File size: 37,815 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
#from ctx_base import StandardBaseContext

from .libmp.backend import basestring, exec_

from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
    round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
    ComplexResult, to_pickable, from_pickable, normalize,
    from_int, from_float, from_npfloat, from_Decimal, from_str, to_int, to_float, to_str,
    from_rational, from_man_exp,
    fone, fzero, finf, fninf, fnan,
    mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
    mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
    mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
    mpf_hash, mpf_rand,
    mpf_sum,
    bitcount, to_fixed,
    mpc_to_str,
    mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
    mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
    mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
    mpc_mpf_div,
    mpf_pow,
    mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
    mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
    mpf_glaisher, mpf_twinprime, mpf_mertens,
    int_types)

from . import rational
from . import function_docs

new = object.__new__

class mpnumeric(object):
    """Base class for mpf and mpc."""
    __slots__ = []
    def __new__(cls, val):
        raise NotImplementedError

class _mpf(mpnumeric):
    """
    An mpf instance holds a real-valued floating-point number. mpf:s
    work analogously to Python floats, but support arbitrary-precision
    arithmetic.
    """
    __slots__ = ['_mpf_']

    def __new__(cls, val=fzero, **kwargs):
        """A new mpf can be created from a Python float, an int, a
        or a decimal string representing a number in floating-point
        format."""
        prec, rounding = cls.context._prec_rounding
        if kwargs:
            prec = kwargs.get('prec', prec)
            if 'dps' in kwargs:
                prec = dps_to_prec(kwargs['dps'])
            rounding = kwargs.get('rounding', rounding)
        if type(val) is cls:
            sign, man, exp, bc = val._mpf_
            if (not man) and exp:
                return val
            v = new(cls)
            v._mpf_ = normalize(sign, man, exp, bc, prec, rounding)
            return v
        elif type(val) is tuple:
            if len(val) == 2:
                v = new(cls)
                v._mpf_ = from_man_exp(val[0], val[1], prec, rounding)
                return v
            if len(val) == 4:
                if val not in (finf, fninf, fnan):
                    sign, man, exp, bc = val
                    val = normalize(sign, MPZ(man), exp, bc, prec, rounding)
                v = new(cls)
                v._mpf_ = val
                return v
            raise ValueError
        else:
            v = new(cls)
            v._mpf_ = mpf_pos(cls.mpf_convert_arg(val, prec, rounding), prec, rounding)
            return v

    @classmethod
    def mpf_convert_arg(cls, x, prec, rounding):
        if isinstance(x, int_types): return from_int(x)
        if isinstance(x, float): return from_float(x)
        if isinstance(x, basestring): return from_str(x, prec, rounding)
        if isinstance(x, cls.context.constant): return x.func(prec, rounding)
        if hasattr(x, '_mpf_'): return x._mpf_
        if hasattr(x, '_mpmath_'):
            t = cls.context.convert(x._mpmath_(prec, rounding))
            if hasattr(t, '_mpf_'):
                return t._mpf_
        if hasattr(x, '_mpi_'):
            a, b = x._mpi_
            if a == b:
                return a
            raise ValueError("can only create mpf from zero-width interval")
        raise TypeError("cannot create mpf from " + repr(x))

    @classmethod
    def mpf_convert_rhs(cls, x):
        if isinstance(x, int_types): return from_int(x)
        if isinstance(x, float): return from_float(x)
        if isinstance(x, complex_types): return cls.context.mpc(x)
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return from_rational(p, q, cls.context.prec)
        if hasattr(x, '_mpf_'): return x._mpf_
        if hasattr(x, '_mpmath_'):
            t = cls.context.convert(x._mpmath_(*cls.context._prec_rounding))
            if hasattr(t, '_mpf_'):
                return t._mpf_
            return t
        return NotImplemented

