Spaces:
Running
Running
File size: 36,056 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
# contributed to mpmath by Kristopher L. Kuhlman, February 2017
# contributed to mpmath by Guillermo Navas-Palencia, February 2022
class InverseLaplaceTransform(object):
r"""
Inverse Laplace transform methods are implemented using this
class, in order to simplify the code and provide a common
infrastructure.
Implement a custom inverse Laplace transform algorithm by
subclassing :class:`InverseLaplaceTransform` and implementing the
appropriate methods. The subclass can then be used by
:func:`~mpmath.invertlaplace` by passing it as the *method*
argument.
"""
def __init__(self, ctx):
self.ctx = ctx
def calc_laplace_parameter(self, t, **kwargs):
r"""
Determine the vector of Laplace parameter values needed for an
algorithm, this will depend on the choice of algorithm (de
Hoog is default), the algorithm-specific parameters passed (or
default ones), and desired time.
"""
raise NotImplementedError
def calc_time_domain_solution(self, fp):
r"""
Compute the time domain solution, after computing the
Laplace-space function evaluations at the abscissa required
for the algorithm. Abscissa computed for one algorithm are
typically not useful for another algorithm.
"""
raise NotImplementedError
class FixedTalbot(InverseLaplaceTransform):
def calc_laplace_parameter(self, t, **kwargs):
r"""The "fixed" Talbot method deforms the Bromwich contour towards
`-\infty` in the shape of a parabola. Traditionally the Talbot
algorithm has adjustable parameters, but the "fixed" version
does not. The `r` parameter could be passed in as a parameter,
if you want to override the default given by (Abate & Valko,
2004).
The Laplace parameter is sampled along a parabola opening
along the negative imaginary axis, with the base of the
parabola along the real axis at
`p=\frac{r}{t_\mathrm{max}}`. As the number of terms used in
the approximation (degree) grows, the abscissa required for
function evaluation tend towards `-\infty`, requiring high
precision to prevent overflow. If any poles, branch cuts or
other singularities exist such that the deformed Bromwich
contour lies to the left of the singularity, the method will
fail.
**Optional arguments**
:class:`~mpmath.calculus.inverselaplace.FixedTalbot.calc_laplace_parameter`
recognizes the following keywords
*tmax*
maximum time associated with vector of times
(typically just the time requested)
*degree*
integer order of approximation (M = number of terms)
*r*
abscissa for `p_0` (otherwise computed using rule
of thumb `2M/5`)
The working precision will be increased according to a rule of
thumb. If 'degree' is not specified, the working precision and
degree are chosen to hopefully achieve the dps of the calling
context. If 'degree' is specified, the working precision is
chosen to achieve maximum resulting precision for the
specified degree.
.. math ::
p_0=\frac{r}{t}
.. math ::
p_i=\frac{i r \pi}{Mt_\mathrm{max}}\left[\cot\left(
\frac{i\pi}{M}\right) + j \right] \qquad 1\le i <M
where `j=\sqrt{-1}`, `r=2M/5`, and `t_\mathrm{max}` is the
maximum specified time.
"""
# required
# ------------------------------
# time of desired approximation
self.t = self.ctx.convert(t)
# optional
# ------------------------------
# maximum time desired (used for scaling) default is requested
# time.
self.tmax = self.ctx.convert(kwargs.get('tmax', self.t))
