File size: 13,715 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
from contextlib import closing
from io import StringIO
from os import path
from typing import List, Optional

import numpy as np

from gym import Env, logger, spaces, utils
from gym.envs.toy_text.utils import categorical_sample
from gym.error import DependencyNotInstalled

LEFT = 0
DOWN = 1
RIGHT = 2
UP = 3

MAPS = {
    "4x4": ["SFFF", "FHFH", "FFFH", "HFFG"],
    "8x8": [
        "SFFFFFFF",
        "FFFFFFFF",
        "FFFHFFFF",
        "FFFFFHFF",
        "FFFHFFFF",
        "FHHFFFHF",
        "FHFFHFHF",
        "FFFHFFFG",
    ],
}


# DFS to check that it's a valid path.
def is_valid(board: List[List[str]], max_size: int) -> bool:
    frontier, discovered = [], set()
    frontier.append((0, 0))
    while frontier:
        r, c = frontier.pop()
        if not (r, c) in discovered:
            discovered.add((r, c))
            directions = [(1, 0), (0, 1), (-1, 0), (0, -1)]
            for x, y in directions:
                r_new = r + x
                c_new = c + y
                if r_new < 0 or r_new >= max_size or c_new < 0 or c_new >= max_size:
                    continue
                if board[r_new][c_new] == "G":
                    return True
                if board[r_new][c_new] != "H":
                    frontier.append((r_new, c_new))
    return False


def generate_random_map(size: int = 8, p: float = 0.8) -> List[str]:
    """Generates a random valid map (one that has a path from start to goal)

    Args:
        size: size of each side of the grid
        p: probability that a tile is frozen

    Returns:
        A random valid map
    """
    valid = False
    board = []  # initialize to make pyright happy

    while not valid:
        p = min(1, p)
        board = np.random.choice(["F", "H"], (size, size), p=[p, 1 - p])
        board[0][0] = "S"
        board[-1][-1] = "G"
        valid = is_valid(board, size)
    return ["".join(x) for x in board]


class FrozenLakeEnv(Env):
    """
    Frozen lake involves crossing a frozen lake from Start(S) to Goal(G) without falling into any Holes(H)
    by walking over the Frozen(F) lake.
    The agent may not always move in the intended direction due to the slippery nature of the frozen lake.


    ### Action Space
    The agent takes a 1-element vector for actions.
    The action space is `(dir)`, where `dir` decides direction to move in which can be:

    - 0: LEFT
    - 1: DOWN
    - 2: RIGHT
    - 3: UP

    ### Observation Space
    The observation is a value representing the agent's current position as
    current_row * nrows + current_col (where both the row and col start at 0).
    For example, the goal position in the 4x4 map can be calculated as follows: 3 * 4 + 3 = 15.
    The number of possible observations is dependent on the size of the map.
    For example, the 4x4 map has 16 possible observations.

    ### Rewards

    Reward schedule:
    - Reach goal(G): +1
    - Reach hole(H): 0
    - Reach frozen(F): 0

    ### Arguments

    ```
    gym.make('FrozenLake-v1', desc=None, map_name="4x4", is_slippery=True)
    ```

    `desc`: Used to specify custom map for frozen lake. For example,

        desc=["SFFF", "FHFH", "FFFH", "HFFG"].

        A random generated map can be specified by calling the function `generate_random_map`. For example,

        ```
        from gym.envs.toy_text.frozen_lake import generate_random_map

        gym.make('FrozenLake-v1', desc=generate_random_map(size=8))
        ```

    `map_name`: ID to use any of the preloaded maps.

        "4x4":[
            "SFFF",
            "FHFH",
            "FFFH",
            "HFFG"
            ]

        "8x8": [
            "SFFFFFFF",
            "FFFFFFFF",
            "FFFHFFFF",
            "FFFFFHFF",
            "FFFHFFFF",
            "FHHFFFHF",
            "FHFFHFHF",
            "FFFHFFFG",
        ]

    `is_slippery`: True/False. If True will move in intended direction with
    probability of 1/3 else will move in either perpendicular direction with
    equal probability of 1/3 in both directions.