    @classmethod
    def mpf_convert_lhs(cls, x):
        x = cls.mpf_convert_rhs(x)
        if type(x) is tuple:
            return cls.context.make_mpf(x)
        return x

    man_exp = property(lambda self: self._mpf_[1:3])
    man = property(lambda self: self._mpf_[1])
    exp = property(lambda self: self._mpf_[2])
    bc = property(lambda self: self._mpf_[3])

    real = property(lambda self: self)
    imag = property(lambda self: self.context.zero)

    conjugate = lambda self: self

    def __getstate__(self): return to_pickable(self._mpf_)
    def __setstate__(self, val): self._mpf_ = from_pickable(val)

    def __repr__(s):
        if s.context.pretty:
            return str(s)
        return "mpf('%s')" % to_str(s._mpf_, s.context._repr_digits)

    def __str__(s): return to_str(s._mpf_, s.context._str_digits)
    def __hash__(s): return mpf_hash(s._mpf_)
    def __int__(s): return int(to_int(s._mpf_))
    def __long__(s): return long(to_int(s._mpf_))
    def __float__(s): return to_float(s._mpf_, rnd=s.context._prec_rounding[1])
    def __complex__(s): return complex(float(s))
    def __nonzero__(s): return s._mpf_ != fzero

    __bool__ = __nonzero__

    def __abs__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_abs(s._mpf_, prec, rounding)
        return v

    def __pos__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_pos(s._mpf_, prec, rounding)
        return v

    def __neg__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_neg(s._mpf_, prec, rounding)
        return v

    def _cmp(s, t, func):
        if hasattr(t, '_mpf_'):
            t = t._mpf_
        else:
            t = s.mpf_convert_rhs(t)
            if t is NotImplemented:
                return t
        return func(s._mpf_, t)

    def __cmp__(s, t): return s._cmp(t, mpf_cmp)
    def __lt__(s, t): return s._cmp(t, mpf_lt)
    def __gt__(s, t): return s._cmp(t, mpf_gt)
    def __le__(s, t): return s._cmp(t, mpf_le)
    def __ge__(s, t): return s._cmp(t, mpf_ge)

    def __ne__(s, t):
        v = s.__eq__(t)
        if v is NotImplemented:
            return v
        return not v

    def __rsub__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if type(t) in int_types:
            v = new(cls)
            v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding)
            return v
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t - s

    def __rdiv__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpf_ = mpf_rdiv_int(t, s._mpf_, prec, rounding)
            return v
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t / s

    def __rpow__(s, t):
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t ** s

    def __rmod__(s, t):
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t % s

    def sqrt(s):
        return s.context.sqrt(s)

    def ae(s, t, rel_eps=None, abs_eps=None):
        return s.context.almosteq(s, t, rel_eps, abs_eps)

    def to_fixed(self, prec):
        return to_fixed(self._mpf_, prec)

    def __round__(self, *args):
        return round(float(self), *args)

mpf_binary_op = """
def %NAME%(self, other):
    mpf, new, (prec, rounding) = self._ctxdata
    sval = self._mpf_
    if hasattr(other, '_mpf_'):
        tval = other._mpf_
        %WITH_MPF%
    ttype = type(other)
    if ttype in int_types:
        %WITH_INT%
    elif ttype is float:
        tval = from_float(other)
        %WITH_MPF%
    elif hasattr(other, '_mpc_'):
        tval = other._mpc_
        mpc = type(other)
        %WITH_MPC%
    elif ttype is complex:
        tval = from_float(other.real), from_float(other.imag)
        mpc = self.context.mpc
        %WITH_MPC%
    if isinstance(other, mpnumeric):
        return NotImplemented
    try:
        other = mpf.context.convert(other, strings=False)
    except TypeError:
        return NotImplemented
    return self.%NAME%(other)
"""

return_mpf = "; obj = new(mpf); obj._mpf_ = val; return obj"
return_mpc = "; obj = new(mpc); obj._mpc_ = val; return obj"