# empirical relationships used here based on a linear fit of
# requested and delivered dps for exponentially decaying time
# functions for requested dps up to 512.
if 'degree' in kwargs:
self.degree = kwargs['degree']
self.dps_goal = self.degree
else:
self.dps_goal = int(1.72*self.ctx.dps)
self.degree = max(12, int(1.38*self.dps_goal))
M = self.degree
# this is adjusting the dps of the calling context hopefully
# the caller doesn't monkey around with it between calling
# this routine and calc_time_domain_solution()
self.dps_orig = self.ctx.dps
self.ctx.dps = self.dps_goal
# Abate & Valko rule of thumb for r parameter
self.r = kwargs.get('r', self.ctx.fraction(2, 5)*M)
self.theta = self.ctx.linspace(0.0, self.ctx.pi, M+1)
self.cot_theta = self.ctx.matrix(M, 1)
self.cot_theta[0] = 0 # not used
# all but time-dependent part of p
self.delta = self.ctx.matrix(M, 1)
self.delta[0] = self.r
for i in range(1, M):
self.cot_theta[i] = self.ctx.cot(self.theta[i])
self.delta[i] = self.r*self.theta[i]*(self.cot_theta[i] + 1j)
self.p = self.ctx.matrix(M, 1)
self.p = self.delta/self.tmax
# NB: p is complex (mpc)
def calc_time_domain_solution(self, fp, t, manual_prec=False):
r"""The fixed Talbot time-domain solution is computed from the
Laplace-space function evaluations using
.. math ::
f(t,M)=\frac{2}{5t}\sum_{k=0}^{M-1}\Re \left[
\gamma_k \bar{f}(p_k)\right]
where
.. math ::
\gamma_0 = \frac{1}{2}e^{r}\bar{f}(p_0)
.. math ::
\gamma_k = e^{tp_k}\left\lbrace 1 + \frac{jk\pi}{M}\left[1 +
\cot \left( \frac{k \pi}{M} \right)^2 \right] - j\cot\left(
\frac{k \pi}{M}\right)\right \rbrace \qquad 1\le k<M.
Again, `j=\sqrt{-1}`.
Before calling this function, call
:class:`~mpmath.calculus.inverselaplace.FixedTalbot.calc_laplace_parameter`
to set the parameters and compute the required coefficients.
**References**
1. Abate, J., P. Valko (2004). Multi-precision Laplace
transform inversion. *International Journal for Numerical
Methods in Engineering* 60:979-993,
http://dx.doi.org/10.1002/nme.995
2. Talbot, A. (1979). The accurate numerical inversion of
Laplace transforms. *IMA Journal of Applied Mathematics*
23(1):97, http://dx.doi.org/10.1093/imamat/23.1.97
"""
# required
# ------------------------------
self.t = self.ctx.convert(t)
# assume fp was computed from p matrix returned from
# calc_laplace_parameter(), so is already a list or matrix of
# mpmath 'mpc' types
# these were computed in previous call to
# calc_laplace_parameter()
theta = self.theta
delta = self.delta
M = self.degree
p = self.p
r = self.r
ans = self.ctx.matrix(M, 1)
ans[0] = self.ctx.exp(delta[0])*fp[0]/2
for i in range(1, M):
ans[i] = self.ctx.exp(delta[i])*fp[i]*(
1 + 1j*theta[i]*(1 + self.cot_theta[i]**2) -
1j*self.cot_theta[i])
result = self.ctx.fraction(2, 5)*self.ctx.fsum(ans)/self.t
# setting dps back to value when calc_laplace_parameter was
# called, unless flag is set.
if not manual_prec:
self.ctx.dps = self.dps_orig
return result.real
# ****************************************
class Stehfest(InverseLaplaceTransform):
def calc_laplace_parameter(self, t, **kwargs):
r"""
The Gaver-Stehfest method is a discrete approximation of the
Widder-Post inversion algorithm, rather than a direct
approximation of the Bromwich contour integral.
The method abscissa along the real axis, and therefore has
issues inverting oscillatory functions (which have poles in
pairs away from the real axis).
The working precision will be increased according to a rule of
thumb. If 'degree' is not specified, the working precision and
degree are chosen to hopefully achieve the dps of the calling
context. If 'degree' is specified, the working precision is
chosen to achieve maximum resulting precision for the
specified degree.
.. math ::
p_k = \frac{k \log 2}{t} \qquad 1 \le k \le M
"""
# required
# ------------------------------
# time of desired approximation
self.t = self.ctx.convert(t)