        For example, if action is left and is_slippery is True, then:
        - P(move left)=1/3
        - P(move up)=1/3
        - P(move down)=1/3

    ### Version History
    * v1: Bug fixes to rewards
    * v0: Initial versions release (1.0.0)
    """

    metadata = {
        "render_modes": ["human", "ansi", "rgb_array"],
        "render_fps": 4,
    }

    def __init__(
        self,
        render_mode: Optional[str] = None,
        desc=None,
        map_name="4x4",
        is_slippery=True,
    ):
        if desc is None and map_name is None:
            desc = generate_random_map()
        elif desc is None:
            desc = MAPS[map_name]
        self.desc = desc = np.asarray(desc, dtype="c")
        self.nrow, self.ncol = nrow, ncol = desc.shape
        self.reward_range = (0, 1)

        nA = 4
        nS = nrow * ncol

        self.initial_state_distrib = np.array(desc == b"S").astype("float64").ravel()
        self.initial_state_distrib /= self.initial_state_distrib.sum()

        self.P = {s: {a: [] for a in range(nA)} for s in range(nS)}

        def to_s(row, col):
            return row * ncol + col

        def inc(row, col, a):
            if a == LEFT:
                col = max(col - 1, 0)
            elif a == DOWN:
                row = min(row + 1, nrow - 1)
            elif a == RIGHT:
                col = min(col + 1, ncol - 1)
            elif a == UP:
                row = max(row - 1, 0)
            return (row, col)

        def update_probability_matrix(row, col, action):
            newrow, newcol = inc(row, col, action)
            newstate = to_s(newrow, newcol)
            newletter = desc[newrow, newcol]
            terminated = bytes(newletter) in b"GH"
            reward = float(newletter == b"G")
            return newstate, reward, terminated

        for row in range(nrow):
            for col in range(ncol):
                s = to_s(row, col)
                for a in range(4):
                    li = self.P[s][a]
                    letter = desc[row, col]
                    if letter in b"GH":
                        li.append((1.0, s, 0, True))
                    else:
                        if is_slippery:
                            for b in [(a - 1) % 4, a, (a + 1) % 4]:
                                li.append(
                                    (1.0 / 3.0, *update_probability_matrix(row, col, b))
                                )
                        else:
                            li.append((1.0, *update_probability_matrix(row, col, a)))

        self.observation_space = spaces.Discrete(nS)
        self.action_space = spaces.Discrete(nA)

        self.render_mode = render_mode

        # pygame utils
        self.window_size = (min(64 * ncol, 512), min(64 * nrow, 512))
        self.cell_size = (
            self.window_size[0] // self.ncol,
            self.window_size[1] // self.nrow,
        )
        self.window_surface = None
        self.clock = None
        self.hole_img = None
        self.cracked_hole_img = None
        self.ice_img = None
        self.elf_images = None
        self.goal_img = None
        self.start_img = None

    def step(self, a):
        transitions = self.P[self.s][a]
        i = categorical_sample([t[0] for t in transitions], self.np_random)
        p, s, r, t = transitions[i]
        self.s = s
        self.lastaction = a

        if self.render_mode == "human":
            self.render()
        return (int(s), r, t, False, {"prob": p})

    def reset(
        self,
        *,
        seed: Optional[int] = None,
        options: Optional[dict] = None,
    ):
        super().reset(seed=seed)
        self.s = categorical_sample(self.initial_state_distrib, self.np_random)
        self.lastaction = None

        if self.render_mode == "human":
            self.render()
        return int(self.s), {"prob": 1}

    def render(self):
        if self.render_mode is None:
            logger.warn(
                "You are calling render method without specifying any render mode. "
                "You can specify the render_mode at initialization, "
                f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
            )
        elif self.render_mode == "ansi":
            return self._render_text()
        else:  # self.render_mode in {"human", "rgb_array"}:
            return self._render_gui(self.render_mode)

    def _render_gui(self, mode):
        try:
            import pygame
        except ImportError:
            raise DependencyNotInstalled(
                "pygame is not installed, run `pip install gym[toy_text]`"
            )

        if self.window_surface is None:
            pygame.init()

            if mode == "human":
                pygame.display.init()
                pygame.display.set_caption("Frozen Lake")
                self.window_surface = pygame.display.set_mode(self.window_size)
            elif mode == "rgb_array":
                self.window_surface = pygame.Surface(self.window_size)

        assert (
            self.window_surface is not None
        ), "Something went wrong with pygame. This should never happen."