mpf_pow_same = """
        try:
            val = mpf_pow(sval, tval, prec, rounding) %s
        except ComplexResult:
            if mpf.context.trap_complex:
                raise
            mpc = mpf.context.mpc
            val = mpc_pow((sval, fzero), (tval, fzero), prec, rounding) %s
""" % (return_mpf, return_mpc)

def binary_op(name, with_mpf='', with_int='', with_mpc=''):
    code = mpf_binary_op
    code = code.replace("%WITH_INT%", with_int)
    code = code.replace("%WITH_MPC%", with_mpc)
    code = code.replace("%WITH_MPF%", with_mpf)
    code = code.replace("%NAME%", name)
    np = {}
    exec_(code, globals(), np)
    return np[name]

_mpf.__eq__ = binary_op('__eq__',
    'return mpf_eq(sval, tval)',
    'return mpf_eq(sval, from_int(other))',
    'return (tval[1] == fzero) and mpf_eq(tval[0], sval)')

_mpf.__add__ = binary_op('__add__',
    'val = mpf_add(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_add(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_add_mpf(tval, sval, prec, rounding)' + return_mpc)

_mpf.__sub__ = binary_op('__sub__',
    'val = mpf_sub(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_sub(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_sub((sval, fzero), tval, prec, rounding)' + return_mpc)

_mpf.__mul__ = binary_op('__mul__',
    'val = mpf_mul(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_mul_int(sval, other, prec, rounding)' + return_mpf,
    'val = mpc_mul_mpf(tval, sval, prec, rounding)' + return_mpc)

_mpf.__div__ = binary_op('__div__',
    'val = mpf_div(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_div(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_mpf_div(sval, tval, prec, rounding)' + return_mpc)

_mpf.__mod__ = binary_op('__mod__',
    'val = mpf_mod(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_mod(sval, from_int(other), prec, rounding)' + return_mpf,
    'raise NotImplementedError("complex modulo")')

_mpf.__pow__ = binary_op('__pow__',
    mpf_pow_same,
    'val = mpf_pow_int(sval, other, prec, rounding)' + return_mpf,
    'val = mpc_pow((sval, fzero), tval, prec, rounding)' + return_mpc)

_mpf.__radd__ = _mpf.__add__
_mpf.__rmul__ = _mpf.__mul__
_mpf.__truediv__ = _mpf.__div__
_mpf.__rtruediv__ = _mpf.__rdiv__


class _constant(_mpf):
    """Represents a mathematical constant with dynamic precision.
    When printed or used in an arithmetic operation, a constant
    is converted to a regular mpf at the working precision. A
    regular mpf can also be obtained using the operation +x."""

    def __new__(cls, func, name, docname=''):
        a = object.__new__(cls)
        a.name = name
        a.func = func
        a.__doc__ = getattr(function_docs, docname, '')
        return a

    def __call__(self, prec=None, dps=None, rounding=None):
        prec2, rounding2 = self.context._prec_rounding
        if not prec: prec = prec2
        if not rounding: rounding = rounding2
        if dps: prec = dps_to_prec(dps)
        return self.context.make_mpf(self.func(prec, rounding))

    @property
    def _mpf_(self):
        prec, rounding = self.context._prec_rounding
        return self.func(prec, rounding)

    def __repr__(self):
        return "<%s: %s~>" % (self.name, self.context.nstr(self(dps=15)))


class _mpc(mpnumeric):
    """
    An mpc represents a complex number using a pair of mpf:s (one
    for the real part and another for the imaginary part.) The mpc
    class behaves fairly similarly to Python's complex type.
    """

