File size: 14,601 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
from torch import Tensor

from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _view_as_real,
                        _default_to_fused_or_foreach, _get_scalar_dtype, _differentiable_doc,
                        _foreach_doc, _maximize_doc)
from typing import List, Optional

__all__ = ["Adagrad", "adagrad"]


class Adagrad(Optimizer):
    def __init__(

        self,

        params,

        lr=1e-2,

        lr_decay=0,

        weight_decay=0,

        initial_accumulator_value=0,

        eps=1e-10,

        foreach: Optional[bool] = None,

        *,

        maximize: bool = False,

        differentiable: bool = False,

    ):
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= lr_decay:
            raise ValueError(f"Invalid lr_decay value: {lr_decay}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
        if not 0.0 <= initial_accumulator_value:
            raise ValueError(
                f"Invalid initial_accumulator_value value: {initial_accumulator_value}"
            )
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")

        defaults = dict(
            lr=lr,
            lr_decay=lr_decay,
            eps=eps,
            weight_decay=weight_decay,
            initial_accumulator_value=initial_accumulator_value,
            foreach=foreach,
            maximize=maximize,
            differentiable=differentiable,
        )
        super().__init__(params, defaults)

        for group in self.param_groups:
            for p in group["params"]:
                state = self.state[p]
                state["step"] = torch.tensor(0.0, dtype=_get_scalar_dtype())
                init_value = (
                    complex(initial_accumulator_value, initial_accumulator_value)
                    if torch.is_complex(p)
                    else initial_accumulator_value
                )
                state["sum"] = torch.full_like(
                    p, init_value, memory_format=torch.preserve_format
                )

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("foreach", None)
            group.setdefault("maximize", False)
            group.setdefault("differentiable", False)

        state_values = list(self.state.values())
        step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
            state_values[0]["step"]
        )
        if not step_is_tensor:
            for s in state_values:
                s["step"] = torch.tensor(float(s["step"]), dtype=_get_scalar_dtype())

    def share_memory(self):
        for group in self.param_groups:
            for p in group["params"]:
                state = self.state[p]
                state["sum"].share_memory_()

    def _init_group(self, group, params_with_grad, grads, state_sums, state_steps):
        has_sparse_grad, has_complex = False, False
        for p in group["params"]:
            if p.grad is not None:
                has_sparse_grad |= p.grad.is_sparse
                has_complex |= torch.is_complex(p)
                params_with_grad.append(p)
                grads.append(p.grad)
                state = self.state[p]
                state_sums.append(state["sum"])
                state_steps.append(state["step"])

        return has_sparse_grad, has_complex

    @_use_grad_for_differentiable
    def step(self, closure=None):
        """Perform a single optimization step.



        Args:

            closure (Callable, optional): A closure that reevaluates the model

                and returns the loss.

        """
        loss = None

        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            state_sums = []
            state_steps = []

            has_sparse_grad, has_complex = self._init_group(group, params_with_grad, grads, state_sums, state_steps)

            adagrad(
                params_with_grad,
                grads,
                state_sums,
                state_steps,
                lr=group["lr"],
                weight_decay=group["weight_decay"],
                lr_decay=group["lr_decay"],
                eps=group["eps"],
                has_sparse_grad=has_sparse_grad,
                foreach=group["foreach"],
                maximize=group["maximize"],
                differentiable=group["differentiable"],
                has_complex=has_complex,
            )

        return loss


Adagrad.__doc__ = r"""Implements Adagrad algorithm.



    .. math::

       \begin{aligned}

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)

                \text{ (objective)}, \: \lambda \text{ (weight decay)},                          \\

            &\hspace{12mm}    \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\

            &\textbf{initialize} :  state\_sum_0 \leftarrow 0                             \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\

            &\hspace{5mm} \tilde{\gamma}    \leftarrow \gamma / (1 +(t-1) \eta)                  \\

            &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\

            &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\

            &\hspace{5mm}state\_sum_t  \leftarrow  state\_sum_{t-1} + g^2_t                      \\

            &\hspace{5mm}\theta_t \leftarrow

                \theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon}            \\

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

            &\bf{return} \:  \theta_t                                                     \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

       \end{aligned}



    For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning

    and Stochastic Optimization`_.

    """ + fr"""

    Args:

        params (iterable): iterable of parameters to optimize or dicts defining

            parameter groups

        lr (float, optional): learning rate (default: 1e-2)

        lr_decay (float, optional): learning rate decay (default: 0)

        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

        eps (float, optional): term added to the denominator to improve

            numerical stability (default: 1e-10)

        {_foreach_doc}

        {_maximize_doc}

        {_differentiable_doc}



    .. _Adaptive Subgradient Methods for Online Learning and Stochastic

        Optimization: http://jmlr.org/papers/v12/duchi11a.html



    """


def adagrad(

    params: List[Tensor],

    grads: List[Tensor],

    state_sums: List[Tensor],

    state_steps: List[Tensor],

    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627

    # setting these as kwargs for now as functional API is compiled by torch/distributed/optim

    has_sparse_grad: bool = None,

    foreach: Optional[bool] = None,

    differentiable: bool = False,

    has_complex: bool = False,

    *,

    lr: float,

    weight_decay: float,

    lr_decay: float,

    eps: float,

    maximize: bool,

):
    r"""Functional API that performs Adagrad algorithm computation.



