File size: 37,938 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
from .functions import defun, defun_wrapped

@defun
def j0(ctx, x):
    """Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`."""
    return ctx.besselj(0, x)

@defun
def j1(ctx, x):
    """Computes the Bessel function `J_1(x)`.  See :func:`~mpmath.besselj`."""
    return ctx.besselj(1, x)

@defun
def besselj(ctx, n, z, derivative=0, **kwargs):
    if type(n) is int:
        n_isint = True
    else:
        n = ctx.convert(n)
        n_isint = ctx.isint(n)
        if n_isint:
            n = int(ctx._re(n))
    if n_isint and n < 0:
        return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs)
    z = ctx.convert(z)
    M = ctx.mag(z)
    if derivative:
        d = ctx.convert(derivative)
        # TODO: the integer special-casing shouldn't be necessary.
        # However, the hypergeometric series gets inaccurate for large d
        # because of inaccurate pole cancellation at a pole far from
        # zero (needs to be fixed in hypercomb or hypsum)
        if ctx.isint(d) and d >= 0:
            d = int(d)
            orig = ctx.prec
            try:
                ctx.prec += 15
                v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z)
                    for k in range(d+1))
            finally:
                ctx.prec = orig
            v *= ctx.mpf(2)**(-d)
        else:
            def h(n,d):
                r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True)
                B = [0.5*(n-d+1), 0.5*(n-d+2)]
                T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)]
                return T
            v = ctx.hypercomb(h, [n,d], **kwargs)
    else:
        # Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation
        if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20:
            try:
                return ctx._besselj(n, z)
            except NotImplementedError:
                pass
        if not z:
            if not n:
                v = ctx.one + n+z
            elif ctx.re(n) > 0:
                v = n*z
            else:
                v = ctx.inf + z + n
        else:
            #v = 0
            orig = ctx.prec
            try:
                # XXX: workaround for accuracy in low level hypergeometric series
                # when alternating, large arguments
                ctx.prec += min(3*abs(M), ctx.prec)
                w = ctx.fmul(z, 0.5, exact=True)
                def h(n):
                    r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True)
                    return [([w], [n], [], [n+1], [], [n+1], r)]
                v = ctx.hypercomb(h, [n], **kwargs)
            finally:
                ctx.prec = orig
        v = +v
    return v

@defun
def besseli(ctx, n, z, derivative=0, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    if not z:
        if derivative:
            raise ValueError
        if not n:
            # I(0,0) = 1
            return 1+n+z
        if ctx.isint(n):
            return 0*(n+z)
        r = ctx.re(n)
        if r == 0:
            return ctx.nan*(n+z)
        elif r > 0:
            return 0*(n+z)
        else:
            return ctx.inf+(n+z)
    M = ctx.mag(z)
    if derivative:
        d = ctx.convert(derivative)
        def h(n,d):
            r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True)
            B = [0.5*(n-d+1), 0.5*(n-d+2), n+1]
            T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)]
            return T
        v = ctx.hypercomb(h, [n,d], **kwargs)
    else:
        def h(n):
            w = ctx.fmul(z, 0.5, exact=True)
            r = ctx.fmul(w, w, prec=max(0,ctx.prec+M))
            return [([w], [n], [], [n+1], [], [n+1], r)]
        v = ctx.hypercomb(h, [n], **kwargs)
    return v

@defun_wrapped
def bessely(ctx, n, z, derivative=0, **kwargs):
    if not z:
        if derivative:
            # Not implemented
            raise ValueError
        if not n:
            # ~ log(z/2)
            return -ctx.inf + (n+z)
        if ctx.im(n):
            return ctx.nan * (n+z)
        r = ctx.re(n)
        q = n+0.5
        if ctx.isint(q):
            if n > 0:
                return -ctx.inf + (n+z)
            else:
                return 0 * (n+z)
        if r < 0 and int(ctx.floor(q)) % 2:
            return ctx.inf + (n+z)
        else:
            return ctx.ninf + (n+z)
    # XXX: use hypercomb
    ctx.prec += 10
    m, d = ctx.nint_distance(n)
    if d < -ctx.prec:
        h = +ctx.eps
        ctx.prec *= 2
        n += h
    elif d < 0:
        ctx.prec -= d
    # TODO: avoid cancellation for imaginary arguments
    cos, sin = ctx.cospi_sinpi(n)
    return (ctx.besselj(n,z,derivative,**kwargs)*cos - \
        ctx.besselj(-n,z,derivative,**kwargs))/sin

