File size: 18,100 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
from ..libmp.backend import xrange

class SpecialFunctions(object):
    """
    This class implements special functions using high-level code.

    Elementary and some other functions (e.g. gamma function, basecase
    hypergeometric series) are assumed to be predefined by the context as
    "builtins" or "low-level" functions.
    """
    defined_functions = {}

    # The series for the Jacobi theta functions converge for |q| < 1;
    # in the current implementation they throw a ValueError for
    # abs(q) > THETA_Q_LIM
    THETA_Q_LIM = 1 - 10**-7

    def __init__(self):
        cls = self.__class__
        for name in cls.defined_functions:
            f, wrap = cls.defined_functions[name]
            cls._wrap_specfun(name, f, wrap)

        self.mpq_1 = self._mpq((1,1))
        self.mpq_0 = self._mpq((0,1))
        self.mpq_1_2 = self._mpq((1,2))
        self.mpq_3_2 = self._mpq((3,2))
        self.mpq_1_4 = self._mpq((1,4))
        self.mpq_1_16 = self._mpq((1,16))
        self.mpq_3_16 = self._mpq((3,16))
        self.mpq_5_2 = self._mpq((5,2))
        self.mpq_3_4 = self._mpq((3,4))
        self.mpq_7_4 = self._mpq((7,4))
        self.mpq_5_4 = self._mpq((5,4))
        self.mpq_1_3 = self._mpq((1,3))
        self.mpq_2_3 = self._mpq((2,3))
        self.mpq_4_3 = self._mpq((4,3))
        self.mpq_1_6 = self._mpq((1,6))
        self.mpq_5_6 = self._mpq((5,6))
        self.mpq_5_3 = self._mpq((5,3))

        self._misc_const_cache = {}

        self._aliases.update({
            'phase' : 'arg',
            'conjugate' : 'conj',
            'nthroot' : 'root',
            'polygamma' : 'psi',
            'hurwitz' : 'zeta',
            #'digamma' : 'psi0',
            #'trigamma' : 'psi1',
            #'tetragamma' : 'psi2',
            #'pentagamma' : 'psi3',
            'fibonacci' : 'fib',
            'factorial' : 'fac',
        })

        self.zetazero_memoized = self.memoize(self.zetazero)

    # Default -- do nothing
    @classmethod
    def _wrap_specfun(cls, name, f, wrap):
        setattr(cls, name, f)

    # Optional fast versions of common functions in common cases.
    # If not overridden, default (generic hypergeometric series)
    # implementations will be used
    def _besselj(ctx, n, z): raise NotImplementedError
    def _erf(ctx, z): raise NotImplementedError
    def _erfc(ctx, z): raise NotImplementedError
    def _gamma_upper_int(ctx, z, a): raise NotImplementedError
    def _expint_int(ctx, n, z): raise NotImplementedError
    def _zeta(ctx, s): raise NotImplementedError
    def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError
    def _ei(ctx, z): raise NotImplementedError
    def _e1(ctx, z): raise NotImplementedError
    def _ci(ctx, z): raise NotImplementedError
    def _si(ctx, z): raise NotImplementedError
    def _altzeta(ctx, s): raise NotImplementedError

def defun_wrapped(f):
    SpecialFunctions.defined_functions[f.__name__] = f, True
    return f

def defun(f):
    SpecialFunctions.defined_functions[f.__name__] = f, False
    return f

def defun_static(f):
    setattr(SpecialFunctions, f.__name__, f)
    return f

@defun_wrapped
def cot(ctx, z): return ctx.one / ctx.tan(z)

@defun_wrapped
def sec(ctx, z): return ctx.one / ctx.cos(z)

@defun_wrapped
def csc(ctx, z): return ctx.one / ctx.sin(z)

@defun_wrapped
def coth(ctx, z): return ctx.one / ctx.tanh(z)

@defun_wrapped
def sech(ctx, z): return ctx.one / ctx.cosh(z)

@defun_wrapped
def csch(ctx, z): return ctx.one / ctx.sinh(z)

@defun_wrapped
def acot(ctx, z):
    if not z:
        return ctx.pi * 0.5
    else:
        return ctx.atan(ctx.one / z)

@defun_wrapped
def asec(ctx, z): return ctx.acos(ctx.one / z)

@defun_wrapped
def acsc(ctx, z): return ctx.asin(ctx.one / z)

@defun_wrapped
def acoth(ctx, z):
    if not z:
        return ctx.pi * 0.5j
    else:
        return ctx.atanh(ctx.one / z)


@defun_wrapped
def asech(ctx, z): return ctx.acosh(ctx.one / z)