    __slots__ = ['_mpc_']

    def __new__(cls, real=0, imag=0):
        s = object.__new__(cls)
        if isinstance(real, complex_types):
            real, imag = real.real, real.imag
        elif hasattr(real, '_mpc_'):
            s._mpc_ = real._mpc_
            return s
        real = cls.context.mpf(real)
        imag = cls.context.mpf(imag)
        s._mpc_ = (real._mpf_, imag._mpf_)
        return s

    real = property(lambda self: self.context.make_mpf(self._mpc_[0]))
    imag = property(lambda self: self.context.make_mpf(self._mpc_[1]))

    def __getstate__(self):
        return to_pickable(self._mpc_[0]), to_pickable(self._mpc_[1])

    def __setstate__(self, val):
        self._mpc_ = from_pickable(val[0]), from_pickable(val[1])

    def __repr__(s):
        if s.context.pretty:
            return str(s)
        r = repr(s.real)[4:-1]
        i = repr(s.imag)[4:-1]
        return "%s(real=%s, imag=%s)" % (type(s).__name__, r, i)

    def __str__(s):
        return "(%s)" % mpc_to_str(s._mpc_, s.context._str_digits)

    def __complex__(s):
        return mpc_to_complex(s._mpc_, rnd=s.context._prec_rounding[1])

    def __pos__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_pos(s._mpc_, prec, rounding)
        return v

    def __abs__(s):
        prec, rounding = s.context._prec_rounding
        v = new(s.context.mpf)
        v._mpf_ = mpc_abs(s._mpc_, prec, rounding)
        return v

    def __neg__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_neg(s._mpc_, prec, rounding)
        return v

    def conjugate(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_conjugate(s._mpc_, prec, rounding)
        return v

    def __nonzero__(s):
        return mpc_is_nonzero(s._mpc_)

    __bool__ = __nonzero__

    def __hash__(s):
        return mpc_hash(s._mpc_)

    @classmethod
    def mpc_convert_lhs(cls, x):
        try:
            y = cls.context.convert(x)
            return y
        except TypeError:
            return NotImplemented

    def __eq__(s, t):
        if not hasattr(t, '_mpc_'):
            if isinstance(t, str):
                return False
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
        return s.real == t.real and s.imag == t.imag

    def __ne__(s, t):
        b = s.__eq__(t)
        if b is NotImplemented:
            return b
        return not b

    def _compare(*args):
        raise TypeError("no ordering relation is defined for complex numbers")

    __gt__ = _compare
    __le__ = _compare
    __gt__ = _compare
    __ge__ = _compare

    def __add__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __sub__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_sub_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_sub(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __mul__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            if isinstance(t, int_types):
                v = new(cls)
                v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
                return v
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
            t = s.mpc_convert_lhs(t)
        v = new(cls)
        v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __div__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_div_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_div(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __pow__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpc_ = mpc_pow_int(s._mpc_, t, prec, rounding)
            return v
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        v = new(cls)
        if hasattr(t, '_mpf_'):
            v._mpc_ = mpc_pow_mpf(s._mpc_, t._mpf_, prec, rounding)
        else:
            v._mpc_ = mpc_pow(s._mpc_, t._mpc_, prec, rounding)
        return v

    __radd__ = __add__

    def __rsub__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t - s

    def __rmul__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
            return v
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t * s

    def __rdiv__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t / s

    def __rpow__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t ** s

    __truediv__ = __div__
    __rtruediv__ = __rdiv__

    def ae(s, t, rel_eps=None, abs_eps=None):
        return s.context.almosteq(s, t, rel_eps, abs_eps)


complex_types = (complex, _mpc)


class PythonMPContext(object):

    def __init__(ctx):
        ctx._prec_rounding = [53, round_nearest]
        ctx.mpf = type('mpf', (_mpf,), {})
        ctx.mpc = type('mpc', (_mpc,), {})
        ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
        ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding]
        ctx.mpf.context = ctx
        ctx.mpc.context = ctx
        ctx.constant = type('constant', (_constant,), {})
        ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
        ctx.constant.context = ctx

    def make_mpf(ctx, v):
        a = new(ctx.mpf)
        a._mpf_ = v
        return a

    def make_mpc(ctx, v):
        a = new(ctx.mpc)
        a._mpc_ = v
        return a

    def default(ctx):
        ctx._prec = ctx._prec_rounding[0] = 53
        ctx._dps = 15
        ctx.trap_complex = False