@defun_wrapped
def besselk(ctx, n, z, **kwargs):
    if not z:
        return ctx.inf
    M = ctx.mag(z)
    if M < 1:
        # Represent as limit definition
        def h(n):
            r = (z/2)**2
            T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r
            T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r
            return T1, T2
    # We could use the limit definition always, but it leads
    # to very bad cancellation (of exponentially large terms)
    # for large real z
    # Instead represent in terms of 2F0
    else:
        ctx.prec += M
        def h(n):
            return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \
                [n+0.5, 0.5-n], [], -1/(2*z))]
    return ctx.hypercomb(h, [n], **kwargs)

@defun_wrapped
def hankel1(ctx,n,x,**kwargs):
    return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs)

@defun_wrapped
def hankel2(ctx,n,x,**kwargs):
    return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs)

@defun_wrapped
def whitm(ctx,k,m,z,**kwargs):
    if z == 0:
        # M(k,m,z) = 0^(1/2+m)
        if ctx.re(m) > -0.5:
            return z
        elif ctx.re(m) < -0.5:
            return ctx.inf + z
        else:
            return ctx.nan * z
    x = ctx.fmul(-0.5, z, exact=True)
    y = 0.5+m
    return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs)

@defun_wrapped
def whitw(ctx,k,m,z,**kwargs):
    if z == 0:
        g = abs(ctx.re(m))
        if g < 0.5:
            return z
        elif g > 0.5:
            return ctx.inf + z
        else:
            return ctx.nan * z
    x = ctx.fmul(-0.5, z, exact=True)
    y = 0.5+m
    return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs)

@defun
def hyperu(ctx, a, b, z, **kwargs):
    a, atype = ctx._convert_param(a)
    b, btype = ctx._convert_param(b)
    z = ctx.convert(z)
    if not z:
        if ctx.re(b) <= 1:
            return ctx.gammaprod([1-b],[a-b+1])
        else:
            return ctx.inf + z
    bb = 1+a-b
    bb, bbtype = ctx._convert_param(bb)
    try:
        orig = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec)
            return v / z**a
        finally:
            ctx.prec = orig
    except ctx.NoConvergence:
        pass
    def h(a,b):
        w = ctx.sinpi(b)
        T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z)
        T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z)
        return T1, T2
    return ctx.hypercomb(h, [a,b], **kwargs)

@defun
def struveh(ctx,n,z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/
    def h(n):
        return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)]
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def struvel(ctx,n,z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/
    def h(n):
        return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)]
    return ctx.hypercomb(h, [n], **kwargs)

def _anger(ctx,which,v,z,**kwargs):
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    def h(v):
        b = ctx.mpq_1_2
        u = v*b
        m = b*3
        a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u
        c, s = ctx.cospi_sinpi(u)
        if which == 0:
            A, B = [b*z, s], [c]
        if which == 1:
            A, B = [b*z, -c], [s]
        w = ctx.square_exp_arg(z, mult=-0.25)
        T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w
        T2 = B, [1], [], [b1,b2], [1], [b1,b2], w
        return T1, T2
    return ctx.hypercomb(h, [v], **kwargs)

@defun
def angerj(ctx, v, z, **kwargs):
    return _anger(ctx, 0, v, z, **kwargs)

@defun
def webere(ctx, v, z, **kwargs):
    return _anger(ctx, 1, v, z, **kwargs)

@defun
def lommels1(ctx, u, v, z, **kwargs):
    u = ctx._convert_param(u)[0]
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    def h(u,v):
        b = ctx.mpq_1_2
        w = ctx.square_exp_arg(z, mult=-0.25)
        return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \
            [b*(u-v+3),b*(u+v+3)], w),
    return ctx.hypercomb(h, [u,v], **kwargs)

@defun
def lommels2(ctx, u, v, z, **kwargs):
    u = ctx._convert_param(u)[0]
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    # Asymptotic expansion (GR p. 947) -- need to be careful
    # not to use for small arguments
    # def h(u,v):
    #    b = ctx.mpq_1_2
    #    w = -(z/2)**(-2)
    #    return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w),
    def h(u,v):
        b = ctx.mpq_1_2
        w = ctx.square_exp_arg(z, mult=-0.25)
        T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w
        T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w
        T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w
        #c1 = ctx.cospi((u-v)*b)
        #c2 = ctx.cospi((u+v)*b)
        #s = ctx.sinpi(v)
        #r1 = (u-v+1)*b
        #r2 = (u+v+1)*b
        #T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w
        #T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w
        #T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w
        #T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w
        return T1, T2, T3
    return ctx.hypercomb(h, [u,v], **kwargs)

