File size: 7,412 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides utilities that may be especially useful to plugins."""


import threading

from tensorboard._vendor.bleach.sanitizer import Cleaner
import markdown

from tensorboard import context as _context
from tensorboard.backend import experiment_id as _experiment_id
from tensorboard.util import tb_logging


logger = tb_logging.get_logger()

_ALLOWED_ATTRIBUTES = {
    "a": ["href", "title"],
    "img": ["src", "title", "alt"],
}

_ALLOWED_TAGS = [
    "ul",
    "ol",
    "li",
    "p",
    "pre",
    "code",
    "blockquote",
    "h1",
    "h2",
    "h3",
    "h4",
    "h5",
    "h6",
    "hr",
    "br",
    "strong",
    "em",
    "a",
    "img",
    "table",
    "thead",
    "tbody",
    "td",
    "tr",
    "th",
]


# Cache Markdown converter to avoid expensive initialization at each
# call to `markdown_to_safe_html`. Cache a different instance per thread.
class _MarkdownStore(threading.local):
    def __init__(self):
        self.markdown = markdown.Markdown(
            extensions=[
                "markdown.extensions.tables",
                "markdown.extensions.fenced_code",
            ]
        )


_MARKDOWN_STORE = _MarkdownStore()


# Cache Cleaner to avoid expensive initialization at each call to `clean`.
# Cache a different instance per thread.
class _CleanerStore(threading.local):
    def __init__(self):
        self.cleaner = Cleaner(
            tags=_ALLOWED_TAGS, attributes=_ALLOWED_ATTRIBUTES
        )


_CLEANER_STORE = _CleanerStore()


def safe_html(unsafe_string):
    """Return the input as a str, sanitized for insertion into the DOM.

    Arguments:
      unsafe_string: A Unicode string or UTF-8--encoded bytestring
        possibly containing unsafe HTML markup.

    Returns:
      A string containing safe HTML.
    """
    total_null_bytes = 0
    if isinstance(unsafe_string, bytes):
        unsafe_string = unsafe_string.decode("utf-8")
    return _CLEANER_STORE.cleaner.clean(unsafe_string)


def markdown_to_safe_html(markdown_string):
    """Convert Markdown to HTML that's safe to splice into the DOM.

    Arguments:
      markdown_string: A Unicode string or UTF-8--encoded bytestring
        containing Markdown source. Markdown tables are supported.

    Returns:
      A string containing safe HTML.
    """
    return markdowns_to_safe_html([markdown_string], lambda xs: xs[0])


def markdowns_to_safe_html(markdown_strings, combine):
    """Convert multiple Markdown documents to one safe HTML document.

    One could also achieve this by calling `markdown_to_safe_html`
    multiple times and combining the results. Compared to that approach,
    this function may be faster, because HTML sanitization (which can be
    expensive) is performed only once rather than once per input. It may
    also be less precise: if one of the input documents has unsafe HTML
    that is sanitized away, that sanitization might affect other
    documents, even if those documents are safe.

    Args:
      markdown_strings: List of Markdown source strings to convert, as
        Unicode strings or UTF-8--encoded bytestrings. Markdown tables
        are supported.
      combine: Callback function that takes a list of unsafe HTML
        strings of the same shape as `markdown_strings` and combines
        them into a single unsafe HTML string, which will be sanitized
        and returned.

    Returns:
      A string containing safe HTML.
    """
    unsafe_htmls = []
    total_null_bytes = 0

    for source in markdown_strings:
        # Convert to utf-8 whenever we have a binary input.
        if isinstance(source, bytes):
            source_decoded = source.decode("utf-8")
            # Remove null bytes and warn if there were any, since it probably means
            # we were given a bad encoding.
            source = source_decoded.replace("\x00", "")
            total_null_bytes += len(source_decoded) - len(source)
        unsafe_html = _MARKDOWN_STORE.markdown.convert(source)
        unsafe_htmls.append(unsafe_html)

    unsafe_combined = combine(unsafe_htmls)
    sanitized_combined = _CLEANER_STORE.cleaner.clean(unsafe_combined)

    warning = ""
    if total_null_bytes:
        warning = (
            "<!-- WARNING: discarded %d null bytes in markdown string "
            "after UTF-8 decoding -->\n"
        ) % total_null_bytes

    return warning + sanitized_combined


def context(environ):
    """Get a TensorBoard `RequestContext` from a WSGI environment.

    Returns:
      A `RequestContext` value.
    """
    return _context.from_environ(environ)


def experiment_id(environ):
    """Determine the experiment ID associated with a WSGI request.

    Each request to TensorBoard has an associated experiment ID, which is
    always a string and may be empty. This experiment ID should be passed
    to data providers.

    Args:
      environ: A WSGI environment `dict`. For a Werkzeug request, this is
        `request.environ`.

    Returns:
      A experiment ID, as a possibly-empty `str`.
    """
    return environ.get(_experiment_id.WSGI_ENVIRON_KEY, "")


class _MetadataVersionChecker:
    """TensorBoard-internal utility for warning when data is too new.

    Specify a maximum known `version` number as stored in summary
    metadata, and automatically reject and warn on data from newer
    versions. This keeps a (single) bit of internal state to handle
    logging a warning to the user at most once.

    This should only be used by plugins bundled with TensorBoard, since
    it may instruct users to upgrade their copy of TensorBoard.
    """

    def __init__(self, data_kind, latest_known_version):
        """Initialize a `_MetadataVersionChecker`.

        Args:
          data_kind: A human-readable description of the kind of data
            being read, like "scalar" or "histogram" or "PR curve".
          latest_known_version: Highest tolerated value of `version`,
            like `0`.
        """
        self._data_kind = data_kind
        self._latest_known_version = latest_known_version
        self._warned = False

    def ok(self, version, run, tag):
        """Test whether `version` is permitted, else complain."""
        if 0 <= version <= self._latest_known_version:
            return True
        self._maybe_warn(version, run, tag)
        return False

    def _maybe_warn(self, version, run, tag):
        if self._warned:
            return
        self._warned = True
        logger.warning(
            "Some %s data is too new to be read by this version of TensorBoard. "
            "Upgrading TensorBoard may fix this. "
            "(sample: run %r, tag %r, data version %r)",
            self._data_kind,
            run,
            tag,
            version,
        )