# optional
# ------------------------------
# empirical relationships used here based on a linear fit of
# requested and delivered dps for exponentially decaying time
# functions for requested dps up to 512.
if 'degree' in kwargs:
self.degree = kwargs['degree']
self.dps_goal = int(1.38*self.degree)
else:
self.dps_goal = int(2.93*self.ctx.dps)
self.degree = max(16, self.dps_goal)
# _coeff routine requires even degree
if self.degree % 2 > 0:
self.degree += 1
M = self.degree
# this is adjusting the dps of the calling context
# hopefully the caller doesn't monkey around with it
# between calling this routine and calc_time_domain_solution()
self.dps_orig = self.ctx.dps
self.ctx.dps = self.dps_goal
self.V = self._coeff()
self.p = self.ctx.matrix(self.ctx.arange(1, M+1))*self.ctx.ln2/self.t
# NB: p is real (mpf)
def _coeff(self):
r"""Salzer summation weights (aka, "Stehfest coefficients")
only depend on the approximation order (M) and the precision"""
M = self.degree
M2 = int(M/2) # checked earlier that M is even
V = self.ctx.matrix(M, 1)
# Salzer summation weights
# get very large in magnitude and oscillate in sign,
# if the precision is not high enough, there will be
# catastrophic cancellation
for k in range(1, M+1):
z = self.ctx.matrix(min(k, M2)+1, 1)
for j in range(int((k+1)/2), min(k, M2)+1):
z[j] = (self.ctx.power(j, M2)*self.ctx.fac(2*j)/
(self.ctx.fac(M2-j)*self.ctx.fac(j)*
self.ctx.fac(j-1)*self.ctx.fac(k-j)*
self.ctx.fac(2*j-k)))
V[k-1] = self.ctx.power(-1, k+M2)*self.ctx.fsum(z)
return V
def calc_time_domain_solution(self, fp, t, manual_prec=False):
r"""Compute time-domain Stehfest algorithm solution.
.. math ::
f(t,M) = \frac{\log 2}{t} \sum_{k=1}^{M} V_k \bar{f}\left(
p_k \right)
where
.. math ::
V_k = (-1)^{k + N/2} \sum^{\min(k,N/2)}_{i=\lfloor(k+1)/2 \rfloor}
\frac{i^{\frac{N}{2}}(2i)!}{\left(\frac{N}{2}-i \right)! \, i! \,
\left(i-1 \right)! \, \left(k-i\right)! \, \left(2i-k \right)!}
As the degree increases, the abscissa (`p_k`) only increase
linearly towards `\infty`, but the Stehfest coefficients
(`V_k`) alternate in sign and increase rapidly in sign,
requiring high precision to prevent overflow or loss of
significance when evaluating the sum.
**References**
1. Widder, D. (1941). *The Laplace Transform*. Princeton.
2. Stehfest, H. (1970). Algorithm 368: numerical inversion of
Laplace transforms. *Communications of the ACM* 13(1):47-49,
http://dx.doi.org/10.1145/361953.361969
"""
# required
self.t = self.ctx.convert(t)
# assume fp was computed from p matrix returned from
# calc_laplace_parameter(), so is already
# a list or matrix of mpmath 'mpf' types
result = self.ctx.fdot(self.V, fp)*self.ctx.ln2/self.t
# setting dps back to value when calc_laplace_parameter was called
if not manual_prec:
self.ctx.dps = self.dps_orig
# ignore any small imaginary part
return result.real
# ****************************************
class deHoog(InverseLaplaceTransform):
def calc_laplace_parameter(self, t, **kwargs):
r"""the de Hoog, Knight & Stokes algorithm is an
accelerated form of the Fourier series numerical
inverse Laplace transform algorithms.
.. math ::
p_k = \gamma + \frac{jk}{T} \qquad 0 \le k < 2M+1
where
.. math ::
\gamma = \alpha - \frac{\log \mathrm{tol}}{2T},
`j=\sqrt{-1}`, `T = 2t_\mathrm{max}` is a scaled time,
`\alpha=10^{-\mathrm{dps\_goal}}` is the real part of the
rightmost pole or singularity, which is chosen based on the
desired accuracy (assuming the rightmost singularity is 0),
and `\mathrm{tol}=10\alpha` is the desired tolerance, which is
chosen in relation to `\alpha`.`
When increasing the degree, the abscissa increase towards
`j\infty`, but more slowly than the fixed Talbot
algorithm. The de Hoog et al. algorithm typically does better
with oscillatory functions of time, and less well-behaved
functions. The method tends to be slower than the Talbot and
Stehfest algorithsm, especially so at very high precision
(e.g., `>500` digits precision).
