Spaces:
Running
Running
File size: 30,858 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
"""
The function zetazero(n) computes the n-th nontrivial zero of zeta(s).
The general strategy is to locate a block of Gram intervals B where we
know exactly the number of zeros contained and which of those zeros
is that which we search.
If n <= 400 000 000 we know exactly the Rosser exceptions, contained
in a list in this file. Hence for n<=400 000 000 we simply
look at these list of exceptions. If our zero is implicated in one of
these exceptions we have our block B. In other case we simply locate
the good Rosser block containing our zero.
For n > 400 000 000 we apply the method of Turing, as complemented by
Lehman, Brent and Trudgian to find a suitable B.
"""
from .functions import defun, defun_wrapped
def find_rosser_block_zero(ctx, n):
"""for n<400 000 000 determines a block were one find our zero"""
for k in range(len(_ROSSER_EXCEPTIONS)//2):
a=_ROSSER_EXCEPTIONS[2*k][0]
b=_ROSSER_EXCEPTIONS[2*k][1]
if ((a<= n-2) and (n-1 <= b)):
t0 = ctx.grampoint(a)
t1 = ctx.grampoint(b)
v0 = ctx._fp.siegelz(t0)
v1 = ctx._fp.siegelz(t1)
my_zero_number = n-a-1
zero_number_block = b-a
pattern = _ROSSER_EXCEPTIONS[2*k+1]
return (my_zero_number, [a,b], [t0,t1], [v0,v1])
k = n-2
t,v,b = compute_triple_tvb(ctx, k)
T = [t]
V = [v]
while b < 0:
k -= 1
t,v,b = compute_triple_tvb(ctx, k)
T.insert(0,t)
V.insert(0,v)
my_zero_number = n-k-1
m = n-1
t,v,b = compute_triple_tvb(ctx, m)
T.append(t)
V.append(v)
while b < 0:
m += 1
t,v,b = compute_triple_tvb(ctx, m)
T.append(t)
V.append(v)
return (my_zero_number, [k,m], T, V)
def wpzeros(t):
"""Precision needed to compute higher zeros"""
wp = 53
if t > 3*10**8:
wp = 63
if t > 10**11:
wp = 70
if t > 10**14:
wp = 83
return wp
def separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=None,
fp_tolerance=None):
"""Separate the zeros contained in the block T, limitloop
determines how long one must search"""
if limitloop is None:
limitloop = ctx.inf
loopnumber = 0
variations = count_variations(V)
while ((variations < zero_number_block) and (loopnumber <limitloop)):
a = T[0]
v = V[0]
newT = [a]
newV = [v]
variations = 0
for n in range(1,len(T)):
b2 = T[n]
u = V[n]
if (u*v>0):
alpha = ctx.sqrt(u/v)
b= (alpha*a+b2)/(alpha+1)
else:
b = (a+b2)/2
if fp_tolerance < 10:
w = ctx._fp.siegelz(b)
if abs(w)<fp_tolerance:
w = ctx.siegelz(b)
else:
w=ctx.siegelz(b)
if v*w<0:
variations += 1
newT.append(b)
newV.append(w)
u = V[n]
if u*w <0:
variations += 1
newT.append(b2)
newV.append(u)
a = b2
v = u
T = newT
V = newV
loopnumber +=1
if (limitloop>ITERATION_LIMIT)and(loopnumber>2)and(variations+2==zero_number_block):
dtMax=0
dtSec=0
kMax = 0
for k1 in range(1,len(T)):
dt = T[k1]-T[k1-1]
if dt > dtMax:
kMax=k1
dtSec = dtMax
dtMax = dt
elif (dt<dtMax) and(dt >dtSec):
dtSec = dt
if dtMax>3*dtSec:
f = lambda x: ctx.rs_z(x,derivative=1)
t0=T[kMax-1]
t1 = T[kMax]
t=ctx.findroot(f, (t0,t1), solver ='illinois',verify=False, verbose=False)
v = ctx.siegelz(t)
if (t0<t) and (t<t1) and (v*V[kMax]<0):
T.insert(kMax,t)
V.insert(kMax,v)
variations = count_variations(V)
if variations == zero_number_block:
separated = True
else:
separated = False
return (T,V, separated)
def separate_my_zero(ctx, my_zero_number, zero_number_block, T, V, prec):
"""If we know which zero of this block is mine,
the function separates the zero"""
variations = 0
v0 = V[0]
for k in range(1,len(V)):
v1 = V[k]
if v0*v1 < 0:
variations +=1
if variations == my_zero_number:
k0 = k
leftv = v0
rightv = v1
v0 = v1
t1 = T[k0]
