt.annotation, "id"):
end += len(f": {stmt.annotation.id}")
sr = ctx.make_range(stmt.lineno, start, end)
raise ValueError(
"Type annotations on instance attributes must be declared in "
f"__init__, not '{ctx.funcname}': {sr}"
)
rhs = build_expr(ctx, stmt.value)
lhs = build_expr(ctx, stmt.target)
the_type = build_expr(ctx, stmt.annotation)
return Assign([lhs], rhs, the_type)
@staticmethod
def build_Delete(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("del"))
return Delete(r, [build_expr(ctx, target) for target in stmt.targets])
@staticmethod
def build_Return(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("return")
)
return Return(r, None if stmt.value is None else build_expr(ctx, stmt.value))
@staticmethod
def build_Raise(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("raise"))
expr = build_expr(ctx, stmt.exc)
return Raise(r, expr)
@staticmethod
def build_Assert(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("assert")
)
test = build_expr(ctx, stmt.test)
msg = build_expr(ctx, stmt.msg) if stmt.msg is not None else None
return Assert(r, test, msg)
@staticmethod
def build_AugAssign(ctx, stmt):
lhs = build_expr(ctx, stmt.target)
rhs = build_expr(ctx, stmt.value)
op = type(stmt.op)
if op in StmtBuilder.augassign_map:
op_token = StmtBuilder.augassign_map[op]
else:
raise NotSupportedError(
find_before(ctx, rhs.range().start, "=", offsets=(-1, 0)),
"unsupported kind of augmented assignment: " + op.__name__,
)
return AugAssign(lhs, op_token, rhs)
@staticmethod
def build_While(ctx, stmt):
if stmt.orelse:
# TODO: try to recover the location of else:? Python doesn't give us useful
# annotations in this case
raise NotSupportedError(
None, "else branches of while loops aren't supported"
)
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("while"))
return While(r, build_expr(ctx, stmt.test), build_stmts(ctx, stmt.body))
@staticmethod
def build_For(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("for"))
if stmt.orelse:
raise NotSupportedError(r, "else branches of for loops aren't supported")
return For(
r,
[build_expr(ctx, stmt.target)],
[build_expr(ctx, stmt.iter)],
build_stmts(ctx, stmt.body),
)
@staticmethod
def build_If(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("if"))
return If(
r,
build_expr(ctx, stmt.test),
build_stmts(ctx, stmt.body),
build_stmts(ctx, stmt.orelse),
)
@staticmethod
def build_Print(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("print"))
if stmt.dest:
raise NotSupportedError(
r, "print statements with non-default destinations aren't supported"
)
args = [build_expr(ctx, val) for val in stmt.values]
return ExprStmt(Apply(Var(Ident(r, "print")), args, []))
@staticmethod
def build_Pass(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("pass"))
return Pass(r)
@staticmethod
def build_Break(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("break"))
return Break(r)
@staticmethod
def build_Continue(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("continue")
)
return Continue(r)
@staticmethod
def build_With(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("with"))
# Handle ignore context manager
if is_torch_jit_ignore_context_manager(stmt):
if not _IS_ASTUNPARSE_INSTALLED:
raise RuntimeError(
"torch.jit._IgnoreContextManager requires installing Python library `astunparse`, \