@defun_wrapped
def acsch(ctx, z): return ctx.asinh(ctx.one / z)

@defun
def sign(ctx, x):
    x = ctx.convert(x)
    if not x or ctx.isnan(x):
        return x
    if ctx._is_real_type(x):
        if x > 0:
            return ctx.one
        else:
            return -ctx.one
    return x / abs(x)

@defun
def agm(ctx, a, b=1):
    if b == 1:
        return ctx.agm1(a)
    a = ctx.convert(a)
    b = ctx.convert(b)
    return ctx._agm(a, b)

@defun_wrapped
def sinc(ctx, x):
    if ctx.isinf(x):
        return 1/x
    if not x:
        return x+1
    return ctx.sin(x)/x

@defun_wrapped
def sincpi(ctx, x):
    if ctx.isinf(x):
        return 1/x
    if not x:
        return x+1
    return ctx.sinpi(x)/(ctx.pi*x)

# TODO: tests; improve implementation
@defun_wrapped
def expm1(ctx, x):
    if not x:
        return ctx.zero
    # exp(x) - 1 ~ x
    if ctx.mag(x) < -ctx.prec:
        return x + 0.5*x**2
    # TODO: accurately eval the smaller of the real/imag parts
    return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1)

@defun_wrapped
def log1p(ctx, x):
    if not x:
        return ctx.zero
    if ctx.mag(x) < -ctx.prec:
        return x - 0.5*x**2
    return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec))

@defun_wrapped
def powm1(ctx, x, y):
    mag = ctx.mag
    one = ctx.one
    w = x**y - one
    M = mag(w)
    # Only moderate cancellation
    if M > -8:
        return w
    # Check for the only possible exact cases
    if not w:
        if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)):
            return w
    x1 = x - one
    magy = mag(y)
    lnx = ctx.ln(x)
    # Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2)
    if magy + mag(lnx) < -ctx.prec:
        return lnx*y + (lnx*y)**2/2
    # TODO: accurately eval the smaller of the real/imag part
    return ctx.sum_accurately(lambda: iter([x**y, -1]), 1)

@defun
def _rootof1(ctx, k, n):
    k = int(k)
    n = int(n)
    k %= n
    if not k:
        return ctx.one
    elif 2*k == n:
        return -ctx.one
    elif 4*k == n:
        return ctx.j
    elif 4*k == 3*n:
        return -ctx.j
    return ctx.expjpi(2*ctx.mpf(k)/n)

@defun
def root(ctx, x, n, k=0):
    n = int(n)
    x = ctx.convert(x)
    if k:
        # Special case: there is an exact real root
        if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0):
            return -ctx.root(-x, n)
        # Multiply by root of unity
        prec = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.root(x, n, 0) * ctx._rootof1(k, n)
        finally:
            ctx.prec = prec
        return +v
    return ctx._nthroot(x, n)

@defun
def unitroots(ctx, n, primitive=False):
    gcd = ctx._gcd
    prec = ctx.prec
    try:
        ctx.prec += 10
        if primitive:
            v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1]
        else:
            # TODO: this can be done *much* faster
            v = [ctx._rootof1(k,n) for k in range(n)]
    finally:
        ctx.prec = prec
    return [+x for x in v]

@defun
def arg(ctx, x):
    x = ctx.convert(x)
    re = ctx._re(x)
    im = ctx._im(x)
    return ctx.atan2(im, re)

@defun
def fabs(ctx, x):
    return abs(ctx.convert(x))

@defun
def re(ctx, x):
    x = ctx.convert(x)
    if hasattr(x, "real"):    # py2.5 doesn't have .real/.imag for all numbers
        return x.real
    return x

@defun
def im(ctx, x):
    x = ctx.convert(x)
    if hasattr(x, "imag"):    # py2.5 doesn't have .real/.imag for all numbers
        return x.imag
    return ctx.zero

@defun
def conj(ctx, x):
    x = ctx.convert(x)
    try:
        return x.conjugate()
    except AttributeError:
        return x

@defun
def polar(ctx, z):
    return (ctx.fabs(z), ctx.arg(z))

@defun_wrapped
def rect(ctx, r, phi):
    return r * ctx.mpc(*ctx.cos_sin(phi))

@defun
def log(ctx, x, b=None):
    if b is None:
        return ctx.ln(x)
    wp = ctx.prec + 20
    return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp)

@defun
def log10(ctx, x):
    return ctx.log(x, 10)

@defun
def fmod(ctx, x, y):
    return ctx.convert(x) % ctx.convert(y)