t0 = T[k0-1]
ctx.prec = prec
wpz = wpzeros(my_zero_number*ctx.log(my_zero_number))
guard = 4*ctx.mag(my_zero_number)
precs = [ctx.prec+4]
index=0
while precs[0] > 2*wpz:
index +=1
precs = [precs[0] // 2 +3+2*index] + precs
ctx.prec = precs[0] + guard
r = ctx.findroot(lambda x:ctx.siegelz(x), (t0,t1), solver ='illinois', verbose=False)
#print "first step at", ctx.dps, "digits"
z=ctx.mpc(0.5,r)
for prec in precs[1:]:
ctx.prec = prec + guard
#print "refining to", ctx.dps, "digits"
znew = z - ctx.zeta(z) / ctx.zeta(z, derivative=1)
#print "difference", ctx.nstr(abs(z-znew))
z=ctx.mpc(0.5,ctx.im(znew))
return ctx.im(z)
def sure_number_block(ctx, n):
"""The number of good Rosser blocks needed to apply
Turing method
References:
R. P. Brent, On the Zeros of the Riemann Zeta Function
in the Critical Strip, Math. Comp. 33 (1979) 1361--1372
T. Trudgian, Improvements to Turing Method, Math. Comp."""
if n < 9*10**5:
return(2)
g = ctx.grampoint(n-100)
lg = ctx._fp.ln(g)
brent = 0.0061 * lg**2 +0.08*lg
trudgian = 0.0031 * lg**2 +0.11*lg
N = ctx.ceil(min(brent,trudgian))
N = int(N)
return N
def compute_triple_tvb(ctx, n):
t = ctx.grampoint(n)
v = ctx._fp.siegelz(t)
if ctx.mag(abs(v))<ctx.mag(t)-45:
v = ctx.siegelz(t)
b = v*(-1)**n
return t,v,b
ITERATION_LIMIT = 4
def search_supergood_block(ctx, n, fp_tolerance):
"""To use for n>400 000 000"""
sb = sure_number_block(ctx, n)
number_goodblocks = 0
m2 = n-1
t, v, b = compute_triple_tvb(ctx, m2)
Tf = [t]
Vf = [v]
while b < 0:
m2 += 1
t,v,b = compute_triple_tvb(ctx, m2)
Tf.append(t)
Vf.append(v)
goodpoints = [m2]
T = [t]
V = [v]
while number_goodblocks < 2*sb:
m2 += 1
t, v, b = compute_triple_tvb(ctx, m2)
T.append(t)
V.append(v)
while b < 0:
m2 += 1
t,v,b = compute_triple_tvb(ctx, m2)
T.append(t)
V.append(v)
goodpoints.append(m2)
zn = len(T)-1
A, B, separated =\
separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT,
fp_tolerance=fp_tolerance)
Tf.pop()
Tf.extend(A)
Vf.pop()
Vf.extend(B)
if separated:
number_goodblocks += 1
else:
number_goodblocks = 0
T = [t]
V = [v]
# Now the same procedure to the left
number_goodblocks = 0
m2 = n-2
t, v, b = compute_triple_tvb(ctx, m2)
Tf.insert(0,t)
Vf.insert(0,v)
while b < 0:
m2 -= 1
t,v,b = compute_triple_tvb(ctx, m2)
Tf.insert(0,t)
Vf.insert(0,v)
goodpoints.insert(0,m2)
T = [t]
V = [v]
while number_goodblocks < 2*sb:
m2 -= 1
t, v, b = compute_triple_tvb(ctx, m2)
T.insert(0,t)
V.insert(0,v)
while b < 0:
m2 -= 1
t,v,b = compute_triple_tvb(ctx, m2)
T.insert(0,t)
V.insert(0,v)
goodpoints.insert(0,m2)
zn = len(T)-1
A, B, separated =\
separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance)
A.pop()
Tf = A+Tf
B.pop()
Vf = B+Vf
if separated:
number_goodblocks += 1
else:
number_goodblocks = 0
T = [t]
V = [v]
r = goodpoints[2*sb]
lg = len(goodpoints)
s = goodpoints[lg-2*sb-1]
tr, vr, br = compute_triple_tvb(ctx, r)
ar = Tf.index(tr)
ts, vs, bs = compute_triple_tvb(ctx, s)
as1 = Tf.index(ts)
T = Tf[ar:as1+1]
V = Vf[ar:as1+1]
zn = s-r
A, B, separated =\
separate_zeros_in_block(ctx, zn,T,V,limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance)
if separated:
return (n-r-1,[r,s],A,B)
q = goodpoints[sb]
lg = len(goodpoints)
t = goodpoints[lg-sb-1]
tq, vq, bq = compute_triple_tvb(ctx, q)
aq = Tf.index(tq)
tt, vt, bt = compute_triple_tvb(ctx, t)
at = Tf.index(tt)
T = Tf[aq:at+1]
V = Vf[aq:at+1]
return (n-q-1,[q,t],T,V)
def count_variations(V):
count = 0
vold = V[0]
for n in range(1, len(V)):
vnew = V[n]
if vold*vnew < 0:
count +=1
vold = vnew
return count
def pattern_construct(ctx, block, T, V):
pattern = '('
