Spaces:
Running
Running
File size: 61,350 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 |
"""This file exports ONNX ops for opset 11."""
from __future__ import annotations
import functools
import sys
import warnings
from typing import Optional, Sequence
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
from torch.onnx import (
_type_utils,
errors,
symbolic_helper,
symbolic_opset10 as opset10,
symbolic_opset9 as opset9,
utils,
)
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype, jit_utils, registration
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in README.md
__all__ = [
"add",
"append",
"arange",
"argsort",
"atleast_1d",
"atleast_2d",
"atleast_3d",
"cat",
"chunk",
"clamp_max",
"clamp_min",
"clamp",
"constant_pad_nd",
"cumsum",
"Delete",
"embedding_bag",
"embedding_renorm",
"flatten",
"gather",
"hardtanh",
"hstack",
"im2col",
"index_fill",
"index",
"index_copy",
"index_put",
"insert",
"linalg_det",
"linalg_vector_norm",
"logdet",
"masked_scatter",
"masked_select",
"mm",
"narrow",
"normal",
"pad",
"pixel_shuffle",
"pop",
"prim_constant_chunk",
"reflection_pad",
"relu6",
"remainder",
"replication_pad",
"round",
"scatter",
"select",
"size",
"sort",
"split_with_sizes",
"split",
"squeeze",
"stack",
"topk",
"unbind",
"unique_dim",
"unsqueeze",
"vstack",
]
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=11)
def _apply_params(*args, **kwargs):
"""Returns a decorator that calls the decorated (higher-order) function with the given parameters."""
def _apply(fn):
return fn(*args, **kwargs)
return _apply
@_onnx_symbolic("aten::hardtanh")
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "f", "f")
@_beartype.beartype
def hardtanh(g: jit_utils.GraphContext, self: _C.Value, min_val: float, max_val: float):
scalar_type = _type_utils.JitScalarType.from_value(
self, _type_utils.JitScalarType.FLOAT
)
min_val = g.op(
"Constant",
value_t=torch.tensor(min_val, dtype=scalar_type.dtype()),
)
max_val = g.op(
"Constant",
value_t=torch.tensor(max_val, dtype=scalar_type.dtype()),
)
return opset9._op_with_optional_float_cast(
g, "Clip", self, min_val, max_val, opset_before=12
)
@_onnx_symbolic("aten::clamp")
@_beartype.beartype
def clamp(g: jit_utils.GraphContext, self, min, max):
@_beartype.beartype
def _cast_if_not_none(tensor, dtype):
if tensor is not None and not symbolic_helper._is_none(tensor):
return g.op(
"Cast",
tensor,
to_i=dtype.onnx_type(),
)
else:
return tensor
scalar_type = _type_utils.JitScalarType.from_value(
self, _type_utils.JitScalarType.UNDEFINED
)
if scalar_type != _type_utils.JitScalarType.UNDEFINED:
min = _cast_if_not_none(min, scalar_type)
max = _cast_if_not_none(max, scalar_type)
if symbolic_helper._is_none(min):
return clamp_max(g, self, max)
elif symbolic_helper._is_none(max):
return clamp_min(g, self, min)
else:
if (
symbolic_helper._get_tensor_rank(min) == 0
and symbolic_helper._get_tensor_rank(max) == 0
):
return opset9._op_with_optional_float_cast(
g, "Clip", self, min, max, opset_before=12
)
else:
return clamp_max(g, clamp_min(g, self, min), max)
@_onnx_symbolic("aten::clamp_min")
@symbolic_helper.parse_args("v", "v")
@_beartype.beartype
def clamp_min(g: jit_utils.GraphContext, self, min):
min = g.op("Cast", min, to_i=_type_utils.JitScalarType.from_value(self).onnx_type())
if symbolic_helper._get_tensor_rank(min) == 0:
max = opset9.unused(g)
return opset9._op_with_optional_float_cast(
g, "Clip", self, min, max, opset_before=12
)
else:
return opset9._op_with_optional_float_cast(g, "Max", self, min, opset_before=12)
@_onnx_symbolic("aten::clamp_max")
@symbolic_helper.parse_args("v", "v")
@_beartype.beartype
def clamp_max(g: jit_utils.GraphContext, self, max):
max = g.op("Cast", max, to_i=_type_utils.JitScalarType.from_value(self).onnx_type())
if symbolic_helper._get_tensor_rank(max) == 0:
min = opset9.unused(g)
return opset9._op_with_optional_float_cast(
g, "Clip", self, min, max, opset_before=12
)
else:
return opset9._op_with_optional_float_cast(g, "Min", self, max, opset_before=12)
@_onnx_symbolic("aten::relu6")
@_beartype.beartype
def relu6(g: jit_utils.GraphContext, input):
scalar_type = _type_utils.JitScalarType.from_value(
input, _type_utils.JitScalarType.FLOAT
)
min_val = g.op(
"Constant",
value_t=torch.tensor(0, dtype=scalar_type.dtype()),
)
max_val = g.op(
"Constant",
value_t=torch.tensor(6, dtype=scalar_type.dtype()),
)
return clamp(g, input, min_val, max_val)
@_onnx_symbolic("aten::select")
# Opset 11 gather accepts negative indices
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "i", "v")
@_beartype.beartype
def select(g: jit_utils.GraphContext, self, dim, index):
return g.op("Gather", self, index, axis_i=dim)
@_onnx_symbolic("aten::index_put")
@_beartype.beartype
def index_put(
g: jit_utils.GraphContext, self, indices_list_value, values, accumulate=False
):
if symbolic_helper._is_packed_list(indices_list_value):
indices_list = symbolic_helper._unpack_list(indices_list_value)
else:
indices_list = [indices_list_value]
if symbolic_helper.is_caffe2_aten_fallback():
args = [self] + indices_list + [values, accumulate]
return g.at("index_put", *args)
accumulate = symbolic_helper._parse_arg(accumulate, "b")
if len(indices_list) == 0:
return values
if len(indices_list) > 1:
for idx_ in range(len(indices_list)):
if symbolic_helper._is_bool(indices_list[idx_]):
indices_list[idx_] = g.op("NonZero", indices_list[idx_])
index = indices_list[0]
for ind in indices_list[1:]:
index = opset9.add(g, index, ind)
broadcast_index_shape = g.op("Shape", index)
indices_list = [
symbolic_helper._unsqueeze_helper(
g, opset9.expand(g, ind, broadcast_index_shape, None), [-1]
)
for ind in indices_list
]
index = g.op("Concat", *indices_list, axis_i=-1)
else:
# Replace index_put node with masked_scatter or masked_fill
# when inputs to the index_put node contains a single boolean input.
#
# index_put -> masked_fill
# * input index contains single tensor of Bool type (e.g.: %24 <- %23).
# * input value contains single element (e.g.: %18).
#
# Torch IR
# %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
# %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
# aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
# %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
# %23 : Bool(8, strides=[1], device=cpu) = aten::view(%16, %22)
# %24 : Tensor?[] = prim::ListConstruct(%23)
# %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
# aten::index_put(%mask, %24, %18, %30)
# return (%25)
#
#
# index_put -> masked_scatter
# * input index contains single tensor of Bool type (e.g.: %32 <- %31).
# * input value contains multiple elements (e.g.: %28).
#
# Torch IR
# %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
# %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
# = prim::Constant[value= 1 1 1 1 1 1 1 1 [ CPUFloatType{8} ]]()
# %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::ne(%mask, %some_const)
# %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
# %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
# %30 : int[] = prim::Constant[value=[-1]]()
# %31 : Bool(8, strides=[1], device=cpu) = aten::view(%23, %30)
# %32 : Tensor?[] = prim::ListConstruct(%31)
# %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::index_put(%mask, %32, %28, %38)
# return (%33)
index = indices_list[0]
bool_inp = index
if symbolic_helper._is_bool(bool_inp):
rank = symbolic_helper._get_tensor_rank(values)
if rank is not None and rank == 0:
return opset9.masked_fill(g, self, bool_inp, values)
mask_rank = symbolic_helper._get_tensor_rank(bool_inp)
self_rank = symbolic_helper._get_tensor_rank(self)
if (
mask_rank is not None
and self_rank is not None
and self_rank > mask_rank
):
# Unsqueeze 'bool_inp' to be broadcastable to shape of 'self'.
bool_inp = symbolic_helper._unsqueeze_helper(
g, bool_inp, list(range(mask_rank, self_rank))
)
return masked_scatter(g, self, bool_inp, values)
broadcast_index_shape = g.op("Shape", index)
index = symbolic_helper._unsqueeze_helper(g, index, [-1])
sub_data_shape = symbolic_helper._slice_helper(
g, g.op("Shape", self), axes=[0], starts=[len(indices_list)], ends=[sys.maxsize]
)
values_shape = g.op("Concat", broadcast_index_shape, sub_data_shape, axis_i=0)
# Check if values is a singular value and expand accordingly
rank = symbolic_helper._get_tensor_rank(values)
if rank is not None and rank == 0:
values = opset9.expand(g, values, values_shape, None)
values = symbolic_helper._reshape_helper(g, values, values_shape)
self_scalar_type = _type_utils.JitScalarType.from_value(
self, _type_utils.JitScalarType.UNDEFINED
)
if self_scalar_type != _type_utils.JitScalarType.UNDEFINED:
values_scalar_type = _type_utils.JitScalarType.from_value(
values, _type_utils.JitScalarType.UNDEFINED
)
if self_scalar_type != values_scalar_type:
values = g.op("Cast", values, to_i=self_scalar_type.onnx_type())
elif accumulate:
raise errors.SymbolicValueError("self does not have a valid scalar type.", self)
if accumulate:
zeros = g.op(
"ConstantOfShape",
g.op("Shape", self),
value_t=torch.tensor([0], dtype=self_scalar_type.dtype()),
)
result = g.op("ScatterND", zeros, index, values)
result = add(g, self, result)
else:
result = g.op("ScatterND", self, index, values)
return result
@_onnx_symbolic("aten::pixel_shuffle")
@symbolic_helper.parse_args("v", "i")
@_beartype.beartype
def pixel_shuffle(g: jit_utils.GraphContext, self, upscale_factor):
rank = symbolic_helper._get_tensor_rank(self)
if rank is not None and rank != 4:
return symbolic_helper._unimplemented("pixel_shuffle", "only support 4d input")
return g.op("DepthToSpace", self, blocksize_i=upscale_factor, mode_s="CRD")
@_onnx_symbolic(
"aten::upsample_nearest1d",
decorate=[_apply_params("upsample_nearest1d", 3, "nearest")],
)
@_onnx_symbolic(
"aten::upsample_nearest2d",
decorate=[_apply_params("upsample_nearest2d", 4, "nearest")],
)
@_onnx_symbolic(
"aten::upsample_nearest3d",
decorate=[_apply_params("upsample_nearest3d", 5, "nearest")],
)
@_onnx_symbolic(
"aten::upsample_linear1d",
decorate=[_apply_params("upsample_linear1d", 3, "linear")],
)
@_onnx_symbolic(
"aten::upsample_bilinear2d",
decorate=[_apply_params("upsample_bilinear2d", 4, "linear")],
)
@_onnx_symbolic(
"aten::upsample_trilinear3d",
decorate=[_apply_params("upsample_trilinear3d", 5, "linear")],
)
@_onnx_symbolic(
"aten::upsample_bicubic2d",
decorate=[_apply_params("upsample_bicubic2d", 4, "cubic")],
)
@_beartype.beartype
def _interpolate(name: str, dim: int, interpolate_mode: str):
return symbolic_helper._interpolate_helper(name, dim, interpolate_mode)
@_onnx_symbolic("aten::__interpolate")
@symbolic_helper.quantized_args(True, False, False, False, False, False, False)
@_beartype.beartype
def __interpolate(
g: jit_utils.GraphContext,
input,
size,
scale_factor,
mode,
align_corners,
recompute_scale_factor,
antialias,
):
return symbolic_helper.__interpolate_helper(
g, input, size, scale_factor, mode, align_corners, recompute_scale_factor
)
@_onnx_symbolic("aten::gather")
@symbolic_helper.parse_args("v", "i", "v", "v")
@_beartype.beartype
def gather(g: jit_utils.GraphContext, self, dim, index, sparse_grad=False):
if symbolic_helper._maybe_get_const(sparse_grad, "i"):
return symbolic_helper._unimplemented("gather", "sparse_grad == True")
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("gather", self, dim, index, sparse_grad)
return g.op("GatherElements", self, index, axis_i=dim)
@_onnx_symbolic("aten::scatter")
@symbolic_helper.parse_args("v", "i", "v", "v")
@_beartype.beartype
def scatter(g: jit_utils.GraphContext, self, dim, index, src):
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("scatter", self, dim, index, src, overload_name="src")
src_type = _type_utils.JitScalarType.from_value(src)
src = symbolic_helper._maybe_get_scalar(src)
if symbolic_helper._is_value(src):
return g.op("ScatterElements", self, index, src, axis_i=dim)
else:
# Check if scalar "src" has same type as self (PyTorch allows different
# type for scalar src (but not when src is tensor)). If not, insert Cast node.
if _type_utils.JitScalarType.from_value(self) != src_type:
src = g.op(
"Cast",
src,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
return g.op(
"ScatterElements", self, index, opset9.expand_as(g, src, index), axis_i=dim
)
@_onnx_symbolic("aten::cumsum")
@symbolic_helper.parse_args("v", "i", "none")
@_beartype.beartype
def cumsum(g: jit_utils.GraphContext, self, dim, dtype=None):
dim_tensor = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.int))
if dtype and dtype.node().kind() != "prim::Constant":
parsed_dtype = symbolic_helper._get_const(dtype, "i", "dtype")
cast = g.op(
"Cast", self, to_i=_type_utils.JitScalarType(parsed_dtype).onnx_type()
)
else:
cast = self
csum = g.op("CumSum", cast, dim_tensor)
return csum
@_onnx_symbolic("aten::masked_select")
@_beartype.beartype
def masked_select(g: jit_utils.GraphContext, self, mask):
index = opset9.nonzero(g, opset9.expand_as(g, mask, self))
return g.op("GatherND", self, index)
@_onnx_symbolic("aten::masked_scatter")
@_beartype.beartype
def masked_scatter(g: jit_utils.GraphContext, self, mask, source):
index = opset9.nonzero(g, opset9.expand_as(g, mask, self))