@defun
def degrees(ctx, x):
    return x / ctx.degree

@defun
def radians(ctx, x):
    return x * ctx.degree

def _lambertw_special(ctx, z, k):
    # W(0,0) = 0; all other branches are singular
    if not z:
        if not k:
            return z
        return ctx.ninf + z
    if z == ctx.inf:
        if k == 0:
            return z
        else:
            return z + 2*k*ctx.pi*ctx.j
    if z == ctx.ninf:
        return (-z) + (2*k+1)*ctx.pi*ctx.j
    # Some kind of nan or complex inf/nan?
    return ctx.ln(z)

import math
import cmath

def _lambertw_approx_hybrid(z, k):
    imag_sign = 0
    if hasattr(z, "imag"):
        x = float(z.real)
        y = z.imag
        if y:
            imag_sign = (-1) ** (y < 0)
        y = float(y)
    else:
        x = float(z)
        y = 0.0
        imag_sign = 0
    # hack to work regardless of whether Python supports -0.0
    if not y:
        y = 0.0
    z = complex(x,y)
    if k == 0:
        if -4.0 < y < 4.0 and -1.0 < x < 2.5:
            if imag_sign:
                # Taylor series in upper/lower half-plane
                if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j))
                if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j))
                if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j))
                if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j))
            # Taylor series near -1
            if x < -0.5:
                if imag_sign >= 0:
                    return (-0.318+1.34j) + (-0.697-0.593j)*(z+1)
                else:
                    return (-0.318-1.34j) + (-0.697+0.593j)*(z+1)
            # return real type
            r = -0.367879441171442
            if (not imag_sign) and x > r:
                z = x
            # Singularity near -1/e
            if x < -0.2:
                return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
            # Taylor series near 0
            if x < 0.5: return z
            # Simple linear approximation
            return 0.2 + 0.3*z
        if (not imag_sign) and x > 0.0:
            L1 = math.log(x); L2 = math.log(L1)
        else:
            L1 = cmath.log(z); L2 = cmath.log(L1)
    elif k == -1:
        # return real type
        r = -0.367879441171442
        if (not imag_sign) and r < x < 0.0:
            z = x
        if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2:
            return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
        if (not imag_sign) and -0.2 <= x < 0.0:
            L1 = math.log(-x)
            return L1 - math.log(-L1)
        else:
            if imag_sign == -1 and (not y) and x < 0.0:
                L1 = cmath.log(z) - 3.1415926535897932j
            else:
                L1 = cmath.log(z) - 6.2831853071795865j
            L2 = cmath.log(L1)
    return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2)

def _lambertw_series(ctx, z, k, tol):
    """
    Return rough approximation for W_k(z) from an asymptotic series,
    sufficiently accurate for the Halley iteration to converge to
    the correct value.
    """
    magz = ctx.mag(z)
    if (-10 < magz < 900) and (-1000 < k < 1000):
        # Near the branch point at -1/e
        if magz < 1 and abs(z+0.36787944117144) < 0.05:
            if k == 0 or (k == -1 and ctx._im(z) >= 0) or \
                         (k == 1  and ctx._im(z) < 0):
                delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)])
                cancellation = -ctx.mag(delta)
                ctx.prec += cancellation
                # Use series given in Corless et al.
                p = ctx.sqrt(2*(ctx.e*z+1))
                ctx.prec -= cancellation
                u = {0:ctx.mpf(-1), 1:ctx.mpf(1)}
                a = {0:ctx.mpf(2), 1:ctx.mpf(-1)}
                if k != 0:
                    p = -p
                s = ctx.zero
                # The series converges, so we could use it directly, but unless
                # *extremely* close, it is better to just use the first few
                # terms to get a good approximation for the iteration
                for l in xrange(max(2,cancellation)):
                    if l not in u:
                        a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l))
                        u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1)
                    term = u[l] * p**l
                    s += term
                    if ctx.mag(term) < -tol:
                        return s, True
                    l += 1
                ctx.prec += cancellation//2
                return s, False
        if k == 0 or k == -1:
            return _lambertw_approx_hybrid(z, k), False
    if k == 0:
        if magz < -1:
            return z*(1-z), False
        L1 = ctx.ln(z)
        L2 = ctx.ln(L1)
    elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0):
        L1 = ctx.ln(-z)
        return L1 - ctx.ln(-L1), False
    else:
        # This holds both as z -> 0 and z -> inf.
        # Relative error is O(1/log(z)).
        L1 = ctx.ln(z) + 2j*ctx.pi*k
        L2 = ctx.ln(L1)
    return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False