a = block[0]
b = block[1]
t0,v0,b0 = compute_triple_tvb(ctx, a)
k = 0
k0 = 0
for n in range(a+1,b+1):
t1,v1,b1 = compute_triple_tvb(ctx, n)
lgT =len(T)
while (k < lgT) and (T[k] <= t1):
k += 1
L = V[k0:k]
L.append(v1)
L.insert(0,v0)
count = count_variations(L)
pattern = pattern + ("%s" % count)
if b1 > 0:
pattern = pattern + ')('
k0 = k
t0,v0,b0 = t1,v1,b1
pattern = pattern[:-1]
return pattern
@defun
def zetazero(ctx, n, info=False, round=True):
r"""
Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line,
i.e. returns an approximation of the `n`-th largest complex number
`s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the
imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`).
**Examples**
The first few zeros::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> zetazero(1)
(0.5 + 14.13472514173469379045725j)
>>> zetazero(2)
(0.5 + 21.02203963877155499262848j)
>>> zetazero(20)
(0.5 + 77.14484006887480537268266j)
Verifying that the values are zeros::
>>> for n in range(1,5):
... s = zetazero(n)
... chop(zeta(s)), chop(siegelz(s.imag))
...
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
Negative indices give the conjugate zeros (`n = 0` is undefined)::
>>> zetazero(-1)
(0.5 - 14.13472514173469379045725j)
:func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision::
>>> mp.dps = 15
>>> zetazero(1234567)
(0.5 + 727690.906948208j)
>>> mp.dps = 50
>>> zetazero(1234567)
(0.5 + 727690.9069482075392389420041147142092708393819935j)
>>> chop(zeta(_)/_)
0.0
with *info=True*, :func:`~mpmath.zetazero` gives additional information::
>>> mp.dps = 15
>>> zetazero(542964976,info=True)
((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)')
This means that the zero is between Gram points 542964969 and 542964978;
it is the 6-th zero between them. Finally (01311110) is the pattern
of zeros in this interval. The numbers indicate the number of zeros
in each Gram interval (Rosser blocks between parenthesis). In this case
there is only one Rosser block of length nine.
"""
n = int(n)
if n < 0:
return ctx.zetazero(-n).conjugate()
if n == 0:
raise ValueError("n must be nonzero")
wpinitial = ctx.prec
try:
wpz, fp_tolerance = comp_fp_tolerance(ctx, n)
ctx.prec = wpz
if n < 400000000:
my_zero_number, block, T, V =\
find_rosser_block_zero(ctx, n)
else:
my_zero_number, block, T, V =\
search_supergood_block(ctx, n, fp_tolerance)
zero_number_block = block[1]-block[0]
T, V, separated = separate_zeros_in_block(ctx, zero_number_block, T, V,
limitloop=ctx.inf, fp_tolerance=fp_tolerance)
if info:
pattern = pattern_construct(ctx,block,T,V)
prec = max(wpinitial, wpz)
t = separate_my_zero(ctx, my_zero_number, zero_number_block,T,V,prec)
v = ctx.mpc(0.5,t)
finally:
ctx.prec = wpinitial
if round:
v =+v
if info:
return (v,block,my_zero_number,pattern)
else:
return v
def gram_index(ctx, t):
if t > 10**13:
wp = 3*ctx.log(t, 10)
else:
wp = 0
prec = ctx.prec
try:
ctx.prec += wp
h = int(ctx.siegeltheta(t)/ctx.pi)
finally:
ctx.prec = prec
return(h)
def count_to(ctx, t, T, V):
count = 0
vold = V[0]
told = T[0]
tnew = T[1]
k = 1
while tnew < t:
vnew = V[k]
if vold*vnew < 0:
count += 1
vold = vnew
k += 1
tnew = T[k]
a = ctx.siegelz(t)
if a*vold < 0:
count += 1
return count
def comp_fp_tolerance(ctx, n):
wpz = wpzeros(n*ctx.log(n))
if n < 15*10**8:
fp_tolerance = 0.0005
elif n <= 10**14:
fp_tolerance = 0.1
else:
fp_tolerance = 100
return wpz, fp_tolerance
@defun
def nzeros(ctx, t):
r"""
Computes the number of zeros of the Riemann zeta function in
`(0,1) \times (0,t]`, usually denoted by `N(t)`.