# NOTE: source can have more elements than needed.
# It could also have arbitrary shape.
# This is not supported by ONNX::ScatterND, so we need to flatten and slice source tensor.
source = symbolic_helper._reshape_helper(g, source, torch.LongTensor([-1]))
source = symbolic_helper._slice_helper(
g,
source,
axes=torch.LongTensor([0]),
starts=torch.LongTensor([0]),
ends=opset9.size(g, index, torch.LongTensor([0])),
)
return g.op("ScatterND", self, index, source)
@_onnx_symbolic("aten::len")
@_beartype.beartype
def _len(g: jit_utils.GraphContext, self):
if (
symbolic_helper._is_tensor_list(self)
or self.node().kind() == "onnx::SplitToSequence"
):
return g.op("SequenceLength", self)
sz_0 = size(g, self, g.op("Constant", value_t=torch.LongTensor([0])))
return symbolic_helper._squeeze_helper(g, sz_0, [0])
@_onnx_symbolic("aten::__getitem_")
@_beartype.beartype
def __getitem_(g: jit_utils.GraphContext, self, i):
if symbolic_helper._is_tensor_list(self):
# SequenceAt requires that the input be a List of Tensors
return g.op("SequenceAt", self, i)
else:
from torch.onnx.symbolic_opset9 import __getitem_ as getitem
return getitem(g, self, i)
@_onnx_symbolic("aten::_set_item")
@_beartype.beartype
def _set_item(g: jit_utils.GraphContext, tensor_list, i, v):
tensor_list = g.op("SequenceErase", tensor_list, i)
return g.op("SequenceInsert", tensor_list, v, i)
@_onnx_symbolic("aten::append")
@_beartype.beartype
def append(g: jit_utils.GraphContext, self, tensor):
return g.op("SequenceInsert", self, tensor)
@_onnx_symbolic("aten::add")
@_beartype.beartype
def add(g: jit_utils.GraphContext, self, other, alpha=None):
if symbolic_helper._is_value(self) and symbolic_helper._is_tensor_list(self):
tensor_list_node = other.node()
if tensor_list_node.kind() != "prim::ListConstruct":
return symbolic_helper._unimplemented(
"add", "does not support adding dynamic tensor list to another"
)
tensors = symbolic_helper._unpack_list(other)
l = self
for t in tensors:
l = g.op("SequenceInsert", l, t)
return l
return opset9.add(g, self, other, alpha)
@_onnx_symbolic("aten::insert")
@_beartype.beartype
def insert(g: jit_utils.GraphContext, self, pos, tensor):
return g.op("SequenceInsert", self, tensor, pos)
@_onnx_symbolic("aten::pop")
@_beartype.beartype
def pop(g: jit_utils.GraphContext, tensor_list, dim):
return g.op("SequenceErase", tensor_list, dim)
@_onnx_symbolic("aten::Delete")
@_beartype.beartype
def Delete(g: jit_utils.GraphContext, tensor_list, dim):
return g.op("SequenceErase", tensor_list, dim)
@_onnx_symbolic("aten::cat")
@symbolic_helper.quantized_args(True)
@_beartype.beartype
def cat(g: jit_utils.GraphContext, tensor_list, dim):
if symbolic_helper._is_packed_list(tensor_list):
return opset9.cat(g, tensor_list, dim)
else:
dim = symbolic_helper._get_const(dim, "i", "dim")
return g.op("ConcatFromSequence", tensor_list, axis_i=dim)
@_onnx_symbolic("aten::stack")
@_beartype.beartype
def stack(g: jit_utils.GraphContext, tensor_list, dim):
if symbolic_helper._is_packed_list(tensor_list):
return opset9.stack(g, tensor_list, dim)
else:
dim = symbolic_helper._get_const(dim, "i", "dim")
return g.op("ConcatFromSequence", tensor_list, axis_i=dim, new_axis_i=1)
@_onnx_symbolic("aten::_unique2")
@symbolic_helper.parse_args("v", "i", "i", "i")
@_beartype.beartype
def _unique2(g: jit_utils.GraphContext, self, sorted, return_inverse, return_counts):
u, indices, inverse_indices, counts = g.op(
"Unique", self, sorted_i=sorted, outputs=4
)
return u, inverse_indices, counts
@_onnx_symbolic("aten::unique_dim")
@symbolic_helper.parse_args("v", "i", "i", "i", "i")
@_beartype.beartype
def unique_dim(
g: jit_utils.GraphContext, self, dim, sorted, return_inverse, return_counts
):
u, indices, inverse_indices, counts = g.op(
"Unique", self, axis_i=dim, sorted_i=sorted, outputs=4
)
return u, inverse_indices, counts
@_onnx_symbolic("aten::topk")
@symbolic_helper.parse_args("v", "v", "i", "i", "i", "none")
@_beartype.beartype
def topk(g: jit_utils.GraphContext, self, k, dim, largest, sorted, out=None):
return symbolic_helper._topk_helper(
g, self, k, dim, largest=largest, sorted=sorted, out=out
)
@_onnx_symbolic("aten::sort")
@symbolic_helper.parse_args("v", "i", "i", "none")
@_beartype.beartype
def sort(g: jit_utils.GraphContext, self, dim, decending, out=None):
return symbolic_helper._sort_helper(g, self, dim, decending=decending, out=out)
@_onnx_symbolic("aten::argsort")
@symbolic_helper.parse_args("v", "i", "i", "none")
@_beartype.beartype
def argsort(g: jit_utils.GraphContext, self, dim, decending, out=None):
_, indices = symbolic_helper._sort_helper(
g, self, dim, decending=decending, out=out
)
return indices
@_onnx_symbolic("aten::round")
@symbolic_helper.parse_args("v", "i")
@_beartype.beartype
def round(g: jit_utils.GraphContext, self, decimals=0):
if not symbolic_helper._is_fp(self):
return self
if decimals == 0:
return g.op("Round", self)
mul = g.op("Mul", self, g.op("Constant", value_t=torch.tensor(pow(10, decimals))))
round = g.op("Round", mul)
return g.op(
"Mul", round, g.op("Constant", value_t=torch.tensor(pow(10, -1 * decimals)))
)
@_onnx_symbolic("aten::remainder")
@_beartype.beartype
def remainder(g: jit_utils.GraphContext, input, other):
if symbolic_helper._is_fp(input) or symbolic_helper._is_fp(other):
return opset9.remainder(g, input, other)
return g.op("Mod", input, other, fmod_i=0)
@_onnx_symbolic("aten::split")
@symbolic_helper.parse_args("v", "v", "i", "i")
@_beartype.beartype
def split(g: jit_utils.GraphContext, self, split_size_or_sizes, dim, _outputs=None):
if not symbolic_helper._is_split_static(split_size_or_sizes, _outputs):
split_out = g.op("SplitToSequence", self, split_size_or_sizes, axis_i=dim)
if _outputs is None:
return split_out
# Convert to multiple slice nodes iff number of splits and number of outputs are statically known.
if (
symbolic_helper._is_packed_list(split_size_or_sizes)
and len(symbolic_helper._unpack_list(split_size_or_sizes)) == _outputs
):
split_sizes = [
symbolic_helper._unsqueeze_helper(g, v, [0])
for v in symbolic_helper._unpack_list(split_size_or_sizes)
]
start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
axis = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long))
res = []
for i in range(_outputs):
end = g.op(
"Add", start, split_sizes[i]
) # split_sizes is a list of same length as _outputs
res.append(g.op("Slice", self, start, end, axis))
start = end
return res
return [
g.op(
"SequenceAt",
split_out,
g.op("Constant", value_t=torch.tensor([i], dtype=torch.long)),
)
for i in range(_outputs)
]
else:
return opset9.split(g, self, split_size_or_sizes, dim, _outputs)
@_onnx_symbolic("aten::split_with_sizes")
@symbolic_helper.parse_args("v", "v", "i", "i")
@_beartype.beartype
def split_with_sizes(g: jit_utils.GraphContext, self, split_sizes, dim, _outputs=None):
return split(g, self, split_sizes, dim, _outputs)
@_onnx_symbolic("aten::unbind")
@symbolic_helper.parse_args("v", "i", "i")
@_beartype.beartype
def unbind(g: jit_utils.GraphContext, self, dim=0, _outputs=None):
if _outputs is None:
return g.op(
"SplitToSequence",
self,
g.op("Constant", value_t=torch.tensor(1, dtype=torch.long)),
axis_i=dim,
keepdims_i=0,
)
else:
return opset9.unbind(g, self, dim, _outputs)
@_beartype.beartype
def _prepare_onnx_paddings(g: jit_utils.GraphContext, input, pad):
"""Generate paddings in ONNX order based on pad in pytorch.
Args:
input: the input tensor.
pad: the paddings in pytorch.
The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ..., dim_m_begin, dim_m_end,
where m is in range [0, n].
"""
if (
not symbolic_helper._is_packed_list(pad)
and symbolic_helper._is_list(pad)
and symbolic_helper._is_scalar_list(pad)
):
pad = g.op("ConcatFromSequence", pad, axis_i=0, new_axis_i=1)
# The desired order of paddings is
# dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end.
# n is the dimension of input.
# Assume zero-dimensions in the beginning, pad the "pad" sequence with zeros in the beginning
pad_len = opset9.size(g, pad, g.op("Constant", value_t=torch.tensor([0])))
# Set extension = [0] * (dim * 2 - len(pad))
rank = symbolic_helper._get_tensor_rank(input)
if rank is None:
rank = g.op("Size", g.op("Shape", input))
else:
rank = g.op("Constant", value_t=torch.tensor(rank, dtype=torch.int64))
extension = g.op(
"Sub",
g.op("Mul", rank, g.op("Constant", value_t=torch.tensor(2, dtype=torch.int64))),
pad_len,
)
# Concat pad with extension: paddings = [dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, 0, 0, ... ]
# Currently ONNX only supports int64 type for Pad
pad = g.op("Cast", pad, to_i=_C_onnx.TensorProtoDataType.INT64)
paddings = g.op(
"Concat",
pad,
g.op(
"ConstantOfShape", extension, value_t=torch.tensor([0], dtype=torch.int64)
),
axis_i=0,
)
# Reshape and reverse order and collate first beginnings and then ends
# paddings = [[..., 0, dim_n-1_begin, dim_n_begin],
# [..., 0, dim_n-1_end, dim_n_end]]
# Reshape back to 1-D paddings = [..., 0, dim_n - 1_begin, dim_n_begin, ..., 0, dim_n - 1_end, dim_n_end]
paddings = symbolic_helper._reshape_helper(
g, paddings, g.op("Constant", value_t=torch.tensor([-1, 2]))
)
paddings = g.op("Transpose", opset10.flip(g, paddings, [0]), perm_i=[1, 0])
paddings = symbolic_helper._reshape_helper(
g, paddings, g.op("Constant", value_t=torch.tensor([-1]))
)
padding_c = g.op("Cast", paddings, to_i=_C_onnx.TensorProtoDataType.INT64)
return padding_c
@_onnx_symbolic("aten::constant_pad_nd")
@_beartype.beartype
def constant_pad_nd(g: jit_utils.GraphContext, input, padding, value=None):
mode = "constant"
value = symbolic_helper._maybe_get_scalar(value)
value = symbolic_helper._if_scalar_type_as(value, input)
pad = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, pad, value, mode_s=mode)
@_onnx_symbolic("aten::reflection_pad1d")
@_onnx_symbolic("aten::reflection_pad2d")
@_onnx_symbolic("aten::reflection_pad3d")
@_beartype.beartype
def reflection_pad(g: jit_utils.GraphContext, input, padding):
mode = "reflect"
paddings = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, paddings, mode_s=mode)
@_onnx_symbolic("aten::replication_pad1d")
@_onnx_symbolic("aten::replication_pad2d")
@_onnx_symbolic("aten::replication_pad3d")
@_beartype.beartype
def replication_pad(g: jit_utils.GraphContext, input, padding):
mode = "edge"
paddings = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, paddings, mode_s=mode)
@_onnx_symbolic("aten::pad")
@_beartype.beartype
def pad(
g: jit_utils.GraphContext,
input: _C.Value,
pad: _C.Value,
mode: _C.Value,
value: _C.Value,
):
mode = symbolic_helper._parse_arg(mode, "s")
if mode == "replicate":
return replication_pad(g, input, pad)
elif mode == "reflect":
return reflection_pad(g, input, pad)
elif mode == "constant":
return constant_pad_nd(g, input, pad, value)
elif mode == "circular":
return opset9._pad_circular(g, input, pad)
else:
raise errors.SymbolicValueError(f"Unrecognized padding mode {mode}", input)
@_onnx_symbolic("aten::linalg_det")
@_beartype.beartype
def linalg_det(g: jit_utils.GraphContext, self):
return g.op("Det", self)
@_onnx_symbolic("aten::logdet")
@_beartype.beartype
def logdet(g: jit_utils.GraphContext, input):
return opset9.log(g, linalg_det(g, input))
@_onnx_symbolic("aten::arange")
@_beartype.beartype
def arange(g: jit_utils.GraphContext, *args):
def _get_arange_dtype(dtype):
dtype = symbolic_helper._maybe_get_const(dtype, "i")
return dtype
if len(args) == 2 and all(isinstance(val, int) for val in args):
# aten::arange(Scalar start, Scalar end)
dtype = torch.int64
# Start index.
start = g.op(
"Constant",
value_t=torch.tensor(args[0], dtype=dtype),
)
# End (exclusive) index.
end = g.op(
"Constant",
value_t=torch.tensor(args[1], dtype=dtype),
)