@defun
def ber(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos, sin = ctx.cospi_sinpi(-0.75*n)
        T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
        T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
        return T1, T2
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def bei(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos, sin = ctx.cospi_sinpi(0.75*n)
        T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
        T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
        return T1, T2
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def ker(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos1, sin1 = ctx.cospi_sinpi(0.25*n)
        cos2, sin2 = ctx.cospi_sinpi(0.75*n)
        T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r
        T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r
        T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
        T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
        return T1, T2, T3, T4
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def kei(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos1, sin1 = ctx.cospi_sinpi(0.75*n)
        cos2, sin2 = ctx.cospi_sinpi(0.25*n)
        T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
        T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
        T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r
        T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r
        return T1, T2, T3, T4
    return ctx.hypercomb(h, [n], **kwargs)

# TODO: do this more generically?
def c_memo(f):
    name = f.__name__
    def f_wrapped(ctx):
        cache = ctx._misc_const_cache
        prec = ctx.prec
        p,v = cache.get(name, (-1,0))
        if p >= prec:
            return +v
        else:
            cache[name] = (prec, f(ctx))
            return cache[name][1]
    return f_wrapped

@c_memo
def _airyai_C1(ctx):
    return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3))

@c_memo
def _airyai_C2(ctx):
    return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3))

@c_memo
def _airybi_C1(ctx):
    return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3))

@c_memo
def _airybi_C2(ctx):
    return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3)

def _airybi_n2_inf(ctx):
    prec = ctx.prec
    try:
        v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi)
    finally:
        ctx.prec = prec
    return +v

# Derivatives at z = 0
# TODO: could be expressed more elegantly using triple factorials
def _airyderiv_0(ctx, z, n, ntype, which):
    if ntype == 'Z':
        if n < 0:
            return z
        r = ctx.mpq_1_3
        prec = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi
            if which == 0:
                v *= ctx.sinpi(2*(n+1)*r)
                v /= ctx.power(3,'2/3')
            else:
                v *= abs(ctx.sinpi(2*(n+1)*r))
                v /= ctx.power(3,'1/6')
        finally:
            ctx.prec = prec
        return +v + z
    else:
        # singular (does the limit exist?)
        raise NotImplementedError

@defun
def airyai(ctx, z, derivative=0, **kwargs):
    z = ctx.convert(z)
    if derivative:
        n, ntype = ctx._convert_param(derivative)
    else:
        n = 0
    # Values at infinities
    if not ctx.isnormal(z) and z:
        if n and ntype == 'Z':
            if n == -1:
                if z == ctx.inf:
                    return ctx.mpf(1)/3 + 1/z
                if z == ctx.ninf:
                    return ctx.mpf(-2)/3 + 1/z
            if n < -1:
                if z == ctx.inf:
                    return z
                if z == ctx.ninf:
                    return (-1)**n * (-z)
        if (not n) and z == ctx.inf or z == ctx.ninf:
            return 1/z
        # TODO: limits
        raise ValueError("essential singularity of Ai(z)")
    # Account for exponential scaling
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if n:
        if n == 1:
            def h():
                # http://functions.wolfram.com/03.07.06.0005.01
                if ctx._re(z) > 4:
                    ctx.prec += extraprec
                    w = z**1.5; r = -0.75/w; u = -2*w/3
                    ctx.prec -= extraprec
                    C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4)
                    return ([C],[1],[],[],[(-1,6),(7,6)],[],r),
                # http://functions.wolfram.com/03.07.26.0001.01
                else:
                    ctx.prec += extraprec
                    w = z**3 / 9
                    ctx.prec -= extraprec
                    C1 = _airyai_C1(ctx) * 0.5
                    C2 = _airyai_C2(ctx)
                    T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
                    T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
                    return T1, T2
            return ctx.hypercomb(h, [], **kwargs)
        else:
            if z == 0:
                return _airyderiv_0(ctx, z, n, ntype, 0)
            # http://functions.wolfram.com/03.05.20.0004.01
            def h(n):
                ctx.prec += extraprec
                w = z**3/9
                ctx.prec -= extraprec
                q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
                a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
                T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
                T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                return T1, T2
            v = ctx.hypercomb(h, [n], **kwargs)
            if ctx._is_real_type(z) and ctx.isint(n):
                v = ctx._re(v)
            return v
    else:
        def h():
            if ctx._re(z) > 4:
                # We could use 1F1, but it results in huge cancellation;
                # the following expansion is better.
                # TODO: asymptotic series for derivatives
                ctx.prec += extraprec
                w = z**1.5; r = -0.75/w; u = -2*w/3
                ctx.prec -= extraprec
                C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4))
                return ([C],[1],[],[],[(1,6),(5,6)],[],r),
            else:
                ctx.prec += extraprec
                w = z**3 / 9
                ctx.prec -= extraprec
                C1 = _airyai_C1(ctx)
                C2 = _airyai_C2(ctx)
                T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
                T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
                return T1, T2
        return ctx.hypercomb(h, [], **kwargs)