**Examples**
The first zero has imaginary part between 14 and 15::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> nzeros(14)
0
>>> nzeros(15)
1
>>> zetazero(1)
(0.5 + 14.1347251417347j)
Some closely spaced zeros::
>>> nzeros(10**7)
21136125
>>> zetazero(21136125)
(0.5 + 9999999.32718175j)
>>> zetazero(21136126)
(0.5 + 10000000.2400236j)
>>> nzeros(545439823.215)
1500000001
>>> zetazero(1500000001)
(0.5 + 545439823.201985j)
>>> zetazero(1500000002)
(0.5 + 545439823.325697j)
This confirms the data given by J. van de Lune,
H. J. J. te Riele and D. T. Winter in 1986.
"""
if t < 14.1347251417347:
return 0
x = gram_index(ctx, t)
k = int(ctx.floor(x))
wpinitial = ctx.prec
wpz, fp_tolerance = comp_fp_tolerance(ctx, k)
ctx.prec = wpz
a = ctx.siegelz(t)
if k == -1 and a < 0:
return 0
elif k == -1 and a > 0:
return 1
if k+2 < 400000000:
Rblock = find_rosser_block_zero(ctx, k+2)
else:
Rblock = search_supergood_block(ctx, k+2, fp_tolerance)
n1, n2 = Rblock[1]
if n2-n1 == 1:
b = Rblock[3][0]
if a*b > 0:
ctx.prec = wpinitial
return k+1
else:
ctx.prec = wpinitial
return k+2
my_zero_number,block, T, V = Rblock
zero_number_block = n2-n1
T, V, separated = separate_zeros_in_block(ctx,\
zero_number_block, T, V,\
limitloop=ctx.inf,\
fp_tolerance=fp_tolerance)
n = count_to(ctx, t, T, V)
ctx.prec = wpinitial
return n+n1+1
@defun_wrapped
def backlunds(ctx, t):
r"""
Computes the function
`S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`.
See Titchmarsh Section 9.3 for details of the definition.
**Examples**
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> backlunds(217.3)
0.16302205431184
Generally, the value is a small number. At Gram points it is an integer,
frequently equal to 0::
>>> chop(backlunds(grampoint(200)))
0.0
>>> backlunds(extraprec(10)(grampoint)(211))
1.0
>>> backlunds(extraprec(10)(grampoint)(232))
-1.0
The number of zeros of the Riemann zeta function up to height `t`
satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and
:func:`siegeltheta`)::
>>> t = 1234.55
>>> nzeros(t)
842
>>> siegeltheta(t)/pi+1+backlunds(t)
842.0
"""
return ctx.nzeros(t)-1-ctx.siegeltheta(t)/ctx.pi
"""
_ROSSER_EXCEPTIONS is a list of all exceptions to
Rosser's rule for n <= 400 000 000.
Alternately the entry is of type [n,m], or a string.
The string is the zero pattern of the Block and the relevant
adjacent. For example (010)3 corresponds to a block
composed of three Gram intervals, the first ant third without
a zero and the intermediate with a zero. The next Gram interval
contain three zeros. So that in total we have 4 zeros in 4 Gram
blocks. n and m are the indices of the Gram points of this
interval of four Gram intervals. The Rosser exception is therefore
formed by the three Gram intervals that are signaled between
parenthesis.