# Step size from start to end indexes.
delta_default = g.op(
"Constant",
value_t=torch.tensor(1, dtype=dtype),
)
return g.op("Range", start, end, delta_default)
elif len(args) == 2 or len(args) == 5:
if len(args) == 2:
# aten::arange(Scalar end, Tensor out)
dtype = None
else:
# aten::arange(Scalar end, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[1])
type_, end, start, step = symbolic_helper._arange_cast_helper(
g, end=args[0], dtype=dtype
)
start_default = g.op(
"Constant",
value_t=torch.tensor(0, dtype=type_.dtype()),
)
delta_default = g.op(
"Constant",
value_t=torch.tensor(1, dtype=type_.dtype()),
)
return g.op("Range", start_default, end, delta_default)
elif len(args) == 4 or len(args) == 7:
if len(args) == 4:
# aten::arange(Scalar start, Scalar end, Scalar step, Tensor out)
dtype = None
else:
# aten::arange(Scalar start, Scalar end, Scalar step, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[3])
_, end, start, step = symbolic_helper._arange_cast_helper(
g, start=args[0], end=args[1], step=args[2], dtype=dtype
)
return g.op("Range", start, end, step)
elif len(args) == 6:
# aten::arange(Scalar start, Scalar end, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[2])
type_, end, start, step = symbolic_helper._arange_cast_helper(
g, start=args[0], end=args[1], dtype=dtype
)
delta_default = g.op(
"Constant",
value_t=torch.tensor(1, dtype=type_.dtype()),
)
return g.op("Range", start, end, delta_default)
else:
return symbolic_helper._unimplemented(
"aten::arange", f"with {len(args)} arguments"
)
@_onnx_symbolic("aten::_dim_arange")
@symbolic_helper.parse_args("v", "i")
@_beartype.beartype
def _dim_arange(g: jit_utils.GraphContext, like, dim):
like_shape = g.op("Shape", like)
stop = g.op(
"Gather", like_shape, g.op("Constant", value_t=torch.tensor(dim)), axis_i=0
)
if symbolic_helper.is_caffe2_aten_fallback():
return g.op("_caffe2::Range", stop)
return arange(g, stop, 4, None, None, None)
@_onnx_symbolic("aten::size")
@symbolic_helper.quantized_args(True, quantize_output=False)
@_beartype.beartype
def size(g: jit_utils.GraphContext, self, dim=None):
if dim is None:
return g.op("Shape", self)
return symbolic_helper._size_helper(g, self, dim)
@_onnx_symbolic("aten::squeeze")
@_beartype.beartype
def squeeze(g: jit_utils.GraphContext, self, dim=None):
if dim is None:
return g.op("Squeeze", self)
# dim as a tensor
if not symbolic_helper._is_constant(dim):
return symbolic_helper._squeeze_helper(g, self, [dim])
dim = symbolic_helper._get_const(dim, "i", "dim")
input_rank = symbolic_helper._get_tensor_rank(self)
adjusted_dim = dim
if input_rank is not None and dim < 0:
adjusted_dim += input_rank
dim_size = symbolic_helper._get_tensor_dim_size(self, adjusted_dim)
if (dim < 0 and input_rank is None) or dim_size is None:
# If onnx shape inference is not on, export always as dynamic.
# Because we cannot tell if observed static shape is also static at runtime.
# create "cond" node (condition is shape[i]==1)
dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
size = symbolic_helper._size_helper(g, self, dim_constant)
const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
cond = g.op("Equal", size, const_one)
# create the "If" node and add the "then" and "else" blocks to it.
if_op, (if_context, else_context), _ = jit_utils.add_op_with_blocks(
g, "If", cond, n_blocks=2
)
squeeze_ = symbolic_helper._squeeze_helper(if_context, self, [dim])
utils._add_output_to_block(if_context.block, squeeze_)
identity_ = else_context.op("Identity", self)
utils._add_output_to_block(else_context.block, identity_)
return if_op
# For static input shape
dim = adjusted_dim
if dim_size > 1:
warnings.warn(
"This model contains a squeeze operation on dimension "
+ str(dim)
+ ". The size of "
+ "this dimension in the given input is "
+ str(dim_size)
+ ". The model will "
+ "be exported without the squeeze node. If the model is intended to be used with dynamic "
+ "input shapes, please export with dynamic_axes argument."
)
return self
return symbolic_helper._squeeze_helper(g, self, [dim])
@_onnx_symbolic("aten::unsqueeze")
@_beartype.beartype
def unsqueeze(g: jit_utils.GraphContext, self, dim):
if symbolic_helper._is_constant(dim):
dim = symbolic_helper._get_const(dim, "i", "dim")
return symbolic_helper._unsqueeze_helper(g, self, [dim])
@_onnx_symbolic("aten::mm")
@_beartype.beartype
def mm(g: jit_utils.GraphContext, self, other):
return g.op("Gemm", self, other, beta_f=0.0, alpha_f=1.0)
@_onnx_symbolic("aten::index")
@_beartype.beartype
def index(g: jit_utils.GraphContext, self, index):
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("index", self, index, overload_name="Tensor")
if symbolic_helper._is_packed_list(index):
indices = symbolic_helper._unpack_list(index)
else:
indices = [index]
# Handle single mask index.
if len(indices) == 1:
index = indices[0]
if not symbolic_helper._is_none(index) and (
symbolic_helper._is_bool(index)
or _type_utils.JitScalarType.from_value(index)
== _type_utils.JitScalarType.UINT8
):
index = opset9.nonzero(g, index)
return g.op("GatherND", self, index)
return opset9.index(g, self, index)
@_onnx_symbolic("aten::index_fill")
@_beartype.beartype
def index_fill(g: jit_utils.GraphContext, self, dim, index, value):
dim_value = symbolic_helper._parse_arg(dim, "i")
if symbolic_helper.is_caffe2_aten_fallback():
return g.at(
"index_fill",
self,
index,
value,
overload_name="int_Scalar",
dim_i=dim_value,
)
expanded_index_shape, expanded_index = symbolic_helper._index_fill_reshape_helper(
g, self, dim, index
)
value = symbolic_helper._maybe_get_scalar(value)
value = symbolic_helper._if_scalar_type_as(value, self)
expanded_value = opset9.expand(g, value, expanded_index_shape, None)
return scatter(g, self, dim, expanded_index, expanded_value)
@_onnx_symbolic("aten::index_copy")