"""
# required
# ------------------------------
self.t = self.ctx.convert(t)
# optional
# ------------------------------
self.tmax = kwargs.get('tmax', self.t)
# empirical relationships used here based on a linear fit of
# requested and delivered dps for exponentially decaying time
# functions for requested dps up to 512.
if 'degree' in kwargs:
self.degree = kwargs['degree']
self.dps_goal = int(1.38*self.degree)
else:
self.dps_goal = int(self.ctx.dps*1.36)
self.degree = max(10, self.dps_goal)
# 2*M+1 terms in approximation
M = self.degree
# adjust alpha component of abscissa of convergence for higher
# precision
tmp = self.ctx.power(10.0, -self.dps_goal)
self.alpha = self.ctx.convert(kwargs.get('alpha', tmp))
# desired tolerance (here simply related to alpha)
self.tol = self.ctx.convert(kwargs.get('tol', self.alpha*10.0))
self.np = 2*self.degree+1 # number of terms in approximation
# this is adjusting the dps of the calling context
# hopefully the caller doesn't monkey around with it
# between calling this routine and calc_time_domain_solution()
self.dps_orig = self.ctx.dps
self.ctx.dps = self.dps_goal
# scaling factor (likely tun-able, but 2 is typical)
self.scale = kwargs.get('scale', 2)
self.T = self.ctx.convert(kwargs.get('T', self.scale*self.tmax))
self.p = self.ctx.matrix(2*M+1, 1)
self.gamma = self.alpha - self.ctx.log(self.tol)/(self.scale*self.T)
self.p = (self.gamma + self.ctx.pi*
self.ctx.matrix(self.ctx.arange(self.np))/self.T*1j)
# NB: p is complex (mpc)
def calc_time_domain_solution(self, fp, t, manual_prec=False):
r"""Calculate time-domain solution for
de Hoog, Knight & Stokes algorithm.
The un-accelerated Fourier series approach is:
.. math ::
f(t,2M+1) = \frac{e^{\gamma t}}{T} \sum_{k=0}^{2M}{}^{'}
\Re\left[\bar{f}\left( p_k \right)
e^{i\pi t/T} \right],
where the prime on the summation indicates the first term is halved.
This simplistic approach requires so many function evaluations
that it is not practical. Non-linear acceleration is
accomplished via Pade-approximation and an analytic expression
for the remainder of the continued fraction. See the original
paper (reference 2 below) a detailed description of the
numerical approach.
**References**
1. Davies, B. (2005). *Integral Transforms and their
Applications*, Third Edition. Springer.
2. de Hoog, F., J. Knight, A. Stokes (1982). An improved
method for numerical inversion of Laplace transforms. *SIAM
Journal of Scientific and Statistical Computing* 3:357-366,
http://dx.doi.org/10.1137/0903022
"""
M = self.degree
np = self.np
T = self.T
self.t = self.ctx.convert(t)
# would it be useful to try re-using
# space between e&q and A&B?
e = self.ctx.zeros(np, M+1)
q = self.ctx.matrix(2*M, M)
d = self.ctx.matrix(np, 1)
A = self.ctx.zeros(np+1, 1)
B = self.ctx.ones(np+1, 1)
# initialize Q-D table
e[:, 0] = 0.0 + 0j
q[0, 0] = fp[1]/(fp[0]/2)
for i in range(1, 2*M):
q[i, 0] = fp[i+1]/fp[i]
# rhombus rule for filling triangular Q-D table (e & q)
for r in range(1, M+1):
# start with e, column 1, 0:2*M-2
mr = 2*(M-r) + 1
e[0:mr, r] = q[1:mr+1, r-1] - q[0:mr, r-1] + e[1:mr+1, r-1]
if not r == M:
rq = r+1
mr = 2*(M-rq)+1 + 2
for i in range(mr):
q[i, rq-1] = q[i+1, rq-2]*e[i+1, rq-1]/e[i, rq-1]
# build up continued fraction coefficients (d)
d[0] = fp[0]/2
for r in range(1, M+1):
d[2*r-1] = -q[0, r-1] # even terms
d[2*r] = -e[0, r] # odd terms
# seed A and B for recurrence
A[0] = 0.0 + 0.0j
A[1] = d[0]
B[0:2] = 1.0 + 0.0j
# base of the power series
z = self.ctx.expjpi(self.t/T) # i*pi is already in fcn
# coefficients of Pade approximation (A & B)
# using recurrence for all but last term
for i in range(1, 2*M):
A[i+1] = A[i] + d[i]*A[i-1]*z
B[i+1] = B[i] + d[i]*B[i-1]*z
# "improved remainder" to continued fraction
brem = (1 + (d[2*M-1] - d[2*M])*z)/2
# powm1(x,y) computes x^y - 1 more accurately near zero
rem = brem*self.ctx.powm1(1 + d[2*M]*z/brem,
self.ctx.fraction(1, 2))
# last term of recurrence using new remainder
A[np] = A[2*M] + rem*A[2*M-1]
B[np] = B[2*M] + rem*B[2*M-1]
# diagonal Pade approximation
# F=A/B represents accelerated trapezoid rule
result = self.ctx.exp(self.gamma*self.t)/T*(A[np]/B[np]).real
# setting dps back to value when calc_laplace_parameter was called
if not manual_prec:
self.ctx.dps = self.dps_orig
return result
# ****************************************
class Cohen(InverseLaplaceTransform):
def calc_laplace_parameter(self, t, **kwargs):
r"""The Cohen algorithm accelerates the convergence of the nearly
alternating series resulting from the application of the trapezoidal
rule to the Bromwich contour inversion integral.