We have included also some Rosser's exceptions beyond n=400 000 000
that are noted in the literature by some reason.
The list is composed from the data published in the references:
R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter,
'On the Zeros of the Riemann Zeta Function in the Critical Strip. II',
Math. Comp. 39 (1982) 681--688.
See also Corrigenda in Math. Comp. 46 (1986) 771.
J. van de Lune, H. J. J. te Riele,
'On the Zeros of the Riemann Zeta Function in the Critical Strip. III',
Math. Comp. 41 (1983) 759--767.
See also Corrigenda in Math. Comp. 46 (1986) 771.
J. van de Lune,
'Sums of Equal Powers of Positive Integers',
Dissertation,
Vrije Universiteit te Amsterdam, Centrum voor Wiskunde en Informatica,
Amsterdam, 1984.
Thanks to the authors all this papers and those others that have
contributed to make this possible.
"""
_ROSSER_EXCEPTIONS = \
[[13999525, 13999528], '(00)3',
[30783329, 30783332], '(00)3',
[30930926, 30930929], '3(00)',
[37592215, 37592218], '(00)3',
[40870156, 40870159], '(00)3',
[43628107, 43628110], '(00)3',
[46082042, 46082045], '(00)3',
[46875667, 46875670], '(00)3',
[49624540, 49624543], '3(00)',
[50799238, 50799241], '(00)3',
[55221453, 55221456], '3(00)',
[56948779, 56948782], '3(00)',
[60515663, 60515666], '(00)3',
[61331766, 61331770], '(00)40',
[69784843, 69784846], '3(00)',
[75052114, 75052117], '(00)3',
[79545240, 79545243], '3(00)',
[79652247, 79652250], '3(00)',
[83088043, 83088046], '(00)3',
[83689522, 83689525], '3(00)',
[85348958, 85348961], '(00)3',
[86513820, 86513823], '(00)3',
[87947596, 87947599], '3(00)',
[88600095, 88600098], '(00)3',
[93681183, 93681186], '(00)3',
[100316551, 100316554], '3(00)',
[100788444, 100788447], '(00)3',
[106236172, 106236175], '(00)3',
[106941327, 106941330], '3(00)',
[107287955, 107287958], '(00)3',
[107532016, 107532019], '3(00)',
[110571044, 110571047], '(00)3',
[111885253, 111885256], '3(00)',
[113239783, 113239786], '(00)3',
[120159903, 120159906], '(00)3',
[121424391, 121424394], '3(00)',
[121692931, 121692934], '3(00)',
[121934170, 121934173], '3(00)',
[122612848, 122612851], '3(00)',
[126116567, 126116570], '(00)3',
[127936513, 127936516], '(00)3',
[128710277, 128710280], '3(00)',
[129398902, 129398905], '3(00)',
[130461096, 130461099], '3(00)',
[131331947, 131331950], '3(00)',
[137334071, 137334074], '3(00)',
[137832603, 137832606], '(00)3',
[138799471, 138799474], '3(00)',
[139027791, 139027794], '(00)3',
[141617806, 141617809], '(00)3',
[144454931, 144454934], '(00)3',
[145402379, 145402382], '3(00)',
[146130245, 146130248], '3(00)',
[147059770, 147059773], '(00)3',
[147896099, 147896102], '3(00)',
[151097113, 151097116], '(00)3',
[152539438, 152539441], '(00)3',
[152863168, 152863171], '3(00)',
[153522726, 153522729], '3(00)',
[155171524, 155171527], '3(00)',
[155366607, 155366610], '(00)3',
[157260686, 157260689], '3(00)',
[157269224, 157269227], '(00)3',
[157755123, 157755126], '(00)3',
[158298484, 158298487], '3(00)',
[160369050, 160369053], '3(00)',
[162962787, 162962790], '(00)3',
[163724709, 163724712], '(00)3',
[164198113, 164198116], '3(00)',
[164689301, 164689305], '(00)40',
[164880228, 164880231], '3(00)',
[166201932, 166201935], '(00)3',
[168573836, 168573839], '(00)3',
[169750763, 169750766], '(00)3',
[170375507, 170375510], '(00)3',
[170704879, 170704882], '3(00)',
[172000992, 172000995], '3(00)',
[173289941, 173289944], '(00)3',