        if self.clock is None:
            self.clock = pygame.time.Clock()
        if self.hole_img is None:
            file_name = path.join(path.dirname(__file__), "img/hole.png")
            self.hole_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.cracked_hole_img is None:
            file_name = path.join(path.dirname(__file__), "img/cracked_hole.png")
            self.cracked_hole_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.ice_img is None:
            file_name = path.join(path.dirname(__file__), "img/ice.png")
            self.ice_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.goal_img is None:
            file_name = path.join(path.dirname(__file__), "img/goal.png")
            self.goal_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.start_img is None:
            file_name = path.join(path.dirname(__file__), "img/stool.png")
            self.start_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.elf_images is None:
            elfs = [
                path.join(path.dirname(__file__), "img/elf_left.png"),
                path.join(path.dirname(__file__), "img/elf_down.png"),
                path.join(path.dirname(__file__), "img/elf_right.png"),
                path.join(path.dirname(__file__), "img/elf_up.png"),
            ]
            self.elf_images = [
                pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
                for f_name in elfs
            ]

        desc = self.desc.tolist()
        assert isinstance(desc, list), f"desc should be a list or an array, got {desc}"
        for y in range(self.nrow):
            for x in range(self.ncol):
                pos = (x * self.cell_size[0], y * self.cell_size[1])
                rect = (*pos, *self.cell_size)

                self.window_surface.blit(self.ice_img, pos)
                if desc[y][x] == b"H":
                    self.window_surface.blit(self.hole_img, pos)
                elif desc[y][x] == b"G":
                    self.window_surface.blit(self.goal_img, pos)
                elif desc[y][x] == b"S":
                    self.window_surface.blit(self.start_img, pos)

                pygame.draw.rect(self.window_surface, (180, 200, 230), rect, 1)

        # paint the elf
        bot_row, bot_col = self.s // self.ncol, self.s % self.ncol
        cell_rect = (bot_col * self.cell_size[0], bot_row * self.cell_size[1])
        last_action = self.lastaction if self.lastaction is not None else 1
        elf_img = self.elf_images[last_action]

        if desc[bot_row][bot_col] == b"H":
            self.window_surface.blit(self.cracked_hole_img, cell_rect)
        else:
            self.window_surface.blit(elf_img, cell_rect)

        if mode == "human":
            pygame.event.pump()
            pygame.display.update()
            self.clock.tick(self.metadata["render_fps"])
        elif mode == "rgb_array":
            return np.transpose(
                np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2)
            )

    @staticmethod
    def _center_small_rect(big_rect, small_dims):
        offset_w = (big_rect[2] - small_dims[0]) / 2
        offset_h = (big_rect[3] - small_dims[1]) / 2
        return (
            big_rect[0] + offset_w,
            big_rect[1] + offset_h,
        )

    def _render_text(self):
        desc = self.desc.tolist()
        outfile = StringIO()

        row, col = self.s // self.ncol, self.s % self.ncol
        desc = [[c.decode("utf-8") for c in line] for line in desc]
        desc[row][col] = utils.colorize(desc[row][col], "red", highlight=True)
        if self.lastaction is not None:
            outfile.write(f"  ({['Left', 'Down', 'Right', 'Up'][self.lastaction]})\n")
        else:
            outfile.write("\n")
        outfile.write("\n".join("".join(line) for line in desc) + "\n")

        with closing(outfile):
            return outfile.getvalue()

    def close(self):
        if self.window_surface is not None:
            import pygame

            pygame.display.quit()
            pygame.quit()


# Elf and stool from https://franuka.itch.io/rpg-snow-tileset
# All other assets by Mel Tillery http://www.cyaneus.com/