.. math ::
p_k = \frac{\gamma}{2 t} + \frac{\pi i k}{t} \qquad 0 \le k < M
where
.. math ::
\gamma = \frac{2}{3} (d + \log(10) + \log(2 t)),
`d = \mathrm{dps\_goal}`, which is chosen based on the desired
accuracy using the method developed in [1] to improve numerical
stability. The Cohen algorithm shows robustness similar to the de Hoog
et al. algorithm, but it is faster than the fixed Talbot algorithm.
**Optional arguments**
*degree*
integer order of the approximation (M = number of terms)
*alpha*
abscissa for `p_0` (controls the discretization error)
The working precision will be increased according to a rule of
thumb. If 'degree' is not specified, the working precision and
degree are chosen to hopefully achieve the dps of the calling
context. If 'degree' is specified, the working precision is
chosen to achieve maximum resulting precision for the
specified degree.
**References**
1. P. Glasserman, J. Ruiz-Mata (2006). Computing the credit loss
distribution in the Gaussian copula model: a comparison of methods.
*Journal of Credit Risk* 2(4):33-66, 10.21314/JCR.2006.057
"""
self.t = self.ctx.convert(t)
if 'degree' in kwargs:
self.degree = kwargs['degree']
self.dps_goal = int(1.5 * self.degree)
else:
self.dps_goal = int(self.ctx.dps * 1.74)
self.degree = max(22, int(1.31 * self.dps_goal))
M = self.degree + 1
# this is adjusting the dps of the calling context hopefully
# the caller doesn't monkey around with it between calling
# this routine and calc_time_domain_solution()
self.dps_orig = self.ctx.dps
self.ctx.dps = self.dps_goal
ttwo = 2 * self.t
tmp = self.ctx.dps * self.ctx.log(10) + self.ctx.log(ttwo)
tmp = self.ctx.fraction(2, 3) * tmp
self.alpha = self.ctx.convert(kwargs.get('alpha', tmp))
# all but time-dependent part of p
a_t = self.alpha / ttwo
p_t = self.ctx.pi * 1j / self.t
self.p = self.ctx.matrix(M, 1)
self.p[0] = a_t
for i in range(1, M):
self.p[i] = a_t + i * p_t
def calc_time_domain_solution(self, fp, t, manual_prec=False):
r"""Calculate time-domain solution for Cohen algorithm.
The accelerated nearly alternating series is:
.. math ::
f(t, M) = \frac{e^{\gamma / 2}}{t} \left[\frac{1}{2}
\Re\left(\bar{f}\left(\frac{\gamma}{2t}\right) \right) -
\sum_{k=0}^{M-1}\frac{c_{M,k}}{d_M}\Re\left(\bar{f}
\left(\frac{\gamma + 2(k+1) \pi i}{2t}\right)\right)\right],
where coefficients `\frac{c_{M, k}}{d_M}` are described in [1].