[173737613, 173737616], '3(00)',
[174102513, 174102516], '(00)3',
[174284990, 174284993], '(00)3',
[174500513, 174500516], '(00)3',
[175710609, 175710612], '(00)3',
[176870843, 176870846], '3(00)',
[177332732, 177332735], '3(00)',
[177902861, 177902864], '3(00)',
[179979095, 179979098], '(00)3',
[181233726, 181233729], '3(00)',
[181625435, 181625438], '(00)3',
[182105255, 182105259], '22(00)',
[182223559, 182223562], '3(00)',
[191116404, 191116407], '3(00)',
[191165599, 191165602], '3(00)',
[191297535, 191297539], '(00)22',
[192485616, 192485619], '(00)3',
[193264634, 193264638], '22(00)',
[194696968, 194696971], '(00)3',
[195876805, 195876808], '(00)3',
[195916548, 195916551], '3(00)',
[196395160, 196395163], '3(00)',
[196676303, 196676306], '(00)3',
[197889882, 197889885], '3(00)',
[198014122, 198014125], '(00)3',
[199235289, 199235292], '(00)3',
[201007375, 201007378], '(00)3',
[201030605, 201030608], '3(00)',
[201184290, 201184293], '3(00)',
[201685414, 201685418], '(00)22',
[202762875, 202762878], '3(00)',
[202860957, 202860960], '3(00)',
[203832577, 203832580], '3(00)',
[205880544, 205880547], '(00)3',
[206357111, 206357114], '(00)3',
[207159767, 207159770], '3(00)',
[207167343, 207167346], '3(00)',
[207482539, 207482543], '3(010)',
[207669540, 207669543], '3(00)',
[208053426, 208053429], '(00)3',
[208110027, 208110030], '3(00)',
[209513826, 209513829], '3(00)',
[212623522, 212623525], '(00)3',
[213841715, 213841718], '(00)3',
[214012333, 214012336], '(00)3',
[214073567, 214073570], '(00)3',
[215170600, 215170603], '3(00)',
[215881039, 215881042], '3(00)',
[216274604, 216274607], '3(00)',
[216957120, 216957123], '3(00)',
[217323208, 217323211], '(00)3',
[218799264, 218799267], '(00)3',
[218803557, 218803560], '3(00)',
[219735146, 219735149], '(00)3',
[219830062, 219830065], '3(00)',
[219897904, 219897907], '(00)3',
[221205545, 221205548], '(00)3',
[223601929, 223601932], '(00)3',
[223907076, 223907079], '3(00)',
[223970397, 223970400], '(00)3',
[224874044, 224874048], '22(00)',
[225291157, 225291160], '(00)3',
[227481734, 227481737], '(00)3',
[228006442, 228006445], '3(00)',
[228357900, 228357903], '(00)3',
[228386399, 228386402], '(00)3',
[228907446, 228907449], '(00)3',
[228984552, 228984555], '3(00)',
[229140285, 229140288], '3(00)',
[231810024, 231810027], '(00)3',
[232838062, 232838065], '3(00)',
[234389088, 234389091], '3(00)',
[235588194, 235588197], '(00)3',
[236645695, 236645698], '(00)3',
[236962876, 236962879], '3(00)',
[237516723, 237516727], '04(00)',
[240004911, 240004914], '(00)3',
[240221306, 240221309], '3(00)',
[241389213, 241389217], '(010)3',
[241549003, 241549006], '(00)3',
[241729717, 241729720], '(00)3',
[241743684, 241743687], '3(00)',
[243780200, 243780203], '3(00)',
[243801317, 243801320], '(00)3',
[244122072, 244122075], '(00)3',
[244691224, 244691227], '3(00)',
[244841577, 244841580], '(00)3',
[245813461, 245813464], '(00)3',
[246299475, 246299478], '(00)3',
[246450176, 246450179], '3(00)',
[249069349, 249069352], '(00)3',
[250076378, 250076381], '(00)3',
[252442157, 252442160], '3(00)',
[252904231, 252904234], '3(00)',
[255145220, 255145223], '(00)3',
[255285971, 255285974], '3(00)',
[256713230, 256713233], '(00)3',
[257992082, 257992085], '(00)3',
[258447955, 258447959], '22(00)',
[259298045, 259298048], '3(00)',
[262141503, 262141506], '(00)3',
[263681743, 263681746], '3(00)',
[266527881, 266527885], '(010)3',