    def _set_prec(ctx, n):
        ctx._prec = ctx._prec_rounding[0] = max(1, int(n))
        ctx._dps = prec_to_dps(n)

    def _set_dps(ctx, n):
        ctx._prec = ctx._prec_rounding[0] = dps_to_prec(n)
        ctx._dps = max(1, int(n))

    prec = property(lambda ctx: ctx._prec, _set_prec)
    dps = property(lambda ctx: ctx._dps, _set_dps)

    def convert(ctx, x, strings=True):
        """
        Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``,
        ``mpc``, ``int``, ``float``, ``complex``, the conversion
        will be performed losslessly.

        If *x* is a string, the result will be rounded to the present
        working precision. Strings representing fractions or complex
        numbers are permitted.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> mpmathify(3.5)
            mpf('3.5')
            >>> mpmathify('2.1')
            mpf('2.1000000000000001')
            >>> mpmathify('3/4')
            mpf('0.75')
            >>> mpmathify('2+3j')
            mpc(real='2.0', imag='3.0')

        """
        if type(x) in ctx.types: return x
        if isinstance(x, int_types): return ctx.make_mpf(from_int(x))
        if isinstance(x, float): return ctx.make_mpf(from_float(x))
        if isinstance(x, complex):
            return ctx.make_mpc((from_float(x.real), from_float(x.imag)))
        if type(x).__module__ == 'numpy': return ctx.npconvert(x)
        if isinstance(x, numbers.Rational): # e.g. Fraction
            try: x = rational.mpq(int(x.numerator), int(x.denominator))
            except: pass
        prec, rounding = ctx._prec_rounding
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return ctx.make_mpf(from_rational(p, q, prec))
        if strings and isinstance(x, basestring):
            try:
                _mpf_ = from_str(x, prec, rounding)
                return ctx.make_mpf(_mpf_)
            except ValueError:
                pass
        if hasattr(x, '_mpf_'): return ctx.make_mpf(x._mpf_)
        if hasattr(x, '_mpc_'): return ctx.make_mpc(x._mpc_)
        if hasattr(x, '_mpmath_'):
            return ctx.convert(x._mpmath_(prec, rounding))
        if type(x).__module__ == 'decimal':
            try: return ctx.make_mpf(from_Decimal(x, prec, rounding))
            except: pass
        return ctx._convert_fallback(x, strings)

    def npconvert(ctx, x):
        """
        Converts *x* to an ``mpf`` or ``mpc``. *x* should be a numpy
        scalar.
        """
        import numpy as np
        if isinstance(x, np.integer): return ctx.make_mpf(from_int(int(x)))
        if isinstance(x, np.floating): return ctx.make_mpf(from_npfloat(x))
        if isinstance(x, np.complexfloating):
            return ctx.make_mpc((from_npfloat(x.real), from_npfloat(x.imag)))
        raise TypeError("cannot create mpf from " + repr(x))

    def isnan(ctx, x):
        """
        Return *True* if *x* is a NaN (not-a-number), or for a complex
        number, whether either the real or complex part is NaN;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isnan(3.14)
            False
            >>> isnan(nan)
            True
            >>> isnan(mpc(3.14,2.72))
            False
            >>> isnan(mpc(3.14,nan))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ == fnan
        if hasattr(x, "_mpc_"):
            return fnan in x._mpc_
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnan(x)
        raise TypeError("isnan() needs a number as input")

    def isinf(ctx, x):
        """
        Return *True* if the absolute value of *x* is infinite;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isinf(inf)
            True
            >>> isinf(-inf)
            True
            >>> isinf(3)
            False
            >>> isinf(3+4j)
            False
            >>> isinf(mpc(3,inf))
            True
            >>> isinf(mpc(inf,3))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ in (finf, fninf)
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            return re in (finf, fninf) or im in (finf, fninf)
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isinf(x)
        raise TypeError("isinf() needs a number as input")

    def isnormal(ctx, x):
        """
        Determine whether *x* is "normal" in the sense of floating-point
        representation; that is, return *False* if *x* is zero, an
        infinity or NaN; otherwise return *True*. By extension, a
        complex number *x* is considered "normal" if its magnitude is
        normal::