@_beartype.beartype
def index_copy(g: jit_utils.GraphContext, self, dim, index, source):
dim_value = symbolic_helper._parse_arg(dim, "i")
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("index_copy", self, index, source, dim_i=dim_value)
expanded_index_shape, expanded_index = symbolic_helper._index_fill_reshape_helper(
g, self, dim, index
)
return scatter(g, self, dim, expanded_index, source)
@_onnx_symbolic("aten::__rshift_")
@_beartype.beartype
def __rshift_(g: jit_utils.GraphContext, self, other):
# make sure to cast other to self's type
# (when self is long, make sure that other is not float)
if _type_utils.JitScalarType.from_value(
other, _type_utils.JitScalarType.UNDEFINED
) != _type_utils.JitScalarType.from_value(self):
other = g.op(
"Cast",
other,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
if (
_type_utils.JitScalarType.from_value(self, _type_utils.JitScalarType.UNDEFINED)
== _type_utils.JitScalarType.UINT8
):
return g.op("BitShift", self, other, direction_s="RIGHT")
two = g.op("Constant", value_t=torch.tensor(2, dtype=torch.float32))
# exponent (same type as self) has to be float or double in onnx::Pow
if not symbolic_helper._is_fp(self):
other = g.op("Cast", other, to_i=_C_onnx.TensorProtoDataType.FLOAT)
two_pow = g.op("Pow", two, other)
two_pow = g.op(
"Cast",
two_pow,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
rshift = g.op("Div", self, two_pow)
return rshift
@_onnx_symbolic("aten::__lshift_")
@_beartype.beartype
def __lshift_(g: jit_utils.GraphContext, self, other):
# make sure to cast other to self's type
# (when self is long, make sure that other is not float)
if _type_utils.JitScalarType.from_value(
other, _type_utils.JitScalarType.UNDEFINED
) != _type_utils.JitScalarType.from_value(self):
other = g.op(
"Cast",
other,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
if (
_type_utils.JitScalarType.from_value(self, _type_utils.JitScalarType.UNDEFINED)
== _type_utils.JitScalarType.UINT8
):
return g.op("BitShift", self, other, direction_s="LEFT")
two = g.op("Constant", value_t=torch.tensor(2, dtype=torch.float32))
# exponent (same type as self) has to be float or double in onnx::Pow
if not symbolic_helper._is_fp(self):
other = g.op("Cast", other, to_i=_C_onnx.TensorProtoDataType.FLOAT)
two_pow = g.op("Pow", two, other)
two_pow = g.op(
"Cast",
two_pow,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
lshift = g.op("Mul", self, two_pow)
return lshift
@_beartype.beartype
def _get_im2col_indices_along_dim(
g: jit_utils.GraphContext, input_d, kernel_size_d, dilation_d, padding_d, stride_d
):
# Input is always 4-D (N, C, H, W)
# Calculate indices of sliding blocks along spatial dimension
# Slide kernel over input each dim d:
# each dimension d ranges from 0 to input[d]+2xpadding[d]-dilation[d]x(kernel_size[d]-1)
# with steps = stride
blocks_d = g.op(
"Add", input_d, g.op("Constant", value_t=torch.tensor(padding_d * 2))
)
blocks_d = g.op(
"Sub",
blocks_d,
g.op("Constant", value_t=torch.tensor(dilation_d * (kernel_size_d - 1))),
)
# Stride kernel over input and find starting indices along dim d
blocks_d_indices = g.op(
"Range",
g.op("Constant", value_t=torch.tensor(0)),
blocks_d,
g.op("Constant", value_t=torch.tensor(stride_d)),
)
# Apply dilation on kernel and find its indices along dim d
kernel_grid = torch.arange(0, kernel_size_d * dilation_d, dilation_d)
kernel_grid = g.op("Constant", value_t=kernel_grid.unsqueeze(0))
# Broadcast and add kernel staring positions (indices) with
# kernel_grid along dim d, to get block indices along dim d
blocks_d_indices = symbolic_helper._unsqueeze_helper(
g, blocks_d_indices, [0]
) # Reshape to [1, -1]
kernel_mask = symbolic_helper._reshape_helper(
g, kernel_grid, g.op("Constant", value_t=torch.tensor([-1, 1]))
)
block_mask = g.op("Add", blocks_d_indices, kernel_mask)
return block_mask
@_beartype.beartype
def _get_im2col_padded_input(g: jit_utils.GraphContext, input, padding_h, padding_w):
# Input is always 4-D tensor (N, C, H, W)
# Padding tensor has the following format: (padding_h, padding_w)
# Reshape the padding to follow ONNX format: (dim1_begin, dim2_begin,...,dim1_end, dim2_end,...)
pad = g.op("Constant", value_t=torch.LongTensor([0, 0, padding_h, padding_w] * 2))
return g.op("Pad", input, pad)
@_beartype.beartype
def _get_im2col_output_shape(g: jit_utils.GraphContext, input, kernel_h, kernel_w):
batch_dim = size(g, input, g.op("Constant", value_t=torch.tensor(0)))
channel_dim = size(g, input, g.op("Constant", value_t=torch.tensor(1)))
channel_unfolded = g.op(
"Mul", channel_dim, g.op("Constant", value_t=torch.tensor(kernel_h * kernel_w))
)
return g.op(
"Concat",
symbolic_helper._unsqueeze_helper(g, batch_dim, [0]),
symbolic_helper._unsqueeze_helper(g, channel_unfolded, [0]),
g.op("Constant", value_t=torch.tensor([-1])),
axis_i=0,
)
@_onnx_symbolic("aten::im2col")
@symbolic_helper.parse_args("v", "is", "is", "is", "is")
@_beartype.beartype
def im2col(g: jit_utils.GraphContext, input, kernel_size, dilation, padding, stride):
# Input is always 4-D tensor (N, C, H, W)
# All other args are int[2]
input_h = size(g, input, g.op("Constant", value_t=torch.tensor(2)))
input_w = size(g, input, g.op("Constant", value_t=torch.tensor(3)))
stride_h, stride_w = stride[0], stride[1]
padding_h, padding_w = padding[0], padding[1]
dilation_h, dilation_w = dilation[0], dilation[1]
kernel_h, kernel_w = kernel_size[0], kernel_size[1]
blocks_row_indices = _get_im2col_indices_along_dim(
g, input_h, kernel_h, dilation_h, padding_h, stride_h
)
blocks_col_indices = _get_im2col_indices_along_dim(
g, input_w, kernel_w, dilation_w, padding_w, stride_w
)
output_shape = _get_im2col_output_shape(g, input, kernel_h, kernel_w)
padded_input = _get_im2col_padded_input(g, input, padding_h, padding_w)