[266617122, 266617125], '(00)3',
[266628044, 266628047], '3(00)',
[267305763, 267305766], '(00)3',
[267388404, 267388407], '3(00)',
[267441672, 267441675], '3(00)',
[267464886, 267464889], '(00)3',
[267554907, 267554910], '3(00)',
[269787480, 269787483], '(00)3',
[270881434, 270881437], '(00)3',
[270997583, 270997586], '3(00)',
[272096378, 272096381], '3(00)',
[272583009, 272583012], '(00)3',
[274190881, 274190884], '3(00)',
[274268747, 274268750], '(00)3',
[275297429, 275297432], '3(00)',
[275545476, 275545479], '3(00)',
[275898479, 275898482], '3(00)',
[275953000, 275953003], '(00)3',
[277117197, 277117201], '(00)22',
[277447310, 277447313], '3(00)',
[279059657, 279059660], '3(00)',
[279259144, 279259147], '3(00)',
[279513636, 279513639], '3(00)',
[279849069, 279849072], '3(00)',
[280291419, 280291422], '(00)3',
[281449425, 281449428], '3(00)',
[281507953, 281507956], '3(00)',
[281825600, 281825603], '(00)3',
[282547093, 282547096], '3(00)',
[283120963, 283120966], '3(00)',
[283323493, 283323496], '(00)3',
[284764535, 284764538], '3(00)',
[286172639, 286172642], '3(00)',
[286688824, 286688827], '(00)3',
[287222172, 287222175], '3(00)',
[287235534, 287235537], '3(00)',
[287304861, 287304864], '3(00)',
[287433571, 287433574], '(00)3',
[287823551, 287823554], '(00)3',
[287872422, 287872425], '3(00)',
[288766615, 288766618], '3(00)',
[290122963, 290122966], '3(00)',
[290450849, 290450853], '(00)22',
[291426141, 291426144], '3(00)',
[292810353, 292810356], '3(00)',
[293109861, 293109864], '3(00)',
[293398054, 293398057], '3(00)',
[294134426, 294134429], '3(00)',
[294216438, 294216441], '(00)3',
[295367141, 295367144], '3(00)',
[297834111, 297834114], '3(00)',
[299099969, 299099972], '3(00)',
[300746958, 300746961], '3(00)',
[301097423, 301097426], '(00)3',
[301834209, 301834212], '(00)3',
[302554791, 302554794], '(00)3',
[303497445, 303497448], '3(00)',
[304165344, 304165347], '3(00)',
[304790218, 304790222], '3(010)',
[305302352, 305302355], '(00)3',
[306785996, 306785999], '3(00)',
[307051443, 307051446], '3(00)',
[307481539, 307481542], '3(00)',
[308605569, 308605572], '3(00)',
[309237610, 309237613], '3(00)',
[310509287, 310509290], '(00)3',
[310554057, 310554060], '3(00)',
[310646345, 310646348], '3(00)',
[311274896, 311274899], '(00)3',
[311894272, 311894275], '3(00)',
[312269470, 312269473], '(00)3',
[312306601, 312306605], '(00)40',
[312683193, 312683196], '3(00)',
[314499804, 314499807], '3(00)',
[314636802, 314636805], '(00)3',
[314689897, 314689900], '3(00)',
[314721319, 314721322], '3(00)',
[316132890, 316132893], '3(00)',
[316217470, 316217474], '(010)3',
[316465705, 316465708], '3(00)',
[316542790, 316542793], '(00)3',
[320822347, 320822350], '3(00)',
[321733242, 321733245], '3(00)',
[324413970, 324413973], '(00)3',
[325950140, 325950143], '(00)3',
[326675884, 326675887], '(00)3',
[326704208, 326704211], '3(00)',
[327596247, 327596250], '3(00)',
[328123172, 328123175], '3(00)',
[328182212, 328182215], '(00)3',
[328257498, 328257501], '3(00)',
[328315836, 328315839], '(00)3',
[328800974, 328800977], '(00)3',
[328998509, 328998512], '3(00)',
[329725370, 329725373], '(00)3',
[332080601, 332080604], '(00)3',
[332221246, 332221249], '(00)3',
[332299899, 332299902], '(00)3',
[332532822, 332532825], '(00)3',
[333334544, 333334548], '(00)22',
[333881266, 333881269], '3(00)',
[334703267, 334703270], '3(00)',
[334875138, 334875141], '3(00)',