            >>> from mpmath import *
            >>> isnormal(3)
            True
            >>> isnormal(0)
            False
            >>> isnormal(inf); isnormal(-inf); isnormal(nan)
            False
            False
            False
            >>> isnormal(0+0j)
            False
            >>> isnormal(0+3j)
            True
            >>> isnormal(mpc(2,nan))
            False
        """
        if hasattr(x, "_mpf_"):
            return bool(x._mpf_[1])
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            re_normal = bool(re[1])
            im_normal = bool(im[1])
            if re == fzero: return im_normal
            if im == fzero: return re_normal
            return re_normal and im_normal
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return bool(x)
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnormal(x)
        raise TypeError("isnormal() needs a number as input")

    def isint(ctx, x, gaussian=False):
        """
        Return *True* if *x* is integer-valued; otherwise return
        *False*::

            >>> from mpmath import *
            >>> isint(3)
            True
            >>> isint(mpf(3))
            True
            >>> isint(3.2)
            False
            >>> isint(inf)
            False

        Optionally, Gaussian integers can be checked for::

            >>> isint(3+0j)
            True
            >>> isint(3+2j)
            False
            >>> isint(3+2j, gaussian=True)
            True

        """
        if isinstance(x, int_types):
            return True
        if hasattr(x, "_mpf_"):
            sign, man, exp, bc = xval = x._mpf_
            return bool((man and exp >= 0) or xval == fzero)
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            rsign, rman, rexp, rbc = re
            isign, iman, iexp, ibc = im
            re_isint = (rman and rexp >= 0) or re == fzero
            if gaussian:
                im_isint = (iman and iexp >= 0) or im == fzero
                return re_isint and im_isint
            return re_isint and im == fzero
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return p % q == 0
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isint(x, gaussian)
        raise TypeError("isint() needs a number as input")

    def fsum(ctx, terms, absolute=False, squared=False):
        """
        Calculates a sum containing a finite number of terms (for infinite
        series, see :func:`~mpmath.nsum`). The terms will be converted to
        mpmath numbers. For len(terms) > 2, this function is generally
        faster and produces more accurate results than the builtin
        Python function :func:`sum`.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsum([1, 2, 0.5, 7])
            mpf('10.5')

        With squared=True each term is squared, and with absolute=True
        the absolute value of each term is used.
        """
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        for term in terms:
            reval = imval = 0
            if hasattr(term, "_mpf_"):
                reval = term._mpf_
            elif hasattr(term, "_mpc_"):
                reval, imval = term._mpc_
            else:
                term = ctx.convert(term)
                if hasattr(term, "_mpf_"):
                    reval = term._mpf_
                elif hasattr(term, "_mpc_"):
                    reval, imval = term._mpc_
                else:
                    raise NotImplementedError
            if imval:
                if squared:
                    if absolute:
                        real.append(mpf_mul(reval,reval))
                        real.append(mpf_mul(imval,imval))
                    else:
                        reval, imval = mpc_pow_int((reval,imval),2,prec+10)
                        real.append(reval)
                        imag.append(imval)
                elif absolute:
                    real.append(mpc_abs((reval,imval), prec))
                else:
                    real.append(reval)
                    imag.append(imval)
            else:
                if squared:
                    reval = mpf_mul(reval, reval)
                elif absolute:
                    reval = mpf_abs(reval)
                real.append(reval)
        s = mpf_sum(real, prec, rnd, absolute)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        return s

    def fdot(ctx, A, B=None, conjugate=False):
        r"""
        Computes the dot product of the iterables `A` and `B`,

        .. math ::

            \sum_{k=0} A_k B_k.