please install it in your Python environment"
)
assign_ast = build_ignore_context_manager(ctx, stmt)
return build_stmt(ctx, assign_ast)
return With(r, build_withitems(ctx, stmt.items), build_stmts(ctx, stmt.body))
class ExprBuilder(Builder):
binop_map = {
ast.Add: "+",
ast.Sub: "-",
ast.Mult: "*",
ast.Div: "/",
ast.Pow: "**",
ast.Mod: "%",
ast.FloorDiv: "//",
ast.BitAnd: "&",
ast.BitXor: "^",
ast.BitOr: "|",
ast.LShift: "<<",
ast.RShift: ">>",
}
binop_map[ast.MatMult] = "@"
unop_map = {
ast.Not: "not",
ast.USub: "-",
ast.Invert: "~",
}
boolop_map = {
ast.And: "and",
ast.Or: "or",
}
cmpop_map = {
ast.Eq: "==",
ast.NotEq: "!=",
ast.LtE: "<=",
ast.Lt: "<",
ast.GtE: ">=",
ast.Gt: ">",
ast.Is: "is",
ast.IsNot: "is not",
ast.In: "in",
ast.NotIn: "not in",
}
@staticmethod
def build_Attribute(ctx, expr):
base = build_expr(ctx, expr.value)
# expr.attr is just a string, so it's not annotated in any way, so we have
# to build the range manually
source = ctx.source.encode("utf-8")
def get_char(index):
return chr(source[index])
start_pos = base.range().end + 1
while get_char(start_pos) in string.whitespace: # Skip whitespace
start_pos += 1
end_pos = start_pos + len(expr.attr)
name_range = ctx.make_raw_range(start_pos, end_pos)
return Select(base, Ident(name_range, expr.attr))
@staticmethod
def build_Call(ctx, expr):
func = build_expr(ctx, expr.func)
args = [build_expr(ctx, py_arg) for py_arg in expr.args]
if hasattr(expr, "starargs") and expr.starargs:
stararg_expr = build_expr(ctx, expr.starargs)
args += [Starred(stararg_expr.range(), stararg_expr)]
kwargs = []
for kw in expr.keywords:
kw_expr = build_expr(ctx, kw.value)
# XXX: we could do a better job at figuring out the range for the name here
if not kw.arg:
raise NotSupportedError(
kw_expr.range(), "keyword-arg expansion is not supported"
)
kwargs.append(Attribute(Ident(kw_expr.range(), kw.arg), kw_expr))
return Apply(func, args, kwargs)
@staticmethod
def build_Ellipsis(ctx, expr):
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + 3
) # len("...") == 3
return Dots(r)
@staticmethod
def build_Name(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(expr.id))
if expr.id.startswith(_reserved_prefix):
raise NotSupportedError(
r,
"names of variables used in JIT-ed functions "
"can't start with " + _reserved_prefix,
)
if expr.id == "True":
return TrueLiteral(r)
elif expr.id == "False":
return FalseLiteral(r)
elif expr.id == "None":
return NoneLiteral(r)
elif expr.id == "Ellipsis":
return Dots(r)
return Var(Ident(r, expr.id))
@staticmethod
def build_NameConstant(ctx, expr):
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(str(expr.value))
)
if expr.value is True:
return TrueLiteral(r)
elif expr.value is False:
return FalseLiteral(r)
elif expr.value is None:
return NoneLiteral(r)
elif expr.value == Ellipsis:
return Dots(r)
else:
raise ValueError("Name constant value unsupported: " + str(expr.value))
@staticmethod
def build_BinOp(ctx, expr):
lhs = build_expr(ctx, expr.left)
rhs = build_expr(ctx, expr.right)
op = type(expr.op)
if op == ast.Div and not ctx.uses_true_division:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise FrontendError(
err_range,
"Division of ints in TorchScript uses Python 3 true "
"division semantics. Please put `from __future__ "