[336531451, 336531454], '3(00)',
[336825907, 336825910], '(00)3',
[336993167, 336993170], '(00)3',
[337493998, 337494001], '3(00)',
[337861034, 337861037], '3(00)',
[337899191, 337899194], '(00)3',
[337958123, 337958126], '(00)3',
[342331982, 342331985], '3(00)',
[342676068, 342676071], '3(00)',
[347063781, 347063784], '3(00)',
[347697348, 347697351], '3(00)',
[347954319, 347954322], '3(00)',
[348162775, 348162778], '3(00)',
[349210702, 349210705], '(00)3',
[349212913, 349212916], '3(00)',
[349248650, 349248653], '(00)3',
[349913500, 349913503], '3(00)',
[350891529, 350891532], '3(00)',
[351089323, 351089326], '3(00)',
[351826158, 351826161], '3(00)',
[352228580, 352228583], '(00)3',
[352376244, 352376247], '3(00)',
[352853758, 352853761], '(00)3',
[355110439, 355110442], '(00)3',
[355808090, 355808094], '(00)40',
[355941556, 355941559], '3(00)',
[356360231, 356360234], '(00)3',
[356586657, 356586660], '3(00)',
[356892926, 356892929], '(00)3',
[356908232, 356908235], '3(00)',
[357912730, 357912733], '3(00)',
[358120344, 358120347], '3(00)',
[359044096, 359044099], '(00)3',
[360819357, 360819360], '3(00)',
[361399662, 361399666], '(010)3',
[362361315, 362361318], '(00)3',
[363610112, 363610115], '(00)3',
[363964804, 363964807], '3(00)',
[364527375, 364527378], '(00)3',
[365090327, 365090330], '(00)3',
[365414539, 365414542], '3(00)',
[366738474, 366738477], '3(00)',
[368714778, 368714783], '04(010)',
[368831545, 368831548], '(00)3',
[368902387, 368902390], '(00)3',
[370109769, 370109772], '3(00)',
[370963333, 370963336], '3(00)',
[372541136, 372541140], '3(010)',
[372681562, 372681565], '(00)3',
[373009410, 373009413], '(00)3',
[373458970, 373458973], '3(00)',
[375648658, 375648661], '3(00)',
[376834728, 376834731], '3(00)',
[377119945, 377119948], '(00)3',
[377335703, 377335706], '(00)3',
[378091745, 378091748], '3(00)',
[379139522, 379139525], '3(00)',
[380279160, 380279163], '(00)3',
[380619442, 380619445], '3(00)',
[381244231, 381244234], '3(00)',
[382327446, 382327450], '(010)3',
[382357073, 382357076], '3(00)',
[383545479, 383545482], '3(00)',
[384363766, 384363769], '(00)3',
[384401786, 384401790], '22(00)',
[385198212, 385198215], '3(00)',
[385824476, 385824479], '(00)3',
[385908194, 385908197], '3(00)',
[386946806, 386946809], '3(00)',
[387592175, 387592179], '22(00)',
[388329293, 388329296], '(00)3',
[388679566, 388679569], '3(00)',
[388832142, 388832145], '3(00)',
[390087103, 390087106], '(00)3',
[390190926, 390190930], '(00)22',
[390331207, 390331210], '3(00)',
[391674495, 391674498], '3(00)',
[391937831, 391937834], '3(00)',
[391951632, 391951636], '(00)22',
[392963986, 392963989], '(00)3',
[393007921, 393007924], '3(00)',
[393373210, 393373213], '3(00)',
[393759572, 393759575], '(00)3',
[394036662, 394036665], '(00)3',
[395813866, 395813869], '(00)3',
[395956690, 395956693], '3(00)',
[396031670, 396031673], '3(00)',
[397076433, 397076436], '3(00)',
[397470601, 397470604], '3(00)',
[398289458, 398289461], '3(00)',
#
[368714778, 368714783], '04(010)',
[437953499, 437953504], '04(010)',
[526196233, 526196238], '032(00)',
[744719566, 744719571], '(010)40',
[750375857, 750375862], '032(00)',
[958241932, 958241937], '04(010)',
[983377342, 983377347], '(00)410',
[1003780080, 1003780085], '04(010)',
[1070232754, 1070232759], '(00)230',
[1209834865, 1209834870], '032(00)',
[1257209100, 1257209105], '(00)410',
[1368002233, 1368002238], '(00)230'
]
|