1. H. Cohen, F. Rodriguez Villegas, D. Zagier (2000). Convergence
acceleration of alternating series. *Experiment. Math* 9(1):3-12
"""
self.t = self.ctx.convert(t)
n = self.degree
M = n + 1
A = self.ctx.matrix(M, 1)
for i in range(M):
A[i] = fp[i].real
d = (3 + self.ctx.sqrt(8)) ** n
d = (d + 1 / d) / 2
b = -self.ctx.one
c = -d
s = 0
for k in range(n):
c = b - c
s = s + c * A[k + 1]
b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one))
result = self.ctx.exp(self.alpha / 2) / self.t * (A[0] / 2 - s / d)
# setting dps back to value when calc_laplace_parameter was
# called, unless flag is set.
if not manual_prec:
self.ctx.dps = self.dps_orig
return result
# ****************************************
class LaplaceTransformInversionMethods(object):
def __init__(ctx, *args, **kwargs):
ctx._fixed_talbot = FixedTalbot(ctx)
ctx._stehfest = Stehfest(ctx)
ctx._de_hoog = deHoog(ctx)
ctx._cohen = Cohen(ctx)
def invertlaplace(ctx, f, t, **kwargs):
r"""Computes the numerical inverse Laplace transform for a
Laplace-space function at a given time. The function being
evaluated is assumed to be a real-valued function of time.
The user must supply a Laplace-space function `\bar{f}(p)`,
and a desired time at which to estimate the time-domain
solution `f(t)`.
A few basic examples of Laplace-space functions with known
inverses (see references [1,2]) :
.. math ::
\mathcal{L}\left\lbrace f(t) \right\rbrace=\bar{f}(p)
.. math ::
\mathcal{L}^{-1}\left\lbrace \bar{f}(p) \right\rbrace = f(t)
.. math ::
\bar{f}(p) = \frac{1}{(p+1)^2}
.. math ::
f(t) = t e^{-t}
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> tt = [0.001, 0.01, 0.1, 1, 10]
>>> fp = lambda p: 1/(p+1)**2
>>> ft = lambda t: t*exp(-t)
>>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='talbot')
(0.000999000499833375, 8.57923043561212e-20)
>>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='talbot')
(0.00990049833749168, 3.27007646698047e-19)
>>> ft(tt[2]),ft(tt[2])-invertlaplace(fp,tt[2],method='talbot')
(0.090483741803596, -1.75215800052168e-18)
>>> ft(tt[3]),ft(tt[3])-invertlaplace(fp,tt[3],method='talbot')
(0.367879441171442, 1.2428864009344e-17)
>>> ft(tt[4]),ft(tt[4])-invertlaplace(fp,tt[4],method='talbot')
(0.000453999297624849, 4.04513489306658e-20)
The methods also work for higher precision:
>>> mp.dps = 100; mp.pretty = True
>>> nstr(ft(tt[0]),15),nstr(ft(tt[0])-invertlaplace(fp,tt[0],method='talbot'),15)
('0.000999000499833375', '-4.96868310693356e-105')
>>> nstr(ft(tt[1]),15),nstr(ft(tt[1])-invertlaplace(fp,tt[1],method='talbot'),15)
('0.00990049833749168', '1.23032291513122e-104')
.. math ::
\bar{f}(p) = \frac{1}{p^2+1}
.. math ::
f(t) = \mathrm{J}_0(t)
>>> mp.dps = 15; mp.pretty = True
>>> fp = lambda p: 1/sqrt(p*p + 1)
>>> ft = lambda t: besselj(0,t)
>>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='dehoog')
(0.999999750000016, -6.09717765032273e-18)
>>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='dehoog')
(0.99997500015625, -5.61756281076169e-17)
.. math ::
\bar{f}(p) = \frac{\log p}{p}
.. math ::
f(t) = -\gamma -\log t
>>> mp.dps = 15; mp.pretty = True
>>> fp = lambda p: log(p)/p
>>> ft = lambda t: -euler-log(t)
>>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='stehfest')
(6.3305396140806, -1.92126634837863e-16)
>>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='stehfest')
(4.02795452108656, -4.81486093200704e-16)
**Options**
:func:`~mpmath.invertlaplace` recognizes the following optional
keywords valid for all methods:
*method*
Chooses numerical inverse Laplace transform algorithm
(described below).
