Spaces:
Running
Running
File size: 37,938 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 |
from .functions import defun, defun_wrapped
@defun
def j0(ctx, x):
"""Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`."""
return ctx.besselj(0, x)
@defun
def j1(ctx, x):
"""Computes the Bessel function `J_1(x)`. See :func:`~mpmath.besselj`."""
return ctx.besselj(1, x)
@defun
def besselj(ctx, n, z, derivative=0, **kwargs):
if type(n) is int:
n_isint = True
else:
n = ctx.convert(n)
n_isint = ctx.isint(n)
if n_isint:
n = int(ctx._re(n))
if n_isint and n < 0:
return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs)
z = ctx.convert(z)
M = ctx.mag(z)
if derivative:
d = ctx.convert(derivative)
# TODO: the integer special-casing shouldn't be necessary.
# However, the hypergeometric series gets inaccurate for large d
# because of inaccurate pole cancellation at a pole far from
# zero (needs to be fixed in hypercomb or hypsum)
if ctx.isint(d) and d >= 0:
d = int(d)
orig = ctx.prec
try:
ctx.prec += 15
v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z)
for k in range(d+1))
finally:
ctx.prec = orig
v *= ctx.mpf(2)**(-d)
else:
def h(n,d):
r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True)
B = [0.5*(n-d+1), 0.5*(n-d+2)]
T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)]
return T
v = ctx.hypercomb(h, [n,d], **kwargs)
else:
# Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation
if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20:
try:
return ctx._besselj(n, z)
except NotImplementedError:
pass
if not z:
if not n:
v = ctx.one + n+z
elif ctx.re(n) > 0:
v = n*z
else:
v = ctx.inf + z + n
else:
#v = 0
orig = ctx.prec
try:
# XXX: workaround for accuracy in low level hypergeometric series
# when alternating, large arguments
ctx.prec += min(3*abs(M), ctx.prec)
w = ctx.fmul(z, 0.5, exact=True)
def h(n):
r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True)
return [([w], [n], [], [n+1], [], [n+1], r)]
v = ctx.hypercomb(h, [n], **kwargs)
finally:
ctx.prec = orig
v = +v
return v
@defun
def besseli(ctx, n, z, derivative=0, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
if not z:
if derivative:
raise ValueError
if not n:
# I(0,0) = 1
return 1+n+z
if ctx.isint(n):
return 0*(n+z)
r = ctx.re(n)
if r == 0:
return ctx.nan*(n+z)
elif r > 0:
return 0*(n+z)
else:
return ctx.inf+(n+z)
M = ctx.mag(z)
if derivative:
d = ctx.convert(derivative)
def h(n,d):
r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True)
B = [0.5*(n-d+1), 0.5*(n-d+2), n+1]
T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)]
return T
v = ctx.hypercomb(h, [n,d], **kwargs)
else:
def h(n):
w = ctx.fmul(z, 0.5, exact=True)
r = ctx.fmul(w, w, prec=max(0,ctx.prec+M))
return [([w], [n], [], [n+1], [], [n+1], r)]
v = ctx.hypercomb(h, [n], **kwargs)
return v
@defun_wrapped
def bessely(ctx, n, z, derivative=0, **kwargs):
if not z:
if derivative:
# Not implemented
raise ValueError
if not n:
# ~ log(z/2)
return -ctx.inf + (n+z)
if ctx.im(n):
return ctx.nan * (n+z)
r = ctx.re(n)
q = n+0.5
if ctx.isint(q):
if n > 0:
return -ctx.inf + (n+z)
else:
return 0 * (n+z)
if r < 0 and int(ctx.floor(q)) % 2:
return ctx.inf + (n+z)
else:
return ctx.ninf + (n+z)
# XXX: use hypercomb
ctx.prec += 10
m, d = ctx.nint_distance(n)
if d < -ctx.prec:
h = +ctx.eps
ctx.prec *= 2
n += h
elif d < 0:
ctx.prec -= d
# TODO: avoid cancellation for imaginary arguments
cos, sin = ctx.cospi_sinpi(n)
return (ctx.besselj(n,z,derivative,**kwargs)*cos - \
ctx.besselj(-n,z,derivative,**kwargs))/sin
@defun_wrapped
def besselk(ctx, n, z, **kwargs):
if not z:
return ctx.inf
M = ctx.mag(z)
if M < 1:
# Represent as limit definition
def h(n):
r = (z/2)**2
T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r
T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r
return T1, T2
# We could use the limit definition always, but it leads
# to very bad cancellation (of exponentially large terms)
# for large real z
# Instead represent in terms of 2F0
else:
ctx.prec += M
def h(n):