@defun
def lambertw(ctx, z, k=0):
    z = ctx.convert(z)
    k = int(k)
    if not ctx.isnormal(z):
        return _lambertw_special(ctx, z, k)
    prec = ctx.prec
    ctx.prec += 20 + ctx.mag(k or 1)
    wp = ctx.prec
    tol = wp - 5
    w, done = _lambertw_series(ctx, z, k, tol)
    if not done:
        # Use Halley iteration to solve w*exp(w) = z
        two = ctx.mpf(2)
        for i in xrange(100):
            ew = ctx.exp(w)
            wew = w*ew
            wewz = wew-z
            wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two))
            if ctx.mag(wn-w) <= ctx.mag(wn) - tol:
                w = wn
                break
            else:
                w = wn
        if i == 100:
            ctx.warn("Lambert W iteration failed to converge for z = %s" % z)
    ctx.prec = prec
    return +w

@defun_wrapped
def bell(ctx, n, x=1):
    x = ctx.convert(x)
    if not n:
        if ctx.isnan(x):
            return x
        return type(x)(1)
    if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n):
        return x**n
    if n == 1: return x
    if n == 2: return x*(x+1)
    if x == 0: return ctx.sincpi(n)
    return _polyexp(ctx, n, x, True) / ctx.exp(x)

def _polyexp(ctx, n, x, extra=False):
    def _terms():
        if extra:
            yield ctx.sincpi(n)
        t = x
        k = 1
        while 1:
            yield k**n * t
            k += 1
            t = t*x/k
    return ctx.sum_accurately(_terms, check_step=4)

@defun_wrapped
def polyexp(ctx, s, z):
    if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s):
        return z**s
    if z == 0: return z*s
    if s == 0: return ctx.expm1(z)
    if s == 1: return ctx.exp(z)*z
    if s == 2: return ctx.exp(z)*z*(z+1)
    return _polyexp(ctx, s, z)

@defun_wrapped
def cyclotomic(ctx, n, z):
    n = int(n)
    if n < 0:
        raise ValueError("n cannot be negative")
    p = ctx.one
    if n == 0:
        return p
    if n == 1:
        return z - p
    if n == 2:
        return z + p
    # Use divisor product representation. Unfortunately, this sometimes
    # includes singularities for roots of unity, which we have to cancel out.
    # Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1).
    a_prod = 1
    b_prod = 1
    num_zeros = 0
    num_poles = 0
    for d in range(1,n+1):
        if not n % d:
            w = ctx.moebius(n//d)
            # Use powm1 because it is important that we get 0 only
            # if it really is exactly 0
            b = -ctx.powm1(z, d)
            if b:
                p *= b**w
            else:
                if w == 1:
                    a_prod *= d
                    num_zeros += 1
                elif w == -1:
                    b_prod *= d
                    num_poles += 1
    #print n, num_zeros, num_poles
    if num_zeros:
        if num_zeros > num_poles:
            p *= 0
        else:
            p *= a_prod
            p /= b_prod
    return p

@defun
def mangoldt(ctx, n):
    r"""
    Evaluates the von Mangoldt function `\Lambda(n) = \log p`
    if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> [mangoldt(n) for n in range(-2,3)]
        [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321]
        >>> mangoldt(6)
        0.0
        >>> mangoldt(7)
        1.945910149055313305105353
        >>> mangoldt(8)
        0.6931471805599453094172321
        >>> fsum(mangoldt(n) for n in range(101))
        94.04531122935739224600493
        >>> fsum(mangoldt(n) for n in range(10001))
        10013.39669326311478372032

    """
    n = int(n)
    if n < 2:
        return ctx.zero
    if n % 2 == 0:
        # Must be a power of two
        if n & (n-1) == 0:
            return +ctx.ln2
        else:
            return ctx.zero
    # TODO: the following could be generalized into a perfect
    # power testing function
    # ---
    # Look for a small factor
    for p in (3,5,7,11,13,17,19,23,29,31):
        if not n % p:
            q, r = n // p, 0
            while q > 1:
                q, r = divmod(q, p)
                if r:
                    return ctx.zero
            return ctx.ln(p)
    if ctx.isprime(n):
        return ctx.ln(n)
    # Obviously, we could use arbitrary-precision arithmetic for this...
    if n > 10**30:
        raise NotImplementedError
    k = 2
    while 1:
        p = int(n**(1./k) + 0.5)
        if p < 2:
            return ctx.zero
        if p ** k == n:
            if ctx.isprime(p):
                return ctx.ln(p)
        k += 1

@defun
def stirling1(ctx, n, k, exact=False):
    v = ctx._stirling1(int(n), int(k))
    if exact:
        return int(v)
    else:
        return ctx.mpf(v)

@defun
def stirling2(ctx, n, k, exact=False):
    v = ctx._stirling2(int(n), int(k))
    if exact:
        return int(v)
    else:
        return ctx.mpf(v)