"import division` at the top of your file",
)
op_token = ExprBuilder.binop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise NotSupportedError(
err_range, "unsupported binary operator: " + op.__name__
)
return BinOp(op_token, lhs, rhs)
@staticmethod
def build_UnaryOp(ctx, expr):
sub_expr = build_expr(ctx, expr.operand)
op = type(expr.op)
op_token = ExprBuilder.unop_map.get(op)
if op_token is None:
raise NotSupportedError(
expr.range(), "unsupported unary operator: " + op.__name__
)
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(op_token)
)
return UnaryOp(r, op_token, sub_expr)
@staticmethod
def build_BoolOp(ctx, expr):
if len(expr.values) < 2:
raise AssertionError(
"expected at least 2 values in BoolOp, but got " + str(len(expr.values))
)
sub_exprs = [build_expr(ctx, sub_expr) for sub_expr in expr.values]
op = type(expr.op)
op_token = ExprBuilder.boolop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(
sub_exprs[0].range().end, sub_exprs[1].range().start
)
raise NotSupportedError(
err_range, "unsupported boolean operator: " + op.__name__
)
lhs = sub_exprs[0]
for rhs in sub_exprs[1:]:
lhs = BinOp(op_token, lhs, rhs)
return lhs
@staticmethod
def build_IfExp(ctx, expr):
return TernaryIf(
build_expr(ctx, expr.test),
build_expr(ctx, expr.body),
build_expr(ctx, expr.orelse),
)
@staticmethod
def build_Compare(ctx, expr):
operands = [build_expr(ctx, e) for e in [expr.left] + list(expr.comparators)]
result = None
for lhs, op_, rhs in zip(operands, expr.ops, operands[1:]):
op = type(op_)
op_token = ExprBuilder.cmpop_map.get(op)
r = ctx.make_raw_range(lhs.range().end, rhs.range().start)
if op_token is None:
raise NotSupportedError(
r, "unsupported comparison operator: " + op.__name__
)
if op == ast.NotIn:
# NB: `not in` is just `not( in )`, so we don't introduce new tree view
# but just make it a nested call in our tree view structure
in_expr = BinOp("in", lhs, rhs)
cmp_expr = UnaryOp(r, "not", in_expr)
else:
cmp_expr = BinOp(op_token, lhs, rhs)
if result is None:
result = cmp_expr
else:
result = BinOp("and", result, cmp_expr)
return result
@staticmethod
def build_Subscript(ctx, expr):
def build_SliceExpr(ctx, base, slice_expr):
lower = (
build_expr(ctx, slice_expr.lower)
if slice_expr.lower is not None
else None
)
upper = (
build_expr(ctx, slice_expr.upper)
if slice_expr.upper is not None
else None
)
step = (
build_expr(ctx, slice_expr.step)
if slice_expr.step is not None
else None
)
return SliceExpr(base.range(), lower, upper, step)
def build_Index(ctx, base, index_expr):
if isinstance(index_expr.value, ast.Tuple):
raise NotSupportedError(
base.range(),
"slicing multiple dimensions with tuples not supported yet",
)
return build_expr(ctx, index_expr.value)
def build_ExtSlice(ctx, base, extslice):
sub_exprs = []
for expr in extslice.dims:
sub_type = type(expr)
if sub_type is ast.Index:
sub_exprs.append(build_Index(ctx, base, expr))
elif sub_type is ast.Slice:
sub_exprs.append(build_SliceExpr(ctx, base, expr))
elif sub_type is ast.Ellipsis:
sub_exprs.append(Dots(base.range()))
else:
raise NotSupportedError(
base.range(),
f"slicing multiple dimensions with {sub_type} not supported",
)
return sub_exprs
base = build_expr(ctx, expr.value)
sub_type = type(expr.slice)
if sub_type is ast.Index:
if isinstance(expr.slice.value, ast.Tuple):
