File size: 7,430 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""This file exports ONNX ops for opset 17.



Note [ONNX Operators that are added/updated in opset 17]



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-17-of-the-default-onnx-operator-set

New operators:

    BlackmanWindow

    DFT

    HammingWindow

    HannWindow

    LayerNormalization

    MelWeightMatrix

    STFT

    SequenceMap

"""

import functools
from typing import Optional, Sequence

import torch
from torch import _C
from torch.onnx import _type_utils, errors, symbolic_helper
from torch.onnx._internal import _beartype, jit_utils, registration

# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in README.md

__all__ = ["layer_norm", "stft"]

_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=17)


@_onnx_symbolic("aten::layer_norm")
@symbolic_helper.parse_args("v", "is", "v", "v", "f", "none")
def layer_norm(

    g: jit_utils.GraphContext,

    input: _C.Value,

    normalized_shape: Sequence[int],

    weight: _C.Value,

    bias: _C.Value,

    eps: float,

    cudnn_enable: bool,

):
    # normalized_shape: input shape from an expected input of size
    # axis: The first normalization dimension.
    # layer_norm normalizes on the last D dimensions,
    # where D is the size of normalized_shape
    axis = -len(normalized_shape)
    scalar_type = _type_utils.JitScalarType.from_value(
        input, _type_utils.JitScalarType.FLOAT
    )
    dtype = scalar_type.dtype()
    if symbolic_helper._is_none(weight):
        weight_value = torch.ones(normalized_shape, dtype=dtype)
        weight = g.op("Constant", value_t=weight_value)
    if symbolic_helper._is_none(bias):
        bias_value = torch.zeros(normalized_shape, dtype=dtype)
        bias = g.op("Constant", value_t=bias_value)
    return g.op(
        "LayerNormalization",
        input,
        weight,
        bias,
        epsilon_f=eps,
        axis_i=axis,
    )


def _compute_edge_sizes(n_fft, window_size):
    """Helper function to compute the sizes of the edges (left and right)

    of a given window centered within an FFT size."""
    left = (n_fft - window_size) // 2
    right = n_fft - left - window_size
    return left, right


@_onnx_symbolic("aten::stft")
@symbolic_helper.parse_args("v", "i", "i", "i", "v", "b", "b", "b")
@_beartype.beartype
def stft(

    g: jit_utils.GraphContext,

    input: _C.Value,

    n_fft: int,

    hop_length: Optional[int] = None,

    win_length: Optional[int] = None,

    window: Optional[_C.Value] = None,

    normalized: bool = False,

    onesided: Optional[bool] = True,

    return_complex: Optional[bool] = False,

) -> _C.Value:
    """Associates `torch.stft` with the `STFT` ONNX operator.

    Note that torch.stft calls _VF.stft, without centering or padding options.

    Hence, this function does not contain these two arguments.

    See torch.stft source code for more info.



    Args:

        g: Graph to write the ONNX representation into

        input: Input tensor for the transformation

        n_fft: FFT size

        hop_length: Size of the hop. Defaults to `floot(n_fft // 4)`

        win_length: Size of the analysis window. Defaults to `n_fft`

        window: Analysis window. Defaults to a window of all ones

        normalized: Whether to return a normalized STFT

        onesided: Whether to return only half (+1) of the results, given the

            symmetry of the STFT

        return_complex: Whether to return the complex value (Note: Must be

            `False` or `None`)



    Returns:

        op: Operator for torch.stft associated with STFT (ONNX)

    """
    # Checks
    if return_complex:
        raise errors.SymbolicValueError(
            msg="STFT does not currently support complex types", value=input
        )

    # Get STFT sizes
    frame_step_value = hop_length if hop_length is not None else n_fft // 4
    frame_step_const = g.op(
        "Constant", value_t=torch.tensor(frame_step_value, dtype=torch.int64)
    )
    frame_length_const = g.op(
        "Constant", value_t=torch.tensor(n_fft, dtype=torch.int64)
    )

    # Pre-process input if needed
    signal = input
    signal_rank = symbolic_helper._get_tensor_rank(signal)
    if signal_rank == 1:
        # Add batch dimension
        signal = g.op(
            "Unsqueeze",
            signal,
            g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)),
        )
    elif signal_rank > 2:
        raise errors.SymbolicValueError(
            msg="STFT can only take inputs of 1 [signal] or 2 [batch, signal] dimensions. "
            f"Current rank of signal is {signal_rank}, please reduce it.",
            value=input,
        )

    # Get window and make sure it's the same size as `win_length` or `n_fft`
    n_win = symbolic_helper._get_tensor_dim_size(window, dim=0)
    if n_win is not None:
        win_length_default = win_length if win_length else n_fft
        assert n_win == win_length_default, (
            "Analysis window size must equal `win_length` or `n_fft`. "
            f"Please, set `win_length` or `n_fft` to match `window` size ({n_win})",
        )

        # Center window around zeros if needed (required by ONNX's STFT)
        if n_win < n_fft:
            left, right = _compute_edge_sizes(n_fft, n_win)
            left_win = g.op("Constant", value_t=torch.zeros(left))
            right_win = g.op("Constant", value_t=torch.zeros(right))
            window = g.op("Concat", left_win, window, right_win, axis_i=0)

    # Create window, if needed
    if symbolic_helper._is_none(window):
        if win_length:
            if win_length > n_fft:
                raise errors.SymbolicValueError(
                    msg="The analysis window can't be longer than the size of the FFT. "
                    f"Please set `win_length` ({win_length}) to `n_fft` ({n_fft}) or less.",
                    value=input,
                )

            # Center window, if needed
            left, right = _compute_edge_sizes(n_fft, win_length)
            torch_window = torch.hstack(
                (torch.zeros(left), torch.ones(win_length), torch.zeros(right))
            )
        else:
            # Rectangle window
            torch_window = torch.ones(n_fft)
        assert torch_window.shape[0] == n_fft
        window = g.op("Constant", value_t=torch_window)
    window = g.op(
        "Cast", window, to_i=_type_utils.JitScalarType.from_value(signal).onnx_type()
    )

    # Run STFT
    result = g.op(
        "STFT",
        signal,
        frame_step_const,
        window,
        frame_length_const,
        onesided_i=1 if onesided is None or onesided else 0,
    )

    # Transpose to mimic torch.stft's behavior
    result = g.op("Transpose", result, perm_i=[0, 2, 1, 3])

    # Remove batch dimension, if needed
    if signal_rank == 1:
        result = g.op(
            "Squeeze",
            result,
            g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)),
        )

    # Normalize, if needed
    if normalized:
        sqrt_nfft = torch.sqrt(torch.tensor(n_fft, dtype=signal.type().dtype()))
        result = g.op("Div", result, g.op("Constant", value_t=sqrt_nfft))

    return result