# For a 4D matrix of size (1, 1, 3, 3) as below with kernel_size=2, stride=1, and dilation=1
# [[[[1., 2., 3.,],
# [4., 5., 6.,],
# [7., 8., 9.,]]]]
# First gather indices along rows (dim=2) with blocks_row_indices = [[0,1], [1,2]] to get:
# [[[[[1., 2., 3.],
# [4., 5., 6.]],
# [[4., 5., 6.],
# [7., 8., 9.]]]]]
# And then gather along cols (dim=4) with blocks_row_indices = [[0,1], [1,2]] to get:
# [[[[[[1., 2.],
# [4., 5.]],
# [[2., 3.],
# [5., 6]]],
# [[[4., 5.],
# [7., 8.]],
# [[5., 6.],
# [8., 9.]]]]]]
# Transpose dims 3 (depth) and 4 (rows), and then reshape to output shape (1, 1, 4, 4) to get:
# [[[1., 2., 4., 5.],
# [2., 3., 5., 6.],
# [4., 5., 7., 8.],
# [5., 6., 8., 9.]]]
output = g.op("Gather", padded_input, blocks_row_indices, axis_i=2)
output = g.op("Gather", output, blocks_col_indices, axis_i=4)
output = g.op("Transpose", output, perm_i=[0, 1, 2, 4, 3, 5])
return symbolic_helper._reshape_helper(g, output, output_shape)
@_onnx_symbolic("aten::narrow")
@_beartype.beartype
def narrow(g: jit_utils.GraphContext, input, dim, start, length):
end = g.op("Add", start, length)
return symbolic_helper._slice_helper(g, input, axes=dim, starts=start, ends=end)
@_onnx_symbolic("aten::flatten")
@symbolic_helper.quantized_args(True, False, False)
@symbolic_helper.parse_args("v", "i", "i")
@_beartype.beartype
def flatten(g: jit_utils.GraphContext, input, start_dim, end_dim):
dim = symbolic_helper._get_tensor_rank(input)
if dim == 1:
return input
# use ONNX's Flatten operator for cases where the output shape is 2D
if start_dim == 1:
if end_dim == -1 or (dim is not None and end_dim == dim - 1):
return g.op("Flatten", input, axis_i=start_dim)
elif start_dim == 0:
if end_dim == -2 or (dim is not None and end_dim == dim - 2):
return g.op("Flatten", input, axis_i=end_dim + 1)
if dim is None:
return symbolic_helper._unimplemented(
"dim",
"ONNX and PyTorch use different strategies to split the input. "
"Input rank must be known at export time.",
)
# if end_dim is negative add dim
if end_dim < 0:
end_dim = dim + end_dim
return symbolic_helper._flatten_helper(g, input, start_dim, end_dim, dim)
@_onnx_symbolic("aten::linalg_vector_norm")
@symbolic_helper.parse_args("v", "f", "is", "b", "v")
@_beartype.beartype
def linalg_vector_norm(
g: jit_utils.GraphContext,
self,
ord,
dim: Optional[Sequence[int]],
keepdim: bool,
dtype,
):
if ord == 0:
if dim is None:
self = symbolic_helper._reshape_helper(
g, self, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64))
)
keepdim = False
cond_op = g.op(
"Not", g.op("Equal", self, g.op("Constant", value_t=torch.LongTensor([0])))
)
cond_op = g.op(
"Cast",
cond_op,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
return symbolic_helper._reducesum_helper(
g, cond_op, axes_i=dim, keepdims_i=keepdim
)
else:
return opset9.linalg_vector_norm(g, self, ord, dim, keepdim, dtype)
@_onnx_symbolic("aten::embedding_bag")
@symbolic_helper.parse_args("v", "v", "v", "i", "i", "i", "v", "i", "i")
@_beartype.beartype
def embedding_bag(
g: jit_utils.GraphContext,
embedding_matrix,
indices,
offsets,
scale_grad_by_freq,
mode,
sparse,
per_sample_weights,
include_last_offset,
padding_idx,
):
if scale_grad_by_freq and GLOBALS.export_training:
return symbolic_helper._onnx_unsupported(
"embedding_bag with scale_grad_by_freq for training mode"
)
if padding_idx is not None and padding_idx >= 0:
raise RuntimeError("embedding_bag with padding_idx")
loop_condition = g.op("Constant", value_t=torch.tensor(1))
loop_condition = g.op("Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL)
zero = g.op("Constant", value_t=torch.tensor([0]))
indices_len = symbolic_helper._unsqueeze_helper(
g,
symbolic_helper._size_helper(
g, indices, g.op("Constant", value_t=torch.tensor(0))
),
[0],
)
if not include_last_offset:
offsets = [offsets, indices_len]
offsets = g.op("Concat", *offsets, axis_i=0)
# Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by
# offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings.
# The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in.
offsets_starts = symbolic_helper._slice_helper(
g, offsets, axes=[0], starts=[0], ends=[sys.maxsize], steps=[1]
)
offsets_ends = symbolic_helper._slice_helper(
g, offsets, axes=[0], starts=[1], ends=[sys.maxsize], steps=[1]
)
loop_len = symbolic_helper._size_helper(
g, offsets_ends, g.op("Constant", value_t=torch.tensor(0))
)
loop, (loop_context,), _ = jit_utils.add_op_with_blocks(
g, "Loop", loop_len, loop_condition, n_blocks=1
)
loop_block = loop_context.block
# FIXME(justinchuby): We need to handle what happens when we call b.op on a node return
block_input_iter = utils._add_input_to_block(loop_block)
cond = utils._add_input_to_block(loop_block)
indices_start = loop_context.op(
"Gather", offsets_starts, block_input_iter, axis_i=0
)
indices_end = loop_context.op("Gather", offsets_ends, block_input_iter, axis_i=0)
indices_start = symbolic_helper._unsqueeze_helper(loop_context, indices_start, [0])
indices_end = symbolic_helper._unsqueeze_helper(loop_context, indices_end, [0])
indices_row = loop_context.op("Slice", indices, indices_start, indices_end, zero)
embeddings = loop_context.op("Gather", embedding_matrix, indices_row, axis_i=0)
if not symbolic_helper._is_none(per_sample_weights):
per_sample_weights_row = loop_context.op(
"Slice", per_sample_weights, indices_start, indices_end, zero
)
per_sample_weights_row = symbolic_helper._unsqueeze_helper(
loop_context, per_sample_weights_row, [1]
)
embeddings = loop_context.op("Mul", embeddings, per_sample_weights_row)
if mode == 0:
embeddings = symbolic_helper._reducesum_helper(
loop_context, embeddings, axes_i=[0], keepdims_i=0
)
elif mode == 1:
embeddings = loop_context.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0)
else:
embeddings = loop_context.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0)
cond_out = loop_context.op(
"Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL
)
utils._add_output_to_block(loop_block, cond_out)
utils._add_output_to_block(loop_block, embeddings)
# aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
# But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
return loop.node().output(), None, None, None
@_onnx_symbolic("aten::embedding_renorm")
@symbolic_helper.parse_args("v", "v", "f", "f")
@_beartype.beartype
def embedding_renorm(g: jit_utils.GraphContext, weight, indices, max_norm, norm_type):
unique_indices = g.op("Unique", indices)
partial_weight = g.op("Gather", weight, unique_indices)
norm_i = int(norm_type)
if norm_i == 1:
norm_type = "ReduceL1"
elif norm_i == 2:
norm_type = "ReduceL2"
else:
raise errors.SymbolicValueError(
f"Unsupported: ONNX export of embedding_renorm with norm: {norm_i}. "
"Only 1. and 2. are supported.",
weight,
)
partial_weight_norm = g.op(norm_type, partial_weight, axes_i=[1], keepdims_i=1)
# https://github.com/pytorch/pytorch/blob/0a07488ed2c47765e337e290bd138c0e6e459cbd/aten/src/ATen/native/Embedding.cpp#L177
# Add 1e-7 to prevent division by zero.
partial_weight_norm_ = g.op(
"Add", partial_weight_norm, g.op("Constant", value_t=torch.tensor(1e-7))
)
max_norm = torch.tensor(max_norm)
scales = g.op("Div", max_norm, partial_weight_norm_)
partial_weight_renorm = g.op("Mul", partial_weight, scales)
partial_weight_renorm = g.op(
"Where",
g.op("Greater", partial_weight_norm, max_norm),
partial_weight_renorm,
partial_weight,
)
return g.op(
"ScatterND",
weight,
symbolic_helper._unsqueeze_helper(g, unique_indices, [1]),
partial_weight_renorm,
)
@_onnx_symbolic("aten::chunk")
@_beartype.beartype
def chunk(g: jit_utils.GraphContext, self, chunks, dim):
# Calculate chunk size for dynamic chunk
dim_size = g.op("Gather", g.op("Shape", self), dim, axis_i=0)
chunk_size_s = g.op(
"Sub", chunks, g.op("Constant", value_t=torch.tensor([1], dtype=torch.long))
)
chunk_size = g.op("Div", g.op("Add", dim_size, chunk_size_s), chunks)
# Create splits vector
chunk_vec = [
opset9.expand(g, chunk_size, chunk_size_s, None),
g.op("Sub", dim_size, g.op("Mul", chunk_size, chunk_size_s)),
]
chunk_vec = g.op("Concat", *chunk_vec, axis_i=0)
return split(g, self, chunk_vec, dim)
@_onnx_symbolic("aten::normal")
@_beartype.beartype
def normal(
g: jit_utils.GraphContext,
mean,
std,
sizes=None,
generator=None,
dtype=None,
layout=None,
device=None,
pin_memory=None,
):