        Alternatively, :func:`~mpmath.fdot` accepts a single iterable of pairs.
        In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent.
        The elements are automatically converted to mpmath numbers.

        With ``conjugate=True``, the elements in the second vector
        will be conjugated:

        .. math ::

            \sum_{k=0} A_k \overline{B_k}

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> A = [2, 1.5, 3]
            >>> B = [1, -1, 2]
            >>> fdot(A, B)
            mpf('6.5')
            >>> list(zip(A, B))
            [(2, 1), (1.5, -1), (3, 2)]
            >>> fdot(_)
            mpf('6.5')
            >>> A = [2, 1.5, 3j]
            >>> B = [1+j, 3, -1-j]
            >>> fdot(A, B)
            mpc(real='9.5', imag='-1.0')
            >>> fdot(A, B, conjugate=True)
            mpc(real='3.5', imag='-5.0')

        """
        if B is not None:
            A = zip(A, B)
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        hasattr_ = hasattr
        types = (ctx.mpf, ctx.mpc)
        for a, b in A:
            if type(a) not in types: a = ctx.convert(a)
            if type(b) not in types: b = ctx.convert(b)
            a_real = hasattr_(a, "_mpf_")
            b_real = hasattr_(b, "_mpf_")
            if a_real and b_real:
                real.append(mpf_mul(a._mpf_, b._mpf_))
                continue
            a_complex = hasattr_(a, "_mpc_")
            b_complex = hasattr_(b, "_mpc_")
            if a_real and b_complex:
                aval = a._mpf_
                bre, bim = b._mpc_
                if conjugate:
                    bim = mpf_neg(bim)
                real.append(mpf_mul(aval, bre))
                imag.append(mpf_mul(aval, bim))
            elif b_real and a_complex:
                are, aim = a._mpc_
                bval = b._mpf_
                real.append(mpf_mul(are, bval))
                imag.append(mpf_mul(aim, bval))
            elif a_complex and b_complex:
                #re, im = mpc_mul(a._mpc_, b._mpc_, prec+20)
                are, aim = a._mpc_
                bre, bim = b._mpc_
                if conjugate:
                    bim = mpf_neg(bim)
                real.append(mpf_mul(are, bre))
                real.append(mpf_neg(mpf_mul(aim, bim)))
                imag.append(mpf_mul(are, bim))
                imag.append(mpf_mul(aim, bre))
            else:
                raise NotImplementedError
        s = mpf_sum(real, prec, rnd)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        return s

    def _wrap_libmp_function(ctx, mpf_f, mpc_f=None, mpi_f=None, doc="<no doc>"):
        """
        Given a low-level mpf_ function, and optionally similar functions
        for mpc_ and mpi_, defines the function as a context method.

        It is assumed that the return type is the same as that of
        the input; the exception is that propagation from mpf to mpc is possible
        by raising ComplexResult.

        """
        def f(x, **kwargs):
            if type(x) not in ctx.types:
                x = ctx.convert(x)
            prec, rounding = ctx._prec_rounding
            if kwargs:
                prec = kwargs.get('prec', prec)
                if 'dps' in kwargs:
                    prec = dps_to_prec(kwargs['dps'])
                rounding = kwargs.get('rounding', rounding)
            if hasattr(x, '_mpf_'):
                try:
                    return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
                except ComplexResult:
                    # Handle propagation to complex
                    if ctx.trap_complex:
                        raise
                    return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding))
            elif hasattr(x, '_mpc_'):
                return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding))
            raise NotImplementedError("%s of a %s" % (name, type(x)))
        name = mpf_f.__name__[4:]
        f.__doc__ = function_docs.__dict__.get(name, "Computes the %s of x" % doc)
        return f