*degree*
Number of terms used in the approximation
**Algorithms**
Mpmath implements four numerical inverse Laplace transform
algorithms, attributed to: Talbot, Stehfest, and de Hoog,
Knight and Stokes. These can be selected by using
*method='talbot'*, *method='stehfest'*, *method='dehoog'* or
*method='cohen'* or by passing the classes *method=FixedTalbot*,
*method=Stehfest*, *method=deHoog*, or *method=Cohen*. The functions
:func:`~mpmath.invlaptalbot`, :func:`~mpmath.invlapstehfest`,
:func:`~mpmath.invlapdehoog`, and :func:`~mpmath.invlapcohen`
are also available as shortcuts.
All four algorithms implement a heuristic balance between the
requested precision and the precision used internally for the
calculations. This has been tuned for a typical exponentially
decaying function and precision up to few hundred decimal
digits.
The Laplace transform converts the variable time (i.e., along
a line) into a parameter given by the right half of the
complex `p`-plane. Singularities, poles, and branch cuts in
the complex `p`-plane contain all the information regarding
the time behavior of the corresponding function. Any numerical
method must therefore sample `p`-plane "close enough" to the
singularities to accurately characterize them, while not
getting too close to have catastrophic cancellation, overflow,
or underflow issues. Most significantly, if one or more of the
singularities in the `p`-plane is not on the left side of the
Bromwich contour, its effects will be left out of the computed
solution, and the answer will be completely wrong.
*Talbot*
The fixed Talbot method is high accuracy and fast, but the
method can catastrophically fail for certain classes of time-domain
behavior, including a Heaviside step function for positive
time (e.g., `H(t-2)`), or some oscillatory behaviors. The
Talbot method usually has adjustable parameters, but the
"fixed" variety implemented here does not. This method
deforms the Bromwich integral contour in the shape of a
parabola towards `-\infty`, which leads to problems
when the solution has a decaying exponential in it (e.g., a
Heaviside step function is equivalent to multiplying by a
decaying exponential in Laplace space).
*Stehfest*
The Stehfest algorithm only uses abscissa along the real axis
of the complex `p`-plane to estimate the time-domain
function. Oscillatory time-domain functions have poles away
from the real axis, so this method does not work well with
oscillatory functions, especially high-frequency ones. This
method also depends on summation of terms in a series that
grows very large, and will have catastrophic cancellation
during summation if the working precision is too low.
*de Hoog et al.*
The de Hoog, Knight, and Stokes method is essentially a
Fourier-series quadrature-type approximation to the Bromwich
contour integral, with non-linear series acceleration and an
analytical expression for the remainder term. This method is
typically one of the most robust. This method also involves the
greatest amount of overhead, so it is typically the slowest of the
four methods at high precision.
*Cohen*
The Cohen method is a trapezoidal rule approximation to the Bromwich
contour integral, with linear acceleration for alternating
series. This method is as robust as the de Hoog et al method and the
fastest of the four methods at high precision, and is therefore the
default method.
**Singularities**
All numerical inverse Laplace transform methods have problems
at large time when the Laplace-space function has poles,
singularities, or branch cuts to the right of the origin in
the complex plane. For simple poles in `\bar{f}(p)` at the
`p`-plane origin, the time function is constant in time (e.g.,
`\mathcal{L}\left\lbrace 1 \right\rbrace=1/p` has a pole at
`p=0`). A pole in `\bar{f}(p)` to the left of the origin is a
decreasing function of time (e.g., `\mathcal{L}\left\lbrace
e^{-t/2} \right\rbrace=1/(p+1/2)` has a pole at `p=-1/2`), and
a pole to the right of the origin leads to an increasing
function in time (e.g., `\mathcal{L}\left\lbrace t e^{t/4}
\right\rbrace = 1/(p-1/4)^2` has a pole at `p=1/4`). When
singularities occur off the real `p` axis, the time-domain
function is oscillatory. For example `\mathcal{L}\left\lbrace
\mathrm{J}_0(t) \right\rbrace=1/\sqrt{p^2+1}` has a branch cut
starting at `p=j=\sqrt{-1}` and is a decaying oscillatory
function, This range of behaviors is illustrated in Duffy [3]
Figure 4.10.4, p. 228.