# If you can sample from a given distribution with mean 0 and variance 1, then you can easily sample from a
# scale-location transformation of that distribution, which has mean μ and variance σ's square. If x is a sample
# from a mean 0 and variance 1 distribution then
# σx+μ
# is a sample with mean μ and variance σ's square.
if sizes is not None and not symbolic_helper._is_none(sizes):
mean = opset9.expand(g, mean, sizes, None)
result = opset9.mul(g, std, g.op("RandomNormalLike", mean))
return add(g, result, mean)
@_onnx_symbolic("aten::atleast_1d")
@_beartype.beartype
def atleast_1d(g: jit_utils.GraphContext, self: torch._C.Value):
# NOTE: If it's 0D, reshape to 1D
# NOTE: self could be a packed list or a tensor
if symbolic_helper._is_value(self) and symbolic_helper._is_packed_list(self):
tensor_list = symbolic_helper._unpack_list(self)
new_tensor_list = []
for tensor in tensor_list:
new_tensor = tensor
tensor_rank = symbolic_helper._get_tensor_rank(tensor)
if tensor_rank == 0:
new_tensor = symbolic_helper._reshape_helper(
g, new_tensor, g.op("Constant", value_t=torch.tensor([1]))
)
new_tensor_list.append(new_tensor)
return g.op("SequenceConstruct", *new_tensor_list)
tensor_rank = symbolic_helper._get_tensor_rank(self)
if tensor_rank == 0:
self = symbolic_helper._reshape_helper(
g, self, g.op("Constant", value_t=torch.tensor([1]))
)
return self
@_onnx_symbolic("aten::atleast_2d")
@_beartype.beartype
def atleast_2d(g: jit_utils.GraphContext, self: torch._C.Value):
# NOTE: If it's 0D, reshape to 2D
# If it's 1D, unsqueeze to 2D
# NOTE: self could be a packed list or a tensor
if symbolic_helper._is_value(self) and symbolic_helper._is_packed_list(self):
tensor_list = symbolic_helper._unpack_list(self)
new_tensor_list = []
for tensor in tensor_list:
new_tensor = tensor
tensor_rank = symbolic_helper._get_tensor_rank(tensor)
if tensor_rank == 0:
new_tensor = symbolic_helper._reshape_helper(
g, new_tensor, g.op("Constant", value_t=torch.tensor([1, 1]))
)
elif tensor_rank == 1:
new_tensor = symbolic_helper._unsqueeze_helper(
g, new_tensor, axes_i=[0]
)
new_tensor_list.append(new_tensor)
return g.op("SequenceConstruct", *new_tensor_list)
tensor_rank = symbolic_helper._get_tensor_rank(self)
if tensor_rank == 0:
self = symbolic_helper._reshape_helper(
g, self, g.op("Constant", value_t=torch.tensor([1, 1]))
)
elif tensor_rank == 1:
self = symbolic_helper._unsqueeze_helper(g, self, axes_i=[0])
return self
@_onnx_symbolic("aten::atleast_3d")
@_beartype.beartype
def atleast_3d(g: jit_utils.GraphContext, self: torch._C.Value):
# NOTE: If it's 0D, reshape to 3D
# If it's 1D, unsqueeze to 3D
# If it's 2D, unsqueeze to 3D
# NOTE: self could be a packed list or a tensor
if symbolic_helper._is_value(self) and symbolic_helper._is_packed_list(self):
tensor_list = symbolic_helper._unpack_list(self)
new_tensor_list = []
for tensor in tensor_list:
new_tensor = tensor
tensor_rank = symbolic_helper._get_tensor_rank(tensor)
if tensor_rank == 0:
new_tensor = symbolic_helper._reshape_helper(
g, new_tensor, g.op("Constant", value_t=torch.tensor([1, 1, 1]))
)
elif tensor_rank == 1:
new_tensor = symbolic_helper._unsqueeze_helper(
g, new_tensor, axes_i=[0]
)
new_tensor = symbolic_helper._unsqueeze_helper(
g, new_tensor, axes_i=[-1]
)
elif tensor_rank == 2:
new_tensor = symbolic_helper._unsqueeze_helper(
g, new_tensor, axes_i=[-1]
)
new_tensor_list.append(new_tensor)
return g.op("SequenceConstruct", *new_tensor_list)
tensor_rank = symbolic_helper._get_tensor_rank(self)
if tensor_rank == 0:
self = symbolic_helper._reshape_helper(
g, self, g.op("Constant", value_t=torch.tensor([1, 1, 1]))
)
elif tensor_rank == 1:
self = symbolic_helper._unsqueeze_helper(g, self, axes_i=[0])
self = symbolic_helper._unsqueeze_helper(g, self, axes_i=[-1])
elif tensor_rank == 2:
self = symbolic_helper._unsqueeze_helper(g, self, axes_i=[-1])
return self
@_onnx_symbolic("prim::ConstantChunk")
@_beartype.beartype
def prim_constant_chunk(g: jit_utils.GraphContext, self, chunks, dim):
input_shape = g.op("Shape", self)
axis = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long))
input_shape_dim = g.op("Gather", input_shape, axis, axis_i=0)
start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
chunk_size = g.op("Constant", value_t=torch.tensor([chunks], dtype=torch.long))
chunk_size_minus_1 = g.op(
"Constant", value_t=torch.tensor([chunks - 1], dtype=torch.long)
)
input_shape_dim_shift = g.op("Add", input_shape_dim, chunk_size_minus_1)
chunk_dim = g.op("Div", input_shape_dim_shift, chunk_size)
res = []
for i in range(chunks):
index = g.op("Constant", value_t=torch.tensor([i + 1], dtype=torch.long))
end = g.op("Mul", chunk_dim, index)
res.append(g.op("Slice", self, start, end, axis))
start = end
return res
@_onnx_symbolic("aten::hstack")
@_beartype.beartype
def hstack(g: jit_utils.GraphContext, tensor_list: _C.Value):
tensor_list = atleast_1d(g, tensor_list)
first_tensor = g.op(
"SequenceAt",
tensor_list,
g.op("Constant", value_t=torch.tensor(0, dtype=torch.long)),
)
first_tensor_shape = g.op("Shape", first_tensor)
first_tensor_dim = g.op("Size", first_tensor_shape)
const_one = g.op("Constant", value_t=torch.tensor(1, dtype=torch.long))
equal_to_one = g.op("Equal", first_tensor_dim, const_one)
(
if_op_greater,
(if_context_equal, else_context_equal),
_,
) = jit_utils.add_op_with_blocks(g, "If", equal_to_one, n_blocks=2, outputs=1)
result_if = if_context_equal.op(
"ConcatFromSequence", tensor_list, axis_i=0, new_axis_i=0
)
utils._add_output_to_block(if_context_equal.block, result_if)
result_else = else_context_equal.op(
"ConcatFromSequence", tensor_list, axis_i=1, new_axis_i=0
)
utils._add_output_to_block(else_context_equal.block, result_else)
result = if_op_greater.node().output()
return result
@_onnx_symbolic("aten::vstack")
@_beartype.beartype
def vstack(g: jit_utils.GraphContext, tensor_list: _C.Value):
tensor_list = atleast_2d(g, tensor_list)
return g.op("ConcatFromSequence", tensor_list, axis_i=0, new_axis_i=0)
|