    See :class:`~torch.optim.Adagrad` for details.

    """
    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError(
            "API has changed, `state_steps` argument must contain a list of singleton tensors"
        )

    if foreach is None:
        _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)

    if foreach and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with foreach optimizers")

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_adagrad
    else:
        func = _single_tensor_adagrad

    func(
        params,
        grads,
        state_sums,
        state_steps,
        lr=lr,
        weight_decay=weight_decay,
        lr_decay=lr_decay,
        eps=eps,
        has_sparse_grad=has_sparse_grad,
        maximize=maximize,
        differentiable=differentiable,
        has_complex=has_complex,
    )


def _make_sparse(grad, grad_indices, values):
    size = grad.size()
    if grad_indices.numel() == 0 or values.numel() == 0:
        return torch.empty_like(grad)
    return torch.sparse_coo_tensor(grad_indices, values, size)


def _single_tensor_adagrad(

    params: List[Tensor],

    grads: List[Tensor],

    state_sums: List[Tensor],

    state_steps: List[Tensor],

    *,

    lr: float,

    weight_decay: float,

    lr_decay: float,

    eps: float,

    has_sparse_grad: bool,

    maximize: bool,

    differentiable: bool,

    has_complex: bool,

):

    for (param, grad, state_sum, step_t) in zip(params, grads, state_sums, state_steps):
        # update step
        step_t += 1
        step = _get_value(step_t)
        grad = grad if not maximize else -grad

        if weight_decay != 0:
            if grad.is_sparse:
                raise RuntimeError(
                    "weight_decay option is not compatible with sparse gradients"
                )
            grad = grad.add(param, alpha=weight_decay)

        clr = lr / (1 + (step - 1) * lr_decay)

        if grad.is_sparse:
            grad = grad.coalesce()  # the update is non-linear so indices must be unique
            grad_indices = grad._indices()
            grad_values = grad._values()

            state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
            std = state_sum.sparse_mask(grad)
            std_values = std._values().sqrt_().add_(eps)
            param.add_(
                _make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr
            )
        else:
            is_complex = torch.is_complex(param)
            if is_complex:
                grad = torch.view_as_real(grad)
                state_sum = torch.view_as_real(state_sum)
                param = torch.view_as_real(param)
            state_sum.addcmul_(grad, grad, value=1)
            if differentiable:
                std = state_sum.sqrt() + eps
            else:
                std = state_sum.sqrt().add_(eps)
            param.addcdiv_(grad, std, value=-clr)
            if is_complex:
                param = torch.view_as_complex(param)
                state_sum = torch.view_as_complex(state_sum)


def _multi_tensor_adagrad(

    params: List[Tensor],

    grads: List[Tensor],

    state_sums: List[Tensor],

    state_steps: List[Tensor],

    *,

    lr: float,

    weight_decay: float,

    lr_decay: float,

    eps: float,

    has_sparse_grad: bool,

    maximize: bool,

    differentiable: bool,

    has_complex: bool,

):

    assert not differentiable, "_foreach ops don't support autograd"

    # Foreach functions will throw errors if given empty lists
    if len(params) == 0:
        return

    grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype([params, grads, state_sums, state_steps])
    for ((device_params, device_grads, device_state_sums, device_state_steps), _) in grouped_tensorlists.values():
        device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads)

        if device_has_sparse_grad:
            _single_tensor_adagrad(
                device_params,
                device_grads,
                device_state_sums,
                device_state_steps,
                lr=lr,
                weight_decay=weight_decay,
                lr_decay=lr_decay,
                eps=eps,
                has_sparse_grad=True,
                maximize=False,
                differentiable=differentiable,
                has_complex=has_complex,
            )
            continue

        # Handle complex parameters
        if has_complex:
            _view_as_real(device_params, device_grads, device_state_sums)

        if maximize:
            device_grads = torch._foreach_neg(device_grads)

        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if device_state_steps[0].is_cpu:
            torch._foreach_add_(device_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
        else:
            torch._foreach_add_(device_state_steps, 1)

        if weight_decay != 0:
            # Re-use the intermediate memory (device_grads) already allocated for maximize
            if maximize:
                torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
            else:
                device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)

        minus_clr = [-lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps]

        torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1)

        std = torch._foreach_sqrt(device_state_sums)
        torch._foreach_add_(std, eps)

        if weight_decay != 0 or maximize:
            # Again, re-use the intermediate memory (device_grads) already allocated
            torch._foreach_mul_(device_grads, minus_clr)
            numerator = device_grads
        else:
            numerator = torch._foreach_mul(device_grads, minus_clr)

        torch._foreach_addcdiv_(device_params, numerator, std)