In general as `p \rightarrow \infty` `t \rightarrow 0` and
vice-versa. All numerical inverse Laplace transform methods
require their abscissa to shift closer to the origin for
larger times. If the abscissa shift left of the rightmost
singularity in the Laplace domain, the answer will be
completely wrong (the effect of singularities to the right of
the Bromwich contour are not included in the results).
For example, the following exponentially growing function has
a pole at `p=3`:
.. math ::
\bar{f}(p)=\frac{1}{p^2-9}
.. math ::
f(t)=\frac{1}{3}\sinh 3t
>>> mp.dps = 15; mp.pretty = True
>>> fp = lambda p: 1/(p*p-9)
>>> ft = lambda t: sinh(3*t)/3
>>> tt = [0.01,0.1,1.0,10.0]
>>> ft(tt[0]),invertlaplace(fp,tt[0],method='talbot')
(0.0100015000675014, 0.0100015000675014)
>>> ft(tt[1]),invertlaplace(fp,tt[1],method='talbot')
(0.101506764482381, 0.101506764482381)
>>> ft(tt[2]),invertlaplace(fp,tt[2],method='talbot')
(3.33929164246997, 3.33929164246997)
>>> ft(tt[3]),invertlaplace(fp,tt[3],method='talbot')
(1781079096920.74, -1.61331069624091e-14)
**References**
1. [DLMF]_ section 1.14 (http://dlmf.nist.gov/1.14T4)
2. Cohen, A.M. (2007). Numerical Methods for Laplace Transform
Inversion, Springer.
3. Duffy, D.G. (1998). Advanced Engineering Mathematics, CRC Press.
**Numerical Inverse Laplace Transform Reviews**
1. Bellman, R., R.E. Kalaba, J.A. Lockett (1966). *Numerical
inversion of the Laplace transform: Applications to Biology,
Economics, Engineering, and Physics*. Elsevier.
2. Davies, B., B. Martin (1979). Numerical inversion of the
Laplace transform: a survey and comparison of methods. *Journal
of Computational Physics* 33:1-32,
http://dx.doi.org/10.1016/0021-9991(79)90025-1
3. Duffy, D.G. (1993). On the numerical inversion of Laplace
transforms: Comparison of three new methods on characteristic
problems from applications. *ACM Transactions on Mathematical
Software* 19(3):333-359, http://dx.doi.org/10.1145/155743.155788
4. Kuhlman, K.L., (2013). Review of Inverse Laplace Transform
Algorithms for Laplace-Space Numerical Approaches, *Numerical
Algorithms*, 63(2):339-355.
http://dx.doi.org/10.1007/s11075-012-9625-3
"""
rule = kwargs.get('method', 'cohen')
if type(rule) is str:
lrule = rule.lower()
if lrule == 'talbot':
rule = ctx._fixed_talbot
elif lrule == 'stehfest':
rule = ctx._stehfest
elif lrule == 'dehoog':
rule = ctx._de_hoog
elif rule == 'cohen':
rule = ctx._cohen
else:
raise ValueError("unknown invlap algorithm: %s" % rule)
else:
rule = rule(ctx)
# determine the vector of Laplace-space parameter
# needed for the requested method and desired time
rule.calc_laplace_parameter(t, **kwargs)
# compute the Laplace-space function evalutations
# at the required abscissa.
fp = [f(p) for p in rule.p]
# compute the time-domain solution from the
# Laplace-space function evaluations
return rule.calc_time_domain_solution(fp, t)
# shortcuts for the above function for specific methods
def invlaptalbot(ctx, *args, **kwargs):
kwargs['method'] = 'talbot'
return ctx.invertlaplace(*args, **kwargs)
def invlapstehfest(ctx, *args, **kwargs):
kwargs['method'] = 'stehfest'
return ctx.invertlaplace(*args, **kwargs)
def invlapdehoog(ctx, *args, **kwargs):
kwargs['method'] = 'dehoog'
return ctx.invertlaplace(*args, **kwargs)
def invlapcohen(ctx, *args, **kwargs):
kwargs['method'] = 'cohen'
return ctx.invertlaplace(*args, **kwargs)
# ****************************************
if __name__ == '__main__':
import doctest
doctest.testmod()
|