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
# XXX: Indexing using a list is **different**! It triggers advanced indexing.
indices = [
build_expr(ctx, index_expr) for index_expr in expr.slice.value.elts
]
if not indices:
# `col_offset` is an int, but `end_col_offset` is
# `Optional[int]`. The magic number is here to make
# sure we can parse `()` on any machine
r = ctx.make_range(
expr.lineno,
expr.slice.value.col_offset,
expr.slice.value.col_offset + 2,
)
tup = TupleLiteral(r, [])
indices.append(tup)
return Subscript(base, indices)
else:
return Subscript(base, [build_expr(ctx, expr.slice.value)])
elif sub_type is ast.Slice:
return Subscript(base, [build_SliceExpr(ctx, base, expr.slice)])
elif sub_type is ast.ExtSlice:
return Subscript(base, build_ExtSlice(ctx, base, expr.slice))
elif sys.version_info >= (
3,
9,
): # In Python3.9 array indicies are not wrapped in ast.Index
if sub_type is ast.Tuple:
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
indices = []
for index_expr in expr.slice.elts:
if isinstance(index_expr, ast.Slice):
indices.append(build_SliceExpr(ctx, base, index_expr))
else:
indices.append(build_expr(ctx, index_expr))
# Special-case logic for `typing.Tuple[()]`
if not indices:
# See note above r.e. magic number
r = ctx.make_range(
expr.lineno, expr.slice.col_offset, expr.slice.col_offset + 2
)
tup = TupleLiteral(r, [])
indices.append(tup)
return Subscript(base, indices)
return Subscript(base, [build_expr(ctx, expr.slice)])
else: # Ellipsis (can only happen in Python 2)
raise NotSupportedError(base.range(), "ellipsis is not supported")
@staticmethod
def build_List(ctx, expr):
return ListLiteral(
ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts],
)
@staticmethod
def build_Tuple(ctx, expr):
return TupleLiteral(
ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts],
)
@staticmethod
def build_Dict(ctx, expr):
range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
if expr.keys and not expr.keys[0]:
raise NotSupportedError(
range, "Dict expansion (e.g. `{**dict}`) is not supported"
)
return DictLiteral(
range,
[build_expr(ctx, e) for e in expr.keys],
[build_expr(ctx, e) for e in expr.values],
)
@staticmethod
def build_Num(ctx, expr):
value = str(expr.value)
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(value))
return Const(r, value)
@staticmethod
def build_Constant(ctx, expr):
value = expr.value
if value is None or isinstance(value, bool):
# NB: this check has to happen before the int check because bool is
# a subclass of int
return ExprBuilder.build_NameConstant(ctx, expr)
if isinstance(value, (int, float, complex)):
return ExprBuilder.build_Num(ctx, expr)
elif isinstance(value, str):
return ExprBuilder.build_Str(ctx, expr)
elif isinstance(value, type(Ellipsis)):
return ExprBuilder.build_Ellipsis(ctx, expr)
else:
error_range = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(str(value))
)
raise FrontendError(error_range, "Unknown Constant expression type")
@staticmethod
def build_Str(ctx, expr):
value = str(expr.value)
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(value) + 1
)
return StringLiteral(r, value)
@staticmethod
def build_JoinedStr(ctx, expr):
s = ""
args = []
for value in expr.values:
r = ctx.make_range(value.lineno, value.col_offset, value.col_offset + 1)
if isinstance(value, ast.FormattedValue):
if value.conversion != -1:
raise NotSupportedError(r, "Don't support conversion in JoinedStr")
if value.format_spec is not None:
raise NotSupportedError(r, "Don't support formatting in JoinedStr")
s += "{}"
args.append(build_expr(ctx, value.value))
elif isinstance(value, ast.Str):
s += value.s
else:
raise NotSupportedError(r, "Unsupported value in JoinedStr")
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Apply(Select(StringLiteral(r, s), Ident(r, "format")), args, [])
@staticmethod
def build_ListComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if len(stmt.generators) != 1:
raise NotSupportedError(r, "Only a single generator is currently supported")
if len(stmt.generators[0].ifs) != 0:
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
elt_expr = build_expr(ctx, stmt.elt)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return ListComp(r, elt_expr, target_expr, iter_expr)
@staticmethod
def build_GeneratorExp(ctx, stmt):
# Convert Generator expression to ListComp
return ExprBuilder.build_ListComp(ctx, stmt)
@staticmethod
def build_DictComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if len(stmt.generators) != 1:
raise NotSupportedError(r, "Only a single generator is currently supported")
if len(stmt.generators[0].ifs) != 0:
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
key_expr = build_expr(ctx, stmt.key)
value_expr = build_expr(ctx, stmt.value)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return DictComp(r, key_expr, value_expr, target_expr, iter_expr)
@staticmethod
def build_Starred(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Starred(r, build_expr(ctx, expr.value))
build_expr = ExprBuilder()
build_stmt = StmtBuilder()
build_withitem = WithItemBuilder()
def find_before(ctx, pos, substr, offsets=(0, 0)):
new_pos = ctx.source[:pos].rindex(substr)
return ctx.make_raw_range(new_pos + offsets[0], new_pos + len(substr) + offsets[1])
|