@defun
def airybi(ctx, z, derivative=0, **kwargs):
    z = ctx.convert(z)
    if derivative:
        n, ntype = ctx._convert_param(derivative)
    else:
        n = 0
    # Values at infinities
    if not ctx.isnormal(z) and z:
        if n and ntype == 'Z':
            if z == ctx.inf:
                return z
            if z == ctx.ninf:
                if n == -1:
                    return 1/z
                if n == -2:
                    return _airybi_n2_inf(ctx)
                if n < -2:
                    return (-1)**n * (-z)
        if not n:
            if z == ctx.inf:
                return z
            if z == ctx.ninf:
                return 1/z
        # TODO: limits
        raise ValueError("essential singularity of Bi(z)")
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if n:
        if n == 1:
            # http://functions.wolfram.com/03.08.26.0001.01
            def h():
                ctx.prec += extraprec
                w = z**3 / 9
                ctx.prec -= extraprec
                C1 = _airybi_C1(ctx)*0.5
                C2 = _airybi_C2(ctx)
                T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
                T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
                return T1, T2
            return ctx.hypercomb(h, [], **kwargs)
        else:
            if z == 0:
                return _airyderiv_0(ctx, z, n, ntype, 1)
            def h(n):
                ctx.prec += extraprec
                w = z**3/9
                ctx.prec -= extraprec
                q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
                q16 = ctx.mpq_1_6
                q56 = ctx.mpq_5_6
                a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
                T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
                T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                return T1, T2
            v = ctx.hypercomb(h, [n], **kwargs)
            if ctx._is_real_type(z) and ctx.isint(n):
                v = ctx._re(v)
            return v
    else:
        def h():
            ctx.prec += extraprec
            w = z**3 / 9
            ctx.prec -= extraprec
            C1 = _airybi_C1(ctx)
            C2 = _airybi_C2(ctx)
            T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
            T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
            return T1, T2
        return ctx.hypercomb(h, [], **kwargs)

def _airy_zero(ctx, which, k, derivative, complex=False):
    # Asymptotic formulas are given in DLMF section 9.9
    def U(t): return t**(2/3.)*(1-7/(t**2*48))
    def T(t): return t**(2/3.)*(1+5/(t**2*48))
    k = int(k)
    if k < 1:
        raise ValueError("k cannot be less than 1")
    if not derivative in (0,1):
        raise ValueError("Derivative should lie between 0 and 1")
    if which == 0:
        if derivative:
            return ctx.findroot(lambda z: ctx.airyai(z,1),
                -U(3*ctx.pi*(4*k-3)/8))
        return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8))
    if which == 1 and complex == False:
        if derivative:
            return ctx.findroot(lambda z: ctx.airybi(z,1),
                -U(3*ctx.pi*(4*k-1)/8))
        return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8))
    if which == 1 and complex == True:
        if derivative:
            t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2
            s = ctx.expjpi(ctx.mpf(1)/3) * T(t)
            return ctx.findroot(lambda z: ctx.airybi(z,1), s)
        t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2
        s = ctx.expjpi(ctx.mpf(1)/3) * U(t)
        return ctx.findroot(ctx.airybi, s)

@defun
def airyaizero(ctx, k, derivative=0):
    return _airy_zero(ctx, 0, k, derivative, False)

@defun
def airybizero(ctx, k, derivative=0, complex=False):
    return _airy_zero(ctx, 1, k, derivative, complex)

def _scorer(ctx, z, which, kwargs):
    z = ctx.convert(z)
    if ctx.isinf(z):
        if z == ctx.inf:
            if which == 0: return 1/z
            if which == 1: return z
        if z == ctx.ninf:
            return 1/z
        raise ValueError("essential singularity")
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if kwargs.get('derivative'):
        raise NotImplementedError
    # Direct asymptotic expansions, to avoid
    # exponentially large cancellation
    try:
        if ctx.mag(z) > 3:
            if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999:
                def h():
                    return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
                return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
            if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999:
                def h():
                    return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
                return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
    except ctx.NoConvergence:
        pass
    def h():
        A = ctx.airybi(z, **kwargs)/3
        B = -2*ctx.pi
        if which == 1:
            A *= 2
            B *= -1
        ctx.prec += extraprec
        w = z**3/9
        ctx.prec -= extraprec
        T1 = [A], [1], [], [], [], [], 0
        T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w
        return T1, T2
    return ctx.hypercomb(h, [], **kwargs)

@defun
def scorergi(ctx, z, **kwargs):
    return _scorer(ctx, z, 0, kwargs)

@defun
def scorerhi(ctx, z, **kwargs):
    return _scorer(ctx, z, 1, kwargs)

@defun_wrapped
def coulombc(ctx, l, eta, _cache={}):
    if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
        return +_cache[l,eta][1]
    G3 = ctx.loggamma(2*l+2)
    G1 = ctx.loggamma(1+l+ctx.j*eta)
    G2 = ctx.loggamma(1+l-ctx.j*eta)
    v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3)
    if not (ctx.im(l) or ctx.im(eta)):
        v = ctx.re(v)
    _cache[l,eta] = (ctx.prec, v)
    return v

@defun_wrapped
def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs):
    # Regular Coulomb wave function
    # Note: w can be either 1 or -1; the other may be better in some cases
    # TODO: check that chop=True chops when and only when it should
    #ctx.prec += 10
    def h(l, eta):
        try:
            jw = ctx.j*w
            jwz = ctx.fmul(jw, z, exact=True)
            jwz2 = ctx.fmul(jwz, -2, exact=True)
            C = ctx.coulombc(l, eta)
            T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \
                [2*l+2], jwz2
        except ValueError:
            T1 = [0], [-1], [], [], [], [], 0
        return (T1,)
    v = ctx.hypercomb(h, [l,eta], **kwargs)
    if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \
        (ctx.re(z) >= 0):
        v = ctx.re(v)
    return v

@defun_wrapped
def _coulomb_chi(ctx, l, eta, _cache={}):
    if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
        return _cache[l,eta][1]
    def terms():
        l2 = -l-1
        jeta = ctx.j*eta
        return [ctx.loggamma(1+l+jeta) * (-0.5j),
            ctx.loggamma(1+l-jeta) * (0.5j),
            ctx.loggamma(1+l2+jeta) * (0.5j),
            ctx.loggamma(1+l2-jeta) * (-0.5j),
            -(l+0.5)*ctx.pi]
    v = ctx.sum_accurately(terms, 1)
    _cache[l,eta] = (ctx.prec, v)
    return v

@defun_wrapped
def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs):
    # Irregular Coulomb wave function
    # Note: w can be either 1 or -1; the other may be better in some cases
    # TODO: check that chop=True chops when and only when it should
    if not ctx._im(l):
        l = ctx._re(l)  # XXX: for isint
    def h(l, eta):
        # Force perturbation for integers and half-integers
        if ctx.isint(l*2):
            T1 = [0], [-1], [], [], [], [], 0
            return (T1,)
        l2 = -l-1
        try:
            chi = ctx._coulomb_chi(l, eta)
            jw = ctx.j*w
            s = ctx.sin(chi); c = ctx.cos(chi)
            C1 = ctx.coulombc(l,eta)
            C2 = ctx.coulombc(l2,eta)
            u = ctx.exp(jw*z)
            x = -2*jw*z
            T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \
                [1+l+jw*eta], [2*l+2], x
            T2 = [-s, C2, z, u],   [-1, 1, l2+1, 1],    [], [], \
                [1+l2+jw*eta], [2*l2+2], x
            return T1, T2
        except ValueError:
            T1 = [0], [-1], [], [], [], [], 0
            return (T1,)
    v = ctx.hypercomb(h, [l,eta], **kwargs)
    if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \
        (ctx._re(z) >= 0):
        v = ctx._re(v)
    return v

def mcmahon(ctx,kind,prime,v,m):
    """
    Computes an estimate for the location of the Bessel function zero
    j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic
    expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)).

    Returns (r,err) where r is the estimated location of the root
    and err is a positive number estimating the error of the
    asymptotic expansion.
    """
    u = 4*v**2
    if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4
    if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4
    if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4
    if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4
    if not prime:
        s1 = b
        s2 = -(u-1)/(8*b)
        s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3)
        s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5)
        s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7)
    if prime:
        s1 = b
        s2 = -(u+3)/(8*b)
        s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3)
        s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5)
        s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7)
    terms = [s1,s2,s3,s4,s5]
    s = s1
    err = 0.0
    for i in range(1,len(terms)):
        if abs(terms[i]) < abs(terms[i-1]):
            s += terms[i]
        else:
            err = abs(terms[i])
    if i == len(terms)-1:
        err = abs(terms[-1])
    return s, err

def generalized_bisection(ctx,f,a,b,n):
    """
    Given f known to have exactly n simple roots within [a,b],
    return a list of n intervals isolating the roots
    and having opposite signs at the endpoints.

    TODO: this can be optimized, e.g. by reusing evaluation points.
    """
    if n < 1:
        raise ValueError("n cannot be less than 1")
    N = n+1
    points = []
    signs = []
    while 1:
        points = ctx.linspace(a,b,N)
        signs = [ctx.sign(f(x)) for x in points]
        ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \
            if signs[i]*signs[i+1] == -1]
        if len(ok_intervals) == n:
            return ok_intervals
        N = N*2

def find_in_interval(ctx, f, ab):
    return ctx.findroot(f, ab, solver='illinois', verify=False)

def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}):
    prec = ctx.prec
    workprec = max(prec, ctx.mag(v), ctx.mag(m))+10
    try:
        ctx.prec = workprec
        v = ctx.mpf(v)
        m = int(m)
        prime = int(prime)
        if v < 0:
            raise ValueError("v cannot be negative")
        if m < 1:
            raise ValueError("m cannot be less than 1")
        if not prime in (0,1):
            raise ValueError("prime should lie between 0 and 1")
        if kind == 1:
            if prime: f = lambda x: ctx.besselj(v,x,derivative=1)
            else:     f = lambda x: ctx.besselj(v,x)
        if kind == 2:
            if prime: f = lambda x: ctx.bessely(v,x,derivative=1)
            else:     f = lambda x: ctx.bessely(v,x)
        # The first root of J' is very close to 0 for small
        # orders, and this needs to be special-cased
        if kind == 1 and prime and m == 1:
            if v == 0:
                return ctx.zero
            if v <= 1:
                # TODO: use v <= j'_{v,1} < y_{v,1}?
                r = 2*ctx.sqrt(v*(1+v)/(v+2))
                return find_in_interval(ctx, f, (r/10, 2*r))
        if (kind,prime,v,m) in _interval_cache:
            return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m])
        r, err = mcmahon(ctx, kind, prime, v, m)
        if err < isoltol:
            return find_in_interval(ctx, f, (r-isoltol, r+isoltol))
        # An x such that 0 < x < r_{v,1}
        if kind == 1 and not prime: low = 2.4
        if kind == 1 and prime: low = 1.8
        if kind == 2 and not prime: low = 0.8
        if kind == 2 and prime: low = 2.0
        n = m+1
        while 1:
            r1, err = mcmahon(ctx, kind, prime, v, n)
            if err < isoltol:
                r2, err2 = mcmahon(ctx, kind, prime, v, n+1)
                intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n)
                for k, ab in enumerate(intervals):
                    _interval_cache[kind,prime,v,k+1] = ab
                return find_in_interval(ctx, f, intervals[m-1])
            else:
                n = n*2
    finally:
        ctx.prec = prec

@defun
def besseljzero(ctx, v, m, derivative=0):
    r"""
    For a real order `\nu \ge 0` and a positive integer `m`, returns
    `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
    first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively,
    with *derivative=1*, gives the first nonnegative simple zero
    `j'_{\nu,m}` of `J'_{\nu}(z)`.

    The indexing convention is that used by Abramowitz & Stegun
    and the DLMF. Note the special case `j'_{0,1} = 0`, while all other
    zeros are positive. In effect, only simple zeros are counted
    (all zeros of Bessel functions are simple except possibly `z = 0`)
    and `j_{\nu,m}` becomes a monotonic function of both `\nu`
    and `m`.

    The zeros are interlaced according to the inequalities

    .. math ::

        j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1}

        j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots

    **Examples**

    Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3)
        2.404825557695772768621632
        5.520078110286310649596604
        8.653727912911012216954199
        >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3)
        3.831705970207512315614436
        7.01558666981561875353705
        10.17346813506272207718571
        >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3)
        5.135622301840682556301402
        8.417244140399864857783614
        11.61984117214905942709415

    Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`::

        0.0
        3.831705970207512315614436
        7.01558666981561875353705
        >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1)
        1.84118378134065930264363
        5.331442773525032636884016
        8.536316366346285834358961
        >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1)
        3.054236928227140322755932
        6.706133194158459146634394
        9.969467823087595793179143

    Zeros with large index::

        >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000)
        313.3742660775278447196902
        3140.807295225078628895545
        31415.14114171350798533666
        >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000)
        321.1893195676003157339222
        3148.657306813047523500494
        31422.9947255486291798943
        >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1)
        311.8018681873704508125112
        3139.236339643802482833973
        31413.57032947022399485808

    Zeros of functions with large order::

        >>> besseljzero(50,1)
        57.11689916011917411936228
        >>> besseljzero(50,2)
        62.80769876483536093435393
        >>> besseljzero(50,100)
        388.6936600656058834640981
        >>> besseljzero(50,1,1)
        52.99764038731665010944037
        >>> besseljzero(50,2,1)
        60.02631933279942589882363
        >>> besseljzero(50,100,1)
        387.1083151608726181086283

    Zeros of functions with fractional order::

        >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4)
        3.141592653589793238462643
        4.493409457909064175307881
        15.15657692957458622921634

    Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite
    products over their zeros::

        >>> v,z = 2, mpf(1)
        >>> (z/2)**v/gamma(v+1) * \
        ...     nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf])
        ...
        0.1149034849319004804696469
        >>> besselj(v,z)
        0.1149034849319004804696469
        >>> (z/2)**(v-1)/2/gamma(v) * \
        ...     nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf])
        ...
        0.2102436158811325550203884
        >>> besselj(v,z,1)
        0.2102436158811325550203884

    """
    return +bessel_zero(ctx, 1, derivative, v, m)

@defun
def besselyzero(ctx, v, m, derivative=0):
    r"""
    For a real order `\nu \ge 0` and a positive integer `m`, returns
    `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
    second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively,
    with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of
    `Y'_{\nu}(z)`.

    The zeros are interlaced according to the inequalities

    .. math ::

        y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1}

        y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots

    **Examples**

    Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3)
        0.8935769662791675215848871
        3.957678419314857868375677
        7.086051060301772697623625
        >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3)
        2.197141326031017035149034
        5.429681040794135132772005
        8.596005868331168926429606
        >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3)
        3.384241767149593472701426
        6.793807513268267538291167
        10.02347797936003797850539

    Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`::

        >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1)
        2.197141326031017035149034
        5.429681040794135132772005
        8.596005868331168926429606
        >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1)
        3.683022856585177699898967
        6.941499953654175655751944
        10.12340465543661307978775
        >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1)
        5.002582931446063945200176
        8.350724701413079526349714
        11.57419546521764654624265

    Zeros with large index::

        >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000)
        311.8034717601871549333419
        3139.236498918198006794026
        31413.57034538691205229188
        >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000)
        319.6183338562782156235062
        3147.086508524556404473186
        31421.42392920214673402828
        >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1)
        313.3726705426359345050449
        3140.807136030340213610065
        31415.14112579761578220175

    Zeros of functions with large order::

        >>> besselyzero(50,1)
        53.50285882040036394680237
        >>> besselyzero(50,2)
        60.11244442774058114686022
        >>> besselyzero(50,100)
        387.1096509824943957706835
        >>> besselyzero(50,1,1)
        56.96290427516751320063605
        >>> besselyzero(50,2,1)
        62.74888166945933944036623
        >>> besselyzero(50,100,1)
        388.6923300548309258355475

    Zeros of functions with fractional order::

        >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4)
        1.570796326794896619231322
        2.798386045783887136720249
        13.56721208770735123376018

    """
    return +bessel_zero(ctx, 2, derivative, v, m)