    # Called by SpecialFunctions.__init__()
    @classmethod
    def _wrap_specfun(cls, name, f, wrap):
        if wrap:
            def f_wrapped(ctx, *args, **kwargs):
                convert = ctx.convert
                args = [convert(a) for a in args]
                prec = ctx.prec
                try:
                    ctx.prec += 10
                    retval = f(ctx, *args, **kwargs)
                finally:
                    ctx.prec = prec
                return +retval
        else:
            f_wrapped = f
        f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__)
        setattr(cls, name, f_wrapped)

    def _convert_param(ctx, x):
        if hasattr(x, "_mpc_"):
            v, im = x._mpc_
            if im != fzero:
                return x, 'C'
        elif hasattr(x, "_mpf_"):
            v = x._mpf_
        else:
            if type(x) in int_types:
                return int(x), 'Z'
            p = None
            if isinstance(x, tuple):
                p, q = x
            elif hasattr(x, '_mpq_'):
                p, q = x._mpq_
            elif isinstance(x, basestring) and '/' in x:
                p, q = x.split('/')
                p = int(p)
                q = int(q)
            if p is not None:
                if not p % q:
                    return p // q, 'Z'
                return ctx.mpq(p,q), 'Q'
            x = ctx.convert(x)
            if hasattr(x, "_mpc_"):
                v, im = x._mpc_
                if im != fzero:
                    return x, 'C'
            elif hasattr(x, "_mpf_"):
                v = x._mpf_
            else:
                return x, 'U'
        sign, man, exp, bc = v
        if man:
            if exp >= -4:
                if sign:
                    man = -man
                if exp >= 0:
                    return int(man) << exp, 'Z'
                if exp >= -4:
                    p, q = int(man), (1<<(-exp))
                    return ctx.mpq(p,q), 'Q'
            x = ctx.make_mpf(v)
            return x, 'R'
        elif not exp:
            return 0, 'Z'
        else:
            return x, 'U'

    def _mpf_mag(ctx, x):
        sign, man, exp, bc = x
        if man:
            return exp+bc
        if x == fzero:
            return ctx.ninf
        if x == finf or x == fninf:
            return ctx.inf
        return ctx.nan

    def mag(ctx, x):
        """
        Quick logarithmic magnitude estimate of a number. Returns an
        integer or infinity `m` such that `|x| <= 2^m`. It is not
        guaranteed that `m` is an optimal bound, but it will never
        be too large by more than 2 (and probably not more than 1).

        **Examples**

            >>> from mpmath import *
            >>> mp.pretty = True
            >>> mag(10), mag(10.0), mag(mpf(10)), int(ceil(log(10,2)))
            (4, 4, 4, 4)
            >>> mag(10j), mag(10+10j)
            (4, 5)
            >>> mag(0.01), int(ceil(log(0.01,2)))
            (-6, -6)
            >>> mag(0), mag(inf), mag(-inf), mag(nan)
            (-inf, +inf, +inf, nan)

        """
        if hasattr(x, "_mpf_"):
            return ctx._mpf_mag(x._mpf_)
        elif hasattr(x, "_mpc_"):
            r, i = x._mpc_
            if r == fzero:
                return ctx._mpf_mag(i)
            if i == fzero:
                return ctx._mpf_mag(r)
            return 1+max(ctx._mpf_mag(r), ctx._mpf_mag(i))
        elif isinstance(x, int_types):
            if x:
                return bitcount(abs(x))
            return ctx.ninf
        elif isinstance(x, rational.mpq):
            p, q = x._mpq_
            if p:
                return 1 + bitcount(abs(p)) - bitcount(q)
            return ctx.ninf
        else:
            x = ctx.convert(x)
            if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
                return ctx.mag(x)
            else:
                raise TypeError("requires an mpf/mpc")


# Register with "numbers" ABC
#     We do not subclass, hence we do not use the @abstractmethod checks. While
#     this is less invasive it may turn out that we do not actually support
#     parts of the expected interfaces.  See
#     http://docs.python.org/2/library/numbers.html for list of abstract
#     methods.
try:
    import numbers
    numbers.Complex.register(_mpc)
    numbers.Real.register(_mpf)
except ImportError:
    pass