return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \
[n+0.5, 0.5-n], [], -1/(2*z))]
return ctx.hypercomb(h, [n], **kwargs)
@defun_wrapped
def hankel1(ctx,n,x,**kwargs):
return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs)
@defun_wrapped
def hankel2(ctx,n,x,**kwargs):
return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs)
@defun_wrapped
def whitm(ctx,k,m,z,**kwargs):
if z == 0:
# M(k,m,z) = 0^(1/2+m)
if ctx.re(m) > -0.5:
return z
elif ctx.re(m) < -0.5:
return ctx.inf + z
else:
return ctx.nan * z
x = ctx.fmul(-0.5, z, exact=True)
y = 0.5+m
return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs)
@defun_wrapped
def whitw(ctx,k,m,z,**kwargs):
if z == 0:
g = abs(ctx.re(m))
if g < 0.5:
return z
elif g > 0.5:
return ctx.inf + z
else:
return ctx.nan * z
x = ctx.fmul(-0.5, z, exact=True)
y = 0.5+m
return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs)
@defun
def hyperu(ctx, a, b, z, **kwargs):
a, atype = ctx._convert_param(a)
b, btype = ctx._convert_param(b)
z = ctx.convert(z)
if not z:
if ctx.re(b) <= 1:
return ctx.gammaprod([1-b],[a-b+1])
else:
return ctx.inf + z
bb = 1+a-b
bb, bbtype = ctx._convert_param(bb)
try:
orig = ctx.prec
try:
ctx.prec += 10
v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec)
return v / z**a
finally:
ctx.prec = orig
except ctx.NoConvergence:
pass
def h(a,b):
w = ctx.sinpi(b)
T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z)
T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z)
return T1, T2
return ctx.hypercomb(h, [a,b], **kwargs)
@defun
def struveh(ctx,n,z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/
def h(n):
return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)]
return ctx.hypercomb(h, [n], **kwargs)
@defun
def struvel(ctx,n,z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/
def h(n):
return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)]
return ctx.hypercomb(h, [n], **kwargs)
def _anger(ctx,which,v,z,**kwargs):
v = ctx._convert_param(v)[0]
z = ctx.convert(z)
def h(v):
b = ctx.mpq_1_2
u = v*b
m = b*3
a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u
c, s = ctx.cospi_sinpi(u)
if which == 0:
A, B = [b*z, s], [c]
if which == 1:
A, B = [b*z, -c], [s]
w = ctx.square_exp_arg(z, mult=-0.25)
T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w
T2 = B, [1], [], [b1,b2], [1], [b1,b2], w
return T1, T2
return ctx.hypercomb(h, [v], **kwargs)
@defun
def angerj(ctx, v, z, **kwargs):
return _anger(ctx, 0, v, z, **kwargs)
@defun
def webere(ctx, v, z, **kwargs):
return _anger(ctx, 1, v, z, **kwargs)
@defun
def lommels1(ctx, u, v, z, **kwargs):
u = ctx._convert_param(u)[0]
v = ctx._convert_param(v)[0]
z = ctx.convert(z)
def h(u,v):
b = ctx.mpq_1_2
w = ctx.square_exp_arg(z, mult=-0.25)
return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \
[b*(u-v+3),b*(u+v+3)], w),
return ctx.hypercomb(h, [u,v], **kwargs)
@defun
def lommels2(ctx, u, v, z, **kwargs):
u = ctx._convert_param(u)[0]
v = ctx._convert_param(v)[0]
z = ctx.convert(z)
# Asymptotic expansion (GR p. 947) -- need to be careful
# not to use for small arguments
# def h(u,v):
# b = ctx.mpq_1_2
# w = -(z/2)**(-2)
# return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w),
def h(u,v):
b = ctx.mpq_1_2
w = ctx.square_exp_arg(z, mult=-0.25)
T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w
T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w
T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w
#c1 = ctx.cospi((u-v)*b)
#c2 = ctx.cospi((u+v)*b)
#s = ctx.sinpi(v)
#r1 = (u-v+1)*b
#r2 = (u+v+1)*b
#T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w
#T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w
#T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w
#T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w
return T1, T2, T3
return ctx.hypercomb(h, [u,v], **kwargs)
@defun
def ber(ctx, n, z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/
def h(n):
r = -(z/4)**4
cos, sin = ctx.cospi_sinpi(-0.75*n)
T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
return T1, T2
return ctx.hypercomb(h, [n], **kwargs)
@defun
def bei(ctx, n, z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/
def h(n):
r = -(z/4)**4
cos, sin = ctx.cospi_sinpi(0.75*n)
T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
return T1, T2
return ctx.hypercomb(h, [n], **kwargs)
@defun
def ker(ctx, n, z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/
def h(n):
r = -(z/4)**4
cos1, sin1 = ctx.cospi_sinpi(0.25*n)
cos2, sin2 = ctx.cospi_sinpi(0.75*n)
T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r
T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r
T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
return T1, T2, T3, T4
return ctx.hypercomb(h, [n], **kwargs)
@defun
def kei(ctx, n, z, **kwargs):
n = ctx.convert(n)
z = ctx.convert(z)
# http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/
def h(n):
r = -(z/4)**4
cos1, sin1 = ctx.cospi_sinpi(0.75*n)
cos2, sin2 = ctx.cospi_sinpi(0.25*n)
T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r
T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r
return T1, T2, T3, T4
return ctx.hypercomb(h, [n], **kwargs)
# TODO: do this more generically?
def c_memo(f):
name = f.__name__
def f_wrapped(ctx):
cache = ctx._misc_const_cache
prec = ctx.prec
p,v = cache.get(name, (-1,0))
if p >= prec:
return +v
else:
cache[name] = (prec, f(ctx))
return cache[name][1]
return f_wrapped
@c_memo
def _airyai_C1(ctx):
return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3))
@c_memo
def _airyai_C2(ctx):
return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3))
@c_memo
def _airybi_C1(ctx):
return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3))
@c_memo
def _airybi_C2(ctx):
return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3)
def _airybi_n2_inf(ctx):
prec = ctx.prec
try:
v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi)
finally:
ctx.prec = prec
return +v
# Derivatives at z = 0
# TODO: could be expressed more elegantly using triple factorials
def _airyderiv_0(ctx, z, n, ntype, which):
if ntype == 'Z':
if n < 0:
return z
r = ctx.mpq_1_3
prec = ctx.prec
try:
ctx.prec += 10
v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi
if which == 0:
v *= ctx.sinpi(2*(n+1)*r)
v /= ctx.power(3,'2/3')
else:
v *= abs(ctx.sinpi(2*(n+1)*r))
v /= ctx.power(3,'1/6')
finally:
ctx.prec = prec
return +v + z
else:
# singular (does the limit exist?)
raise NotImplementedError
@defun
def airyai(ctx, z, derivative=0, **kwargs):
z = ctx.convert(z)
if derivative:
n, ntype = ctx._convert_param(derivative)
else:
n = 0
# Values at infinities
if not ctx.isnormal(z) and z:
if n and ntype == 'Z':
if n == -1:
if z == ctx.inf:
return ctx.mpf(1)/3 + 1/z
if z == ctx.ninf:
return ctx.mpf(-2)/3 + 1/z
if n < -1:
if z == ctx.inf:
return z
if z == ctx.ninf:
return (-1)**n * (-z)
if (not n) and z == ctx.inf or z == ctx.ninf:
return 1/z
# TODO: limits
raise ValueError("essential singularity of Ai(z)")
# Account for exponential scaling
if z:
extraprec = max(0, int(1.5*ctx.mag(z)))
else:
extraprec = 0
if n:
if n == 1:
def h():
# http://functions.wolfram.com/03.07.06.0005.01
if ctx._re(z) > 4:
ctx.prec += extraprec
w = z**1.5; r = -0.75/w; u = -2*w/3
ctx.prec -= extraprec
C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4)
return ([C],[1],[],[],[(-1,6),(7,6)],[],r),
# http://functions.wolfram.com/03.07.26.0001.01
else:
ctx.prec += extraprec
w = z**3 / 9
ctx.prec -= extraprec
C1 = _airyai_C1(ctx) * 0.5
C2 = _airyai_C2(ctx)
T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
return T1, T2
return ctx.hypercomb(h, [], **kwargs)
else:
if z == 0:
return _airyderiv_0(ctx, z, n, ntype, 0)
# http://functions.wolfram.com/03.05.20.0004.01
def h(n):
ctx.prec += extraprec
w = z**3/9
ctx.prec -= extraprec
q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \
[a1,a2], [b1,b2,b3], w
a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \
[a1,a2], [b1,b2,b3], w
return T1, T2
v = ctx.hypercomb(h, [n], **kwargs)
if ctx._is_real_type(z) and ctx.isint(n):
v = ctx._re(v)
return v
else:
def h():
if ctx._re(z) > 4:
# We could use 1F1, but it results in huge cancellation;
# the following expansion is better.
# TODO: asymptotic series for derivatives
ctx.prec += extraprec
w = z**1.5; r = -0.75/w; u = -2*w/3
ctx.prec -= extraprec
C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4))
return ([C],[1],[],[],[(1,6),(5,6)],[],r),
else:
ctx.prec += extraprec
w = z**3 / 9
ctx.prec -= extraprec
C1 = _airyai_C1(ctx)
C2 = _airyai_C2(ctx)
T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
return T1, T2
return ctx.hypercomb(h, [], **kwargs)
@defun
def airybi(ctx, z, derivative=0, **kwargs):
z = ctx.convert(z)
if derivative:
n, ntype = ctx._convert_param(derivative)
else:
n = 0
# Values at infinities
if not ctx.isnormal(z) and z:
if n and ntype == 'Z':
if z == ctx.inf:
return z
if z == ctx.ninf:
if n == -1:
return 1/z
if n == -2:
return _airybi_n2_inf(ctx)
if n < -2:
return (-1)**n * (-z)
if not n:
if z == ctx.inf:
return z
if z == ctx.ninf:
return 1/z
# TODO: limits
raise ValueError("essential singularity of Bi(z)")
if z:
extraprec = max(0, int(1.5*ctx.mag(z)))
else:
extraprec = 0
if n:
if n == 1:
# http://functions.wolfram.com/03.08.26.0001.01
def h():
ctx.prec += extraprec
w = z**3 / 9
ctx.prec -= extraprec
C1 = _airybi_C1(ctx)*0.5
C2 = _airybi_C2(ctx)
T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
return T1, T2
return ctx.hypercomb(h, [], **kwargs)
else:
if z == 0:
return _airyderiv_0(ctx, z, n, ntype, 1)
def h(n):
ctx.prec += extraprec
w = z**3/9
ctx.prec -= extraprec
q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
q16 = ctx.mpq_1_6
q56 = ctx.mpq_5_6
a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \
[a1,a2], [b1,b2,b3], w
a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \
[a1,a2], [b1,b2,b3], w
return T1, T2
v = ctx.hypercomb(h, [n], **kwargs)
if ctx._is_real_type(z) and ctx.isint(n):
v = ctx._re(v)
return v
else:
def h():
ctx.prec += extraprec
w = z**3 / 9
ctx.prec -= extraprec
C1 = _airybi_C1(ctx)
C2 = _airybi_C2(ctx)
T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
return T1, T2
return ctx.hypercomb(h, [], **kwargs)
def _airy_zero(ctx, which, k, derivative, complex=False):
# Asymptotic formulas are given in DLMF section 9.9
def U(t): return t**(2/3.)*(1-7/(t**2*48))
def T(t): return t**(2/3.)*(1+5/(t**2*48))
k = int(k)
if k < 1:
raise ValueError("k cannot be less than 1")
if not derivative in (0,1):
raise ValueError("Derivative should lie between 0 and 1")
if which == 0:
if derivative:
return ctx.findroot(lambda z: ctx.airyai(z,1),
-U(3*ctx.pi*(4*k-3)/8))
return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8))
if which == 1 and complex == False:
if derivative:
return ctx.findroot(lambda z: ctx.airybi(z,1),
-U(3*ctx.pi*(4*k-1)/8))
return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8))
if which == 1 and complex == True:
if derivative:
t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2
s = ctx.expjpi(ctx.mpf(1)/3) * T(t)
return ctx.findroot(lambda z: ctx.airybi(z,1), s)
t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2
s = ctx.expjpi(ctx.mpf(1)/3) * U(t)
return ctx.findroot(ctx.airybi, s)
@defun
def airyaizero(ctx, k, derivative=0):
return _airy_zero(ctx, 0, k, derivative, False)
@defun
def airybizero(ctx, k, derivative=0, complex=False):
return _airy_zero(ctx, 1, k, derivative, complex)
def _scorer(ctx, z, which, kwargs):
z = ctx.convert(z)
if ctx.isinf(z):
if z == ctx.inf:
if which == 0: return 1/z
if which == 1: return z
if z == ctx.ninf:
return 1/z
raise ValueError("essential singularity")
if z:
extraprec = max(0, int(1.5*ctx.mag(z)))
else:
extraprec = 0
if kwargs.get('derivative'):
raise NotImplementedError
# Direct asymptotic expansions, to avoid
# exponentially large cancellation
try:
if ctx.mag(z) > 3:
if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999:
def h():
return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999:
def h():
return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
except ctx.NoConvergence:
pass
def h():
A = ctx.airybi(z, **kwargs)/3
B = -2*ctx.pi
if which == 1:
A *= 2
B *= -1
ctx.prec += extraprec
w = z**3/9
ctx.prec -= extraprec
T1 = [A], [1], [], [], [], [], 0
T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w
return T1, T2
return ctx.hypercomb(h, [], **kwargs)
@defun
def scorergi(ctx, z, **kwargs):
return _scorer(ctx, z, 0, kwargs)
@defun
def scorerhi(ctx, z, **kwargs):
return _scorer(ctx, z, 1, kwargs)
@defun_wrapped
def coulombc(ctx, l, eta, _cache={}):
if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
return +_cache[l,eta][1]
G3 = ctx.loggamma(2*l+2)
G1 = ctx.loggamma(1+l+ctx.j*eta)
G2 = ctx.loggamma(1+l-ctx.j*eta)
v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3)
if not (ctx.im(l) or ctx.im(eta)):
v = ctx.re(v)
_cache[l,eta] = (ctx.prec, v)
return v
@defun_wrapped
def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs):
# Regular Coulomb wave function
# Note: w can be either 1 or -1; the other may be better in some cases
# TODO: check that chop=True chops when and only when it should
#ctx.prec += 10
def h(l, eta):
try:
jw = ctx.j*w
jwz = ctx.fmul(jw, z, exact=True)
jwz2 = ctx.fmul(jwz, -2, exact=True)
C = ctx.coulombc(l, eta)
T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \
[2*l+2], jwz2
except ValueError:
T1 = [0], [-1], [], [], [], [], 0
return (T1,)
v = ctx.hypercomb(h, [l,eta], **kwargs)
if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \
(ctx.re(z) >= 0):
v = ctx.re(v)
return v
@defun_wrapped
def _coulomb_chi(ctx, l, eta, _cache={}):
if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
return _cache[l,eta][1]
def terms():
l2 = -l-1
jeta = ctx.j*eta
return [ctx.loggamma(1+l+jeta) * (-0.5j),
ctx.loggamma(1+l-jeta) * (0.5j),
ctx.loggamma(1+l2+jeta) * (0.5j),
ctx.loggamma(1+l2-jeta) * (-0.5j),
-(l+0.5)*ctx.pi]
v = ctx.sum_accurately(terms, 1)
_cache[l,eta] = (ctx.prec, v)
return v
@defun_wrapped
def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs):
# Irregular Coulomb wave function
# Note: w can be either 1 or -1; the other may be better in some cases
# TODO: check that chop=True chops when and only when it should
if not ctx._im(l):
l = ctx._re(l) # XXX: for isint
def h(l, eta):
# Force perturbation for integers and half-integers
if ctx.isint(l*2):
T1 = [0], [-1], [], [], [], [], 0
return (T1,)
l2 = -l-1
try:
chi = ctx._coulomb_chi(l, eta)
jw = ctx.j*w
s = ctx.sin(chi); c = ctx.cos(chi)
C1 = ctx.coulombc(l,eta)
C2 = ctx.coulombc(l2,eta)
u = ctx.exp(jw*z)
x = -2*jw*z
T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \
[1+l+jw*eta], [2*l+2], x
T2 = [-s, C2, z, u], [-1, 1, l2+1, 1], [], [], \
[1+l2+jw*eta], [2*l2+2], x
return T1, T2
except ValueError:
T1 = [0], [-1], [], [], [], [], 0
return (T1,)
v = ctx.hypercomb(h, [l,eta], **kwargs)
if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \
(ctx._re(z) >= 0):
v = ctx._re(v)
return v
def mcmahon(ctx,kind,prime,v,m):
"""
Computes an estimate for the location of the Bessel function zero
j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic
expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)).
Returns (r,err) where r is the estimated location of the root
and err is a positive number estimating the error of the
asymptotic expansion.
"""
u = 4*v**2
if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4
if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4
if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4
if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4
if not prime:
s1 = b
s2 = -(u-1)/(8*b)
s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3)
s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5)
s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7)
if prime:
s1 = b
s2 = -(u+3)/(8*b)
s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3)
s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5)
s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7)
terms = [s1,s2,s3,s4,s5]
s = s1
err = 0.0
for i in range(1,len(terms)):
if abs(terms[i]) < abs(terms[i-1]):
s += terms[i]
else:
err = abs(terms[i])
if i == len(terms)-1:
err = abs(terms[-1])
return s, err
def generalized_bisection(ctx,f,a,b,n):
"""
Given f known to have exactly n simple roots within [a,b],
return a list of n intervals isolating the roots
and having opposite signs at the endpoints.
TODO: this can be optimized, e.g. by reusing evaluation points.
"""
if n < 1:
raise ValueError("n cannot be less than 1")
N = n+1
points = []
signs = []
while 1:
points = ctx.linspace(a,b,N)
signs = [ctx.sign(f(x)) for x in points]
ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \
if signs[i]*signs[i+1] == -1]
if len(ok_intervals) == n:
return ok_intervals
N = N*2
def find_in_interval(ctx, f, ab):
return ctx.findroot(f, ab, solver='illinois', verify=False)
def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}):
prec = ctx.prec
workprec = max(prec, ctx.mag(v), ctx.mag(m))+10
try:
ctx.prec = workprec
v = ctx.mpf(v)
m = int(m)
prime = int(prime)
if v < 0:
raise ValueError("v cannot be negative")
if m < 1:
raise ValueError("m cannot be less than 1")
if not prime in (0,1):
raise ValueError("prime should lie between 0 and 1")
if kind == 1:
if prime: f = lambda x: ctx.besselj(v,x,derivative=1)
else: f = lambda x: ctx.besselj(v,x)
if kind == 2:
if prime: f = lambda x: ctx.bessely(v,x,derivative=1)
else: f = lambda x: ctx.bessely(v,x)
# The first root of J' is very close to 0 for small
# orders, and this needs to be special-cased
if kind == 1 and prime and m == 1:
if v == 0:
return ctx.zero
if v <= 1:
# TODO: use v <= j'_{v,1} < y_{v,1}?
r = 2*ctx.sqrt(v*(1+v)/(v+2))
return find_in_interval(ctx, f, (r/10, 2*r))
if (kind,prime,v,m) in _interval_cache:
return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m])
r, err = mcmahon(ctx, kind, prime, v, m)
if err < isoltol:
return find_in_interval(ctx, f, (r-isoltol, r+isoltol))
# An x such that 0 < x < r_{v,1}
if kind == 1 and not prime: low = 2.4
if kind == 1 and prime: low = 1.8
if kind == 2 and not prime: low = 0.8
if kind == 2 and prime: low = 2.0
n = m+1
while 1:
r1, err = mcmahon(ctx, kind, prime, v, n)
if err < isoltol:
r2, err2 = mcmahon(ctx, kind, prime, v, n+1)
intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n)
for k, ab in enumerate(intervals):
_interval_cache[kind,prime,v,k+1] = ab
return find_in_interval(ctx, f, intervals[m-1])
else:
n = n*2
finally:
ctx.prec = prec
@defun
def besseljzero(ctx, v, m, derivative=0):
r"""
For a real order `\nu \ge 0` and a positive integer `m`, returns
`j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively,
with *derivative=1*, gives the first nonnegative simple zero
`j'_{\nu,m}` of `J'_{\nu}(z)`.
The indexing convention is that used by Abramowitz & Stegun
and the DLMF. Note the special case `j'_{0,1} = 0`, while all other
zeros are positive. In effect, only simple zeros are counted
(all zeros of Bessel functions are simple except possibly `z = 0`)
and `j_{\nu,m}` becomes a monotonic function of both `\nu`
and `m`.
The zeros are interlaced according to the inequalities
.. math ::
j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1}
j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots
**Examples**
Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3)
2.404825557695772768621632
5.520078110286310649596604
8.653727912911012216954199
>>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3)
3.831705970207512315614436
7.01558666981561875353705
10.17346813506272207718571
>>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3)
5.135622301840682556301402
8.417244140399864857783614
11.61984117214905942709415
Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`::
0.0
3.831705970207512315614436
7.01558666981561875353705
>>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1)
1.84118378134065930264363
5.331442773525032636884016
8.536316366346285834358961
>>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1)
3.054236928227140322755932
6.706133194158459146634394
9.969467823087595793179143
Zeros with large index::
>>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000)
313.3742660775278447196902
3140.807295225078628895545
31415.14114171350798533666
>>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000)
321.1893195676003157339222
3148.657306813047523500494
31422.9947255486291798943
>>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1)
311.8018681873704508125112
3139.236339643802482833973
31413.57032947022399485808
Zeros of functions with large order::
>>> besseljzero(50,1)
57.11689916011917411936228
>>> besseljzero(50,2)
62.80769876483536093435393
>>> besseljzero(50,100)
388.6936600656058834640981
>>> besseljzero(50,1,1)
52.99764038731665010944037
>>> besseljzero(50,2,1)
60.02631933279942589882363
>>> besseljzero(50,100,1)
387.1083151608726181086283
Zeros of functions with fractional order::
>>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4)
3.141592653589793238462643
4.493409457909064175307881
15.15657692957458622921634
Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite
products over their zeros::
>>> v,z = 2, mpf(1)
>>> (z/2)**v/gamma(v+1) * \
... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf])
...
0.1149034849319004804696469
>>> besselj(v,z)
0.1149034849319004804696469
>>> (z/2)**(v-1)/2/gamma(v) * \
... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf])
...
0.2102436158811325550203884
>>> besselj(v,z,1)
0.2102436158811325550203884
"""
return +bessel_zero(ctx, 1, derivative, v, m)
@defun
def besselyzero(ctx, v, m, derivative=0):
r"""
For a real order `\nu \ge 0` and a positive integer `m`, returns
`y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively,
with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of
`Y'_{\nu}(z)`.
The zeros are interlaced according to the inequalities
.. math ::
y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1}
y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots
**Examples**
Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3)
0.8935769662791675215848871
3.957678419314857868375677
7.086051060301772697623625
>>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3)
2.197141326031017035149034
5.429681040794135132772005
8.596005868331168926429606
>>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3)
3.384241767149593472701426
6.793807513268267538291167
10.02347797936003797850539
Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`::
>>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1)
2.197141326031017035149034
5.429681040794135132772005
8.596005868331168926429606
>>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1)
3.683022856585177699898967
6.941499953654175655751944
10.12340465543661307978775
>>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1)
5.002582931446063945200176
8.350724701413079526349714
11.57419546521764654624265
Zeros with large index::
>>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000)
311.8034717601871549333419
3139.236498918198006794026
31413.57034538691205229188
>>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000)
319.6183338562782156235062
3147.086508524556404473186
31421.42392920214673402828
>>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1)
313.3726705426359345050449
3140.807136030340213610065
31415.14112579761578220175
Zeros of functions with large order::
>>> besselyzero(50,1)
53.50285882040036394680237
>>> besselyzero(50,2)
60.11244442774058114686022
>>> besselyzero(50,100)
387.1096509824943957706835
>>> besselyzero(50,1,1)
56.96290427516751320063605
>>> besselyzero(50,2,1)
62.74888166945933944036623
>>> besselyzero(50,100,1)
388.6923300548309258355475
Zeros of functions with fractional order::
>>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4)
1.570796326794896619231322
2.798386045783887136720249
13.56721208770735123376018
"""
return +bessel_zero(ctx, 2